summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/analysis/solvers/BaseSecantSolver.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/analysis/solvers/BaseSecantSolver.java')
-rw-r--r--src/main/java/org/apache/commons/math3/analysis/solvers/BaseSecantSolver.java278
1 files changed, 278 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/analysis/solvers/BaseSecantSolver.java b/src/main/java/org/apache/commons/math3/analysis/solvers/BaseSecantSolver.java
new file mode 100644
index 0000000..44a2173
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/analysis/solvers/BaseSecantSolver.java
@@ -0,0 +1,278 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.analysis.solvers;
+
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.exception.ConvergenceException;
+import org.apache.commons.math3.exception.MathInternalError;
+
+/**
+ * Base class for all bracketing <em>Secant</em>-based methods for root-finding
+ * (approximating a zero of a univariate real function).
+ *
+ * <p>Implementation of the {@link RegulaFalsiSolver <em>Regula Falsi</em>} and
+ * {@link IllinoisSolver <em>Illinois</em>} methods is based on the
+ * following article: M. Dowell and P. Jarratt,
+ * <em>A modified regula falsi method for computing the root of an
+ * equation</em>, BIT Numerical Mathematics, volume 11, number 2,
+ * pages 168-174, Springer, 1971.</p>
+ *
+ * <p>Implementation of the {@link PegasusSolver <em>Pegasus</em>} method is
+ * based on the following article: M. Dowell and P. Jarratt,
+ * <em>The "Pegasus" method for computing the root of an equation</em>,
+ * BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer,
+ * 1972.</p>
+ *
+ * <p>The {@link SecantSolver <em>Secant</em>} method is <em>not</em> a
+ * bracketing method, so it is not implemented here. It has a separate
+ * implementation.</p>
+ *
+ * @since 3.0
+ */
+public abstract class BaseSecantSolver
+ extends AbstractUnivariateSolver
+ implements BracketedUnivariateSolver<UnivariateFunction> {
+
+ /** Default absolute accuracy. */
+ protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
+
+ /** The kinds of solutions that the algorithm may accept. */
+ private AllowedSolution allowed;
+
+ /** The <em>Secant</em>-based root-finding method to use. */
+ private final Method method;
+
+ /**
+ * Construct a solver.
+ *
+ * @param absoluteAccuracy Absolute accuracy.
+ * @param method <em>Secant</em>-based root-finding method to use.
+ */
+ protected BaseSecantSolver(final double absoluteAccuracy, final Method method) {
+ super(absoluteAccuracy);
+ this.allowed = AllowedSolution.ANY_SIDE;
+ this.method = method;
+ }
+
+ /**
+ * Construct a solver.
+ *
+ * @param relativeAccuracy Relative accuracy.
+ * @param absoluteAccuracy Absolute accuracy.
+ * @param method <em>Secant</em>-based root-finding method to use.
+ */
+ protected BaseSecantSolver(final double relativeAccuracy,
+ final double absoluteAccuracy,
+ final Method method) {
+ super(relativeAccuracy, absoluteAccuracy);
+ this.allowed = AllowedSolution.ANY_SIDE;
+ this.method = method;
+ }
+
+ /**
+ * Construct a solver.
+ *
+ * @param relativeAccuracy Maximum relative error.
+ * @param absoluteAccuracy Maximum absolute error.
+ * @param functionValueAccuracy Maximum function value error.
+ * @param method <em>Secant</em>-based root-finding method to use
+ */
+ protected BaseSecantSolver(final double relativeAccuracy,
+ final double absoluteAccuracy,
+ final double functionValueAccuracy,
+ final Method method) {
+ super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy);
+ this.allowed = AllowedSolution.ANY_SIDE;
+ this.method = method;
+ }
+
+ /** {@inheritDoc} */
+ public double solve(final int maxEval, final UnivariateFunction f,
+ final double min, final double max,
+ final AllowedSolution allowedSolution) {
+ return solve(maxEval, f, min, max, min + 0.5 * (max - min), allowedSolution);
+ }
+
+ /** {@inheritDoc} */
+ public double solve(final int maxEval, final UnivariateFunction f,
+ final double min, final double max, final double startValue,
+ final AllowedSolution allowedSolution) {
+ this.allowed = allowedSolution;
+ return super.solve(maxEval, f, min, max, startValue);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public double solve(final int maxEval, final UnivariateFunction f,
+ final double min, final double max, final double startValue) {
+ return solve(maxEval, f, min, max, startValue, AllowedSolution.ANY_SIDE);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @throws ConvergenceException if the algorithm failed due to finite
+ * precision.
+ */
+ @Override
+ protected final double doSolve()
+ throws ConvergenceException {
+ // Get initial solution
+ double x0 = getMin();
+ double x1 = getMax();
+ double f0 = computeObjectiveValue(x0);
+ double f1 = computeObjectiveValue(x1);
+
+ // If one of the bounds is the exact root, return it. Since these are
+ // not under-approximations or over-approximations, we can return them
+ // regardless of the allowed solutions.
+ if (f0 == 0.0) {
+ return x0;
+ }
+ if (f1 == 0.0) {
+ return x1;
+ }
+
+ // Verify bracketing of initial solution.
+ verifyBracketing(x0, x1);
+
+ // Get accuracies.
+ final double ftol = getFunctionValueAccuracy();
+ final double atol = getAbsoluteAccuracy();
+ final double rtol = getRelativeAccuracy();
+
+ // Keep track of inverted intervals, meaning that the left bound is
+ // larger than the right bound.
+ boolean inverted = false;
+
+ // Keep finding better approximations.
+ while (true) {
+ // Calculate the next approximation.
+ final double x = x1 - ((f1 * (x1 - x0)) / (f1 - f0));
+ final double fx = computeObjectiveValue(x);
+
+ // If the new approximation is the exact root, return it. Since
+ // this is not an under-approximation or an over-approximation,
+ // we can return it regardless of the allowed solutions.
+ if (fx == 0.0) {
+ return x;
+ }
+
+ // Update the bounds with the new approximation.
+ if (f1 * fx < 0) {
+ // The value of x1 has switched to the other bound, thus inverting
+ // the interval.
+ x0 = x1;
+ f0 = f1;
+ inverted = !inverted;
+ } else {
+ switch (method) {
+ case ILLINOIS:
+ f0 *= 0.5;
+ break;
+ case PEGASUS:
+ f0 *= f1 / (f1 + fx);
+ break;
+ case REGULA_FALSI:
+ // Detect early that algorithm is stuck, instead of waiting
+ // for the maximum number of iterations to be exceeded.
+ if (x == x1) {
+ throw new ConvergenceException();
+ }
+ break;
+ default:
+ // Should never happen.
+ throw new MathInternalError();
+ }
+ }
+ // Update from [x0, x1] to [x0, x].
+ x1 = x;
+ f1 = fx;
+
+ // If the function value of the last approximation is too small,
+ // given the function value accuracy, then we can't get closer to
+ // the root than we already are.
+ if (FastMath.abs(f1) <= ftol) {
+ switch (allowed) {
+ case ANY_SIDE:
+ return x1;
+ case LEFT_SIDE:
+ if (inverted) {
+ return x1;
+ }
+ break;
+ case RIGHT_SIDE:
+ if (!inverted) {
+ return x1;
+ }
+ break;
+ case BELOW_SIDE:
+ if (f1 <= 0) {
+ return x1;
+ }
+ break;
+ case ABOVE_SIDE:
+ if (f1 >= 0) {
+ return x1;
+ }
+ break;
+ default:
+ throw new MathInternalError();
+ }
+ }
+
+ // If the current interval is within the given accuracies, we
+ // are satisfied with the current approximation.
+ if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1),
+ atol)) {
+ switch (allowed) {
+ case ANY_SIDE:
+ return x1;
+ case LEFT_SIDE:
+ return inverted ? x1 : x0;
+ case RIGHT_SIDE:
+ return inverted ? x0 : x1;
+ case BELOW_SIDE:
+ return (f1 <= 0) ? x1 : x0;
+ case ABOVE_SIDE:
+ return (f1 >= 0) ? x1 : x0;
+ default:
+ throw new MathInternalError();
+ }
+ }
+ }
+ }
+
+ /** <em>Secant</em>-based root-finding methods. */
+ protected enum Method {
+
+ /**
+ * The {@link RegulaFalsiSolver <em>Regula Falsi</em>} or
+ * <em>False Position</em> method.
+ */
+ REGULA_FALSI,
+
+ /** The {@link IllinoisSolver <em>Illinois</em>} method. */
+ ILLINOIS,
+
+ /** The {@link PegasusSolver <em>Pegasus</em>} method. */
+ PEGASUS;
+
+ }
+}