summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/analysis/solvers/RiddersSolver.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/analysis/solvers/RiddersSolver.java')
-rw-r--r--src/main/java/org/apache/commons/math3/analysis/solvers/RiddersSolver.java142
1 files changed, 142 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/analysis/solvers/RiddersSolver.java b/src/main/java/org/apache/commons/math3/analysis/solvers/RiddersSolver.java
new file mode 100644
index 0000000..d83f595
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/analysis/solvers/RiddersSolver.java
@@ -0,0 +1,142 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.analysis.solvers;
+
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.exception.NoBracketingException;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+
+/**
+ * Implements the <a href="http://mathworld.wolfram.com/RiddersMethod.html">
+ * Ridders' Method</a> for root finding of real univariate functions. For
+ * reference, see C. Ridders, <i>A new algorithm for computing a single root
+ * of a real continuous function </i>, IEEE Transactions on Circuits and
+ * Systems, 26 (1979), 979 - 980.
+ * <p>
+ * The function should be continuous but not necessarily smooth.</p>
+ *
+ * @since 1.2
+ */
+public class RiddersSolver extends AbstractUnivariateSolver {
+ /** Default absolute accuracy. */
+ private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
+
+ /**
+ * Construct a solver with default accuracy (1e-6).
+ */
+ public RiddersSolver() {
+ this(DEFAULT_ABSOLUTE_ACCURACY);
+ }
+ /**
+ * Construct a solver.
+ *
+ * @param absoluteAccuracy Absolute accuracy.
+ */
+ public RiddersSolver(double absoluteAccuracy) {
+ super(absoluteAccuracy);
+ }
+ /**
+ * Construct a solver.
+ *
+ * @param relativeAccuracy Relative accuracy.
+ * @param absoluteAccuracy Absolute accuracy.
+ */
+ public RiddersSolver(double relativeAccuracy,
+ double absoluteAccuracy) {
+ super(relativeAccuracy, absoluteAccuracy);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ protected double doSolve()
+ throws TooManyEvaluationsException,
+ NoBracketingException {
+ double min = getMin();
+ double max = getMax();
+ // [x1, x2] is the bracketing interval in each iteration
+ // x3 is the midpoint of [x1, x2]
+ // x is the new root approximation and an endpoint of the new interval
+ double x1 = min;
+ double y1 = computeObjectiveValue(x1);
+ double x2 = max;
+ double y2 = computeObjectiveValue(x2);
+
+ // check for zeros before verifying bracketing
+ if (y1 == 0) {
+ return min;
+ }
+ if (y2 == 0) {
+ return max;
+ }
+ verifyBracketing(min, max);
+
+ final double absoluteAccuracy = getAbsoluteAccuracy();
+ final double functionValueAccuracy = getFunctionValueAccuracy();
+ final double relativeAccuracy = getRelativeAccuracy();
+
+ double oldx = Double.POSITIVE_INFINITY;
+ while (true) {
+ // calculate the new root approximation
+ final double x3 = 0.5 * (x1 + x2);
+ final double y3 = computeObjectiveValue(x3);
+ if (FastMath.abs(y3) <= functionValueAccuracy) {
+ return x3;
+ }
+ final double delta = 1 - (y1 * y2) / (y3 * y3); // delta > 1 due to bracketing
+ final double correction = (FastMath.signum(y2) * FastMath.signum(y3)) *
+ (x3 - x1) / FastMath.sqrt(delta);
+ final double x = x3 - correction; // correction != 0
+ final double y = computeObjectiveValue(x);
+
+ // check for convergence
+ final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy);
+ if (FastMath.abs(x - oldx) <= tolerance) {
+ return x;
+ }
+ if (FastMath.abs(y) <= functionValueAccuracy) {
+ return x;
+ }
+
+ // prepare the new interval for next iteration
+ // Ridders' method guarantees x1 < x < x2
+ if (correction > 0.0) { // x1 < x < x3
+ if (FastMath.signum(y1) + FastMath.signum(y) == 0.0) {
+ x2 = x;
+ y2 = y;
+ } else {
+ x1 = x;
+ x2 = x3;
+ y1 = y;
+ y2 = y3;
+ }
+ } else { // x3 < x < x2
+ if (FastMath.signum(y2) + FastMath.signum(y) == 0.0) {
+ x1 = x;
+ y1 = y;
+ } else {
+ x1 = x3;
+ x2 = x;
+ y1 = y3;
+ y2 = y;
+ }
+ }
+ oldx = x;
+ }
+ }
+}