summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/complex/Complex.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/complex/Complex.java')
-rw-r--r--src/main/java/org/apache/commons/math3/complex/Complex.java1219
1 files changed, 1219 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/complex/Complex.java b/src/main/java/org/apache/commons/math3/complex/Complex.java
new file mode 100644
index 0000000..cd8d794
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/complex/Complex.java
@@ -0,0 +1,1219 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.complex;
+
+import org.apache.commons.math3.FieldElement;
+import org.apache.commons.math3.exception.NotPositiveException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+import org.apache.commons.math3.util.Precision;
+
+import java.io.Serializable;
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Representation of a Complex number, i.e. a number which has both a real and imaginary part.
+ *
+ * <p>Implementations of arithmetic operations handle {@code NaN} and infinite values according to
+ * the rules for {@link java.lang.Double}, i.e. {@link #equals} is an equivalence relation for all
+ * instances that have a {@code NaN} in either real or imaginary part, e.g. the following are
+ * considered equal:
+ *
+ * <ul>
+ * <li>{@code 1 + NaNi}
+ * <li>{@code NaN + i}
+ * <li>{@code NaN + NaNi}
+ * </ul>
+ *
+ * <p>Note that this contradicts the IEEE-754 standard for floating point numbers (according to
+ * which the test {@code x == x} must fail if {@code x} is {@code NaN}). The method {@link
+ * org.apache.commons.math3.util.Precision#equals(double,double,int) equals for primitive double} in
+ * {@link org.apache.commons.math3.util.Precision} conforms with IEEE-754 while this class conforms
+ * with the standard behavior for Java object types.
+ */
+public class Complex implements FieldElement<Complex>, Serializable {
+ /** The square root of -1. A number representing "0.0 + 1.0i" */
+ public static final Complex I = new Complex(0.0, 1.0);
+
+ // CHECKSTYLE: stop ConstantName
+ /** A complex number representing "NaN + NaNi" */
+ public static final Complex NaN = new Complex(Double.NaN, Double.NaN);
+
+ // CHECKSTYLE: resume ConstantName
+ /** A complex number representing "+INF + INFi" */
+ public static final Complex INF =
+ new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
+
+ /** A complex number representing "1.0 + 0.0i" */
+ public static final Complex ONE = new Complex(1.0, 0.0);
+
+ /** A complex number representing "0.0 + 0.0i" */
+ public static final Complex ZERO = new Complex(0.0, 0.0);
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -6195664516687396620L;
+
+ /** The imaginary part. */
+ private final double imaginary;
+
+ /** The real part. */
+ private final double real;
+
+ /** Record whether this complex number is equal to NaN. */
+ private final transient boolean isNaN;
+
+ /** Record whether this complex number is infinite. */
+ private final transient boolean isInfinite;
+
+ /**
+ * Create a complex number given only the real part.
+ *
+ * @param real Real part.
+ */
+ public Complex(double real) {
+ this(real, 0.0);
+ }
+
+ /**
+ * Create a complex number given the real and imaginary parts.
+ *
+ * @param real Real part.
+ * @param imaginary Imaginary part.
+ */
+ public Complex(double real, double imaginary) {
+ this.real = real;
+ this.imaginary = imaginary;
+
+ isNaN = Double.isNaN(real) || Double.isNaN(imaginary);
+ isInfinite = !isNaN && (Double.isInfinite(real) || Double.isInfinite(imaginary));
+ }
+
+ /**
+ * Return the absolute value of this complex number. Returns {@code NaN} if either real or
+ * imaginary part is {@code NaN} and {@code Double.POSITIVE_INFINITY} if neither part is {@code
+ * NaN}, but at least one part is infinite.
+ *
+ * @return the absolute value.
+ */
+ public double abs() {
+ if (isNaN) {
+ return Double.NaN;
+ }
+ if (isInfinite()) {
+ return Double.POSITIVE_INFINITY;
+ }
+ if (FastMath.abs(real) < FastMath.abs(imaginary)) {
+ if (imaginary == 0.0) {
+ return FastMath.abs(real);
+ }
+ double q = real / imaginary;
+ return FastMath.abs(imaginary) * FastMath.sqrt(1 + q * q);
+ } else {
+ if (real == 0.0) {
+ return FastMath.abs(imaginary);
+ }
+ double q = imaginary / real;
+ return FastMath.abs(real) * FastMath.sqrt(1 + q * q);
+ }
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code (this + addend)}. Uses the definitional
+ * formula
+ *
+ * <p>{@code (a + bi) + (c + di) = (a+c) + (b+d)i} If either {@code this} or {@code addend} has
+ * a {@code NaN} value in either part, {@link #NaN} is returned; otherwise {@code Infinite} and
+ * {@code NaN} values are returned in the parts of the result according to the rules for {@link
+ * java.lang.Double} arithmetic.
+ *
+ * @param addend Value to be added to this {@code Complex}.
+ * @return {@code this + addend}.
+ * @throws NullArgumentException if {@code addend} is {@code null}.
+ */
+ public Complex add(Complex addend) throws NullArgumentException {
+ MathUtils.checkNotNull(addend);
+ if (isNaN || addend.isNaN) {
+ return NaN;
+ }
+
+ return createComplex(real + addend.getReal(), imaginary + addend.getImaginary());
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code (this + addend)}, with {@code addend}
+ * interpreted as a real number.
+ *
+ * @param addend Value to be added to this {@code Complex}.
+ * @return {@code this + addend}.
+ * @see #add(Complex)
+ */
+ public Complex add(double addend) {
+ if (isNaN || Double.isNaN(addend)) {
+ return NaN;
+ }
+
+ return createComplex(real + addend, imaginary);
+ }
+
+ /**
+ * Returns the conjugate of this complex number. The conjugate of {@code a + bi} is {@code a -
+ * bi}.
+ *
+ * <p>{@link #NaN} is returned if either the real or imaginary part of this Complex number
+ * equals {@code Double.NaN}.
+ *
+ * <p>If the imaginary part is infinite, and the real part is not {@code NaN}, the returned
+ * value has infinite imaginary part of the opposite sign, e.g. the conjugate of {@code 1 +
+ * POSITIVE_INFINITY i} is {@code 1 - NEGATIVE_INFINITY i}.
+ *
+ * @return the conjugate of this Complex object.
+ */
+ public Complex conjugate() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return createComplex(real, -imaginary);
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code (this / divisor)}. Implements the
+ * definitional formula
+ *
+ * <pre>
+ * <code>
+ * a + bi ac + bd + (bc - ad)i
+ * ----------- = -------------------------
+ * c + di c<sup>2</sup> + d<sup>2</sup>
+ * </code>
+ * </pre>
+ *
+ * but uses <a href="http://doi.acm.org/10.1145/1039813.1039814">prescaling of operands</a> to
+ * limit the effects of overflows and underflows in the computation.
+ *
+ * <p>{@code Infinite} and {@code NaN} values are handled according to the following rules,
+ * applied in the order presented:
+ *
+ * <ul>
+ * <li>If either {@code this} or {@code divisor} has a {@code NaN} value in either part,
+ * {@link #NaN} is returned.
+ * <li>If {@code divisor} equals {@link #ZERO}, {@link #NaN} is returned.
+ * <li>If {@code this} and {@code divisor} are both infinite, {@link #NaN} is returned.
+ * <li>If {@code this} is finite (i.e., has no {@code Infinite} or {@code NaN} parts) and
+ * {@code divisor} is infinite (one or both parts infinite), {@link #ZERO} is returned.
+ * <li>If {@code this} is infinite and {@code divisor} is finite, {@code NaN} values are
+ * returned in the parts of the result if the {@link java.lang.Double} rules applied to
+ * the definitional formula force {@code NaN} results.
+ * </ul>
+ *
+ * @param divisor Value by which this {@code Complex} is to be divided.
+ * @return {@code this / divisor}.
+ * @throws NullArgumentException if {@code divisor} is {@code null}.
+ */
+ public Complex divide(Complex divisor) throws NullArgumentException {
+ MathUtils.checkNotNull(divisor);
+ if (isNaN || divisor.isNaN) {
+ return NaN;
+ }
+
+ final double c = divisor.getReal();
+ final double d = divisor.getImaginary();
+ if (c == 0.0 && d == 0.0) {
+ return NaN;
+ }
+
+ if (divisor.isInfinite() && !isInfinite()) {
+ return ZERO;
+ }
+
+ if (FastMath.abs(c) < FastMath.abs(d)) {
+ double q = c / d;
+ double denominator = c * q + d;
+ return createComplex(
+ (real * q + imaginary) / denominator, (imaginary * q - real) / denominator);
+ } else {
+ double q = d / c;
+ double denominator = d * q + c;
+ return createComplex(
+ (imaginary * q + real) / denominator, (imaginary - real * q) / denominator);
+ }
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code (this / divisor)}, with {@code divisor}
+ * interpreted as a real number.
+ *
+ * @param divisor Value by which this {@code Complex} is to be divided.
+ * @return {@code this / divisor}.
+ * @see #divide(Complex)
+ */
+ public Complex divide(double divisor) {
+ if (isNaN || Double.isNaN(divisor)) {
+ return NaN;
+ }
+ if (divisor == 0d) {
+ return NaN;
+ }
+ if (Double.isInfinite(divisor)) {
+ return !isInfinite() ? ZERO : NaN;
+ }
+ return createComplex(real / divisor, imaginary / divisor);
+ }
+
+ /** {@inheritDoc} */
+ public Complex reciprocal() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ if (real == 0.0 && imaginary == 0.0) {
+ return INF;
+ }
+
+ if (isInfinite) {
+ return ZERO;
+ }
+
+ if (FastMath.abs(real) < FastMath.abs(imaginary)) {
+ double q = real / imaginary;
+ double scale = 1. / (real * q + imaginary);
+ return createComplex(scale * q, -scale);
+ } else {
+ double q = imaginary / real;
+ double scale = 1. / (imaginary * q + real);
+ return createComplex(scale, -scale * q);
+ }
+ }
+
+ /**
+ * Test for equality with another object. If both the real and imaginary parts of two complex
+ * numbers are exactly the same, and neither is {@code Double.NaN}, the two Complex objects are
+ * considered to be equal. The behavior is the same as for JDK's {@link Double#equals(Object)
+ * Double}:
+ *
+ * <ul>
+ * <li>All {@code NaN} values are considered to be equal, i.e, if either (or both) real and
+ * imaginary parts of the complex number are equal to {@code Double.NaN}, the complex
+ * number is equal to {@code NaN}.
+ * <li>Instances constructed with different representations of zero (i.e. either "0" or "-0")
+ * are <em>not</em> considered to be equal.
+ * </ul>
+ *
+ * @param other Object to test for equality with this instance.
+ * @return {@code true} if the objects are equal, {@code false} if object is {@code null}, not
+ * an instance of {@code Complex}, or not equal to this instance.
+ */
+ @Override
+ public boolean equals(Object other) {
+ if (this == other) {
+ return true;
+ }
+ if (other instanceof Complex) {
+ Complex c = (Complex) other;
+ if (c.isNaN) {
+ return isNaN;
+ } else {
+ return MathUtils.equals(real, c.real) && MathUtils.equals(imaginary, c.imaginary);
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Test for the floating-point equality between Complex objects. It returns {@code true} if both
+ * arguments are equal or within the range of allowed error (inclusive).
+ *
+ * @param x First value (cannot be {@code null}).
+ * @param y Second value (cannot be {@code null}).
+ * @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between the real
+ * (resp. imaginary) parts of {@code x} and {@code y}.
+ * @return {@code true} if there are fewer than {@code maxUlps} floating point values between
+ * the real (resp. imaginary) parts of {@code x} and {@code y}.
+ * @see Precision#equals(double,double,int)
+ * @since 3.3
+ */
+ public static boolean equals(Complex x, Complex y, int maxUlps) {
+ return Precision.equals(x.real, y.real, maxUlps)
+ && Precision.equals(x.imaginary, y.imaginary, maxUlps);
+ }
+
+ /**
+ * Returns {@code true} iff the values are equal as defined by {@link
+ * #equals(Complex,Complex,int) equals(x, y, 1)}.
+ *
+ * @param x First value (cannot be {@code null}).
+ * @param y Second value (cannot be {@code null}).
+ * @return {@code true} if the values are equal.
+ * @since 3.3
+ */
+ public static boolean equals(Complex x, Complex y) {
+ return equals(x, y, 1);
+ }
+
+ /**
+ * Returns {@code true} if, both for the real part and for the imaginary part, there is no
+ * double value strictly between the arguments or the difference between them is within the
+ * range of allowed error (inclusive). Returns {@code false} if either of the arguments is NaN.
+ *
+ * @param x First value (cannot be {@code null}).
+ * @param y Second value (cannot be {@code null}).
+ * @param eps Amount of allowed absolute error.
+ * @return {@code true} if the values are two adjacent floating point numbers or they are within
+ * range of each other.
+ * @see Precision#equals(double,double,double)
+ * @since 3.3
+ */
+ public static boolean equals(Complex x, Complex y, double eps) {
+ return Precision.equals(x.real, y.real, eps)
+ && Precision.equals(x.imaginary, y.imaginary, eps);
+ }
+
+ /**
+ * Returns {@code true} if, both for the real part and for the imaginary part, there is no
+ * double value strictly between the arguments or the relative difference between them is
+ * smaller or equal to the given tolerance. Returns {@code false} if either of the arguments is
+ * NaN.
+ *
+ * @param x First value (cannot be {@code null}).
+ * @param y Second value (cannot be {@code null}).
+ * @param eps Amount of allowed relative error.
+ * @return {@code true} if the values are two adjacent floating point numbers or they are within
+ * range of each other.
+ * @see Precision#equalsWithRelativeTolerance(double,double,double)
+ * @since 3.3
+ */
+ public static boolean equalsWithRelativeTolerance(Complex x, Complex y, double eps) {
+ return Precision.equalsWithRelativeTolerance(x.real, y.real, eps)
+ && Precision.equalsWithRelativeTolerance(x.imaginary, y.imaginary, eps);
+ }
+
+ /**
+ * Get a hashCode for the complex number. Any {@code Double.NaN} value in real or imaginary part
+ * produces the same hash code {@code 7}.
+ *
+ * @return a hash code value for this object.
+ */
+ @Override
+ public int hashCode() {
+ if (isNaN) {
+ return 7;
+ }
+ return 37 * (17 * MathUtils.hash(imaginary) + MathUtils.hash(real));
+ }
+
+ /**
+ * Access the imaginary part.
+ *
+ * @return the imaginary part.
+ */
+ public double getImaginary() {
+ return imaginary;
+ }
+
+ /**
+ * Access the real part.
+ *
+ * @return the real part.
+ */
+ public double getReal() {
+ return real;
+ }
+
+ /**
+ * Checks whether either or both parts of this complex number is {@code NaN}.
+ *
+ * @return true if either or both parts of this complex number is {@code NaN}; false otherwise.
+ */
+ public boolean isNaN() {
+ return isNaN;
+ }
+
+ /**
+ * Checks whether either the real or imaginary part of this complex number takes an infinite
+ * value (either {@code Double.POSITIVE_INFINITY} or {@code Double.NEGATIVE_INFINITY}) and
+ * neither part is {@code NaN}.
+ *
+ * @return true if one or both parts of this complex number are infinite and neither part is
+ * {@code NaN}.
+ */
+ public boolean isInfinite() {
+ return isInfinite;
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code this * factor}. Implements preliminary checks
+ * for {@code NaN} and infinity followed by the definitional formula:
+ *
+ * <p>{@code (a + bi)(c + di) = (ac - bd) + (ad + bc)i} Returns {@link #NaN} if either {@code
+ * this} or {@code factor} has one or more {@code NaN} parts.
+ *
+ * <p>Returns {@link #INF} if neither {@code this} nor {@code factor} has one or more {@code
+ * NaN} parts and if either {@code this} or {@code factor} has one or more infinite parts (same
+ * result is returned regardless of the sign of the components).
+ *
+ * <p>Returns finite values in components of the result per the definitional formula in all
+ * remaining cases.
+ *
+ * @param factor value to be multiplied by this {@code Complex}.
+ * @return {@code this * factor}.
+ * @throws NullArgumentException if {@code factor} is {@code null}.
+ */
+ public Complex multiply(Complex factor) throws NullArgumentException {
+ MathUtils.checkNotNull(factor);
+ if (isNaN || factor.isNaN) {
+ return NaN;
+ }
+ if (Double.isInfinite(real)
+ || Double.isInfinite(imaginary)
+ || Double.isInfinite(factor.real)
+ || Double.isInfinite(factor.imaginary)) {
+ // we don't use isInfinite() to avoid testing for NaN again
+ return INF;
+ }
+ return createComplex(
+ real * factor.real - imaginary * factor.imaginary,
+ real * factor.imaginary + imaginary * factor.real);
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
+ * interpreted as a integer number.
+ *
+ * @param factor value to be multiplied by this {@code Complex}.
+ * @return {@code this * factor}.
+ * @see #multiply(Complex)
+ */
+ public Complex multiply(final int factor) {
+ if (isNaN) {
+ return NaN;
+ }
+ if (Double.isInfinite(real) || Double.isInfinite(imaginary)) {
+ return INF;
+ }
+ return createComplex(real * factor, imaginary * factor);
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
+ * interpreted as a real number.
+ *
+ * @param factor value to be multiplied by this {@code Complex}.
+ * @return {@code this * factor}.
+ * @see #multiply(Complex)
+ */
+ public Complex multiply(double factor) {
+ if (isNaN || Double.isNaN(factor)) {
+ return NaN;
+ }
+ if (Double.isInfinite(real) || Double.isInfinite(imaginary) || Double.isInfinite(factor)) {
+ // we don't use isInfinite() to avoid testing for NaN again
+ return INF;
+ }
+ return createComplex(real * factor, imaginary * factor);
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code (-this)}. Returns {@code NaN} if either real
+ * or imaginary part of this Complex number is {@code Double.NaN}.
+ *
+ * @return {@code -this}.
+ */
+ public Complex negate() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return createComplex(-real, -imaginary);
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code (this - subtrahend)}. Uses the definitional
+ * formula
+ *
+ * <p>{@code (a + bi) - (c + di) = (a-c) + (b-d)i} If either {@code this} or {@code subtrahend}
+ * has a {@code NaN]} value in either part, {@link #NaN} is returned; otherwise infinite and
+ * {@code NaN} values are returned in the parts of the result according to the rules for {@link
+ * java.lang.Double} arithmetic.
+ *
+ * @param subtrahend value to be subtracted from this {@code Complex}.
+ * @return {@code this - subtrahend}.
+ * @throws NullArgumentException if {@code subtrahend} is {@code null}.
+ */
+ public Complex subtract(Complex subtrahend) throws NullArgumentException {
+ MathUtils.checkNotNull(subtrahend);
+ if (isNaN || subtrahend.isNaN) {
+ return NaN;
+ }
+
+ return createComplex(real - subtrahend.getReal(), imaginary - subtrahend.getImaginary());
+ }
+
+ /**
+ * Returns a {@code Complex} whose value is {@code (this - subtrahend)}.
+ *
+ * @param subtrahend value to be subtracted from this {@code Complex}.
+ * @return {@code this - subtrahend}.
+ * @see #subtract(Complex)
+ */
+ public Complex subtract(double subtrahend) {
+ if (isNaN || Double.isNaN(subtrahend)) {
+ return NaN;
+ }
+ return createComplex(real - subtrahend, imaginary);
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/InverseCosine.html" TARGET="_top"> inverse
+ * cosine</a> of this complex number. Implements the formula:
+ *
+ * <p>{@code acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))} Returns {@link Complex#NaN} if
+ * either real or imaginary part of the input argument is {@code NaN} or infinite.
+ *
+ * @return the inverse cosine of this complex number.
+ * @since 1.2
+ */
+ public Complex acos() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return this.add(this.sqrt1z().multiply(I)).log().multiply(I.negate());
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/InverseSine.html" TARGET="_top"> inverse
+ * sine</a> of this complex number. Implements the formula:
+ *
+ * <p>{@code asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))}
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN} or infinite.
+ *
+ * @return the inverse sine of this complex number.
+ * @since 1.2
+ */
+ public Complex asin() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return sqrt1z().add(this.multiply(I)).log().multiply(I.negate());
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/InverseTangent.html" TARGET="_top"> inverse
+ * tangent</a> of this complex number. Implements the formula:
+ *
+ * <p>{@code atan(z) = (i/2) log((i + z)/(i - z))}
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN} or infinite.
+ *
+ * @return the inverse tangent of this complex number
+ * @since 1.2
+ */
+ public Complex atan() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return this.add(I)
+ .divide(I.subtract(this))
+ .log()
+ .multiply(I.divide(createComplex(2.0, 0.0)));
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/Cosine.html" TARGET="_top"> cosine</a> of
+ * this complex number. Implements the formula:
+ *
+ * <p>{@code cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i}
+ *
+ * <p>where the (real) functions on the right-hand side are {@link FastMath#sin}, {@link
+ * FastMath#cos}, {@link FastMath#cosh} and {@link FastMath#sinh}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}.
+ *
+ * <p>Infinite values in real or imaginary parts of the input may result in infinite or NaN
+ * values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * cos(1 &plusmn; INFINITY i) = 1 \u2213 INFINITY i
+ * cos(&plusmn;INFINITY + i) = NaN + NaN i
+ * cos(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * </code>
+ * </pre>
+ *
+ * @return the cosine of this complex number.
+ * @since 1.2
+ */
+ public Complex cos() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return createComplex(
+ FastMath.cos(real) * FastMath.cosh(imaginary),
+ -FastMath.sin(real) * FastMath.sinh(imaginary));
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html" TARGET="_top">
+ * hyperbolic cosine</a> of this complex number. Implements the formula:
+ *
+ * <pre>
+ * <code>
+ * cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
+ * </code>
+ * </pre>
+ *
+ * where the (real) functions on the right-hand side are {@link FastMath#sin}, {@link
+ * FastMath#cos}, {@link FastMath#cosh} and {@link FastMath#sinh}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}. Infinite values in real or imaginary parts of the input may result in infinite
+ * or NaN values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * cosh(1 &plusmn; INFINITY i) = NaN + NaN i
+ * cosh(&plusmn;INFINITY + i) = INFINITY &plusmn; INFINITY i
+ * cosh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * </code>
+ * </pre>
+ *
+ * @return the hyperbolic cosine of this complex number.
+ * @since 1.2
+ */
+ public Complex cosh() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return createComplex(
+ FastMath.cosh(real) * FastMath.cos(imaginary),
+ FastMath.sinh(real) * FastMath.sin(imaginary));
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/ExponentialFunction.html" TARGET="_top">
+ * exponential function</a> of this complex number. Implements the formula:
+ *
+ * <pre>
+ * <code>
+ * exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
+ * </code>
+ * </pre>
+ *
+ * where the (real) functions on the right-hand side are {@link FastMath#exp}, {@link
+ * FastMath#cos}, and {@link FastMath#sin}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}. Infinite values in real or imaginary parts of the input may result in infinite
+ * or NaN values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * exp(1 &plusmn; INFINITY i) = NaN + NaN i
+ * exp(INFINITY + i) = INFINITY + INFINITY i
+ * exp(-INFINITY + i) = 0 + 0i
+ * exp(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * </code>
+ * </pre>
+ *
+ * @return <code><i>e</i><sup>this</sup></code>.
+ * @since 1.2
+ */
+ public Complex exp() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ double expReal = FastMath.exp(real);
+ return createComplex(expReal * FastMath.cos(imaginary), expReal * FastMath.sin(imaginary));
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/NaturalLogarithm.html" TARGET="_top">
+ * natural logarithm</a> of this complex number. Implements the formula:
+ *
+ * <pre>
+ * <code>
+ * log(a + bi) = ln(|a + bi|) + arg(a + bi)i
+ * </code>
+ * </pre>
+ *
+ * where ln on the right hand side is {@link FastMath#log}, {@code |a + bi|} is the modulus,
+ * {@link Complex#abs}, and {@code arg(a + bi) = }{@link FastMath#atan2}(b, a).
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}. Infinite (or critical) values in real or imaginary parts of the input may result
+ * in infinite or NaN values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * log(1 &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/2)i
+ * log(INFINITY + i) = INFINITY + 0i
+ * log(-INFINITY + i) = INFINITY + &pi;i
+ * log(INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/4)i
+ * log(-INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (3&pi;/4)i
+ * log(0 + 0i) = -INFINITY + 0i
+ * </code>
+ * </pre>
+ *
+ * @return the value <code>ln &nbsp; this</code>, the natural logarithm of {@code this}.
+ * @since 1.2
+ */
+ public Complex log() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return createComplex(FastMath.log(abs()), FastMath.atan2(imaginary, real));
+ }
+
+ /**
+ * Returns of value of this complex number raised to the power of {@code x}. Implements the
+ * formula:
+ *
+ * <pre>
+ * <code>
+ * y<sup>x</sup> = exp(x&middot;log(y))
+ * </code>
+ * </pre>
+ *
+ * where {@code exp} and {@code log} are {@link #exp} and {@link #log}, respectively.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN} or infinite, or if {@code y} equals {@link Complex#ZERO}.
+ *
+ * @param x exponent to which this {@code Complex} is to be raised.
+ * @return <code> this<sup>x</sup></code>.
+ * @throws NullArgumentException if x is {@code null}.
+ * @since 1.2
+ */
+ public Complex pow(Complex x) throws NullArgumentException {
+ MathUtils.checkNotNull(x);
+ return this.log().multiply(x).exp();
+ }
+
+ /**
+ * Returns of value of this complex number raised to the power of {@code x}.
+ *
+ * @param x exponent to which this {@code Complex} is to be raised.
+ * @return <code>this<sup>x</sup></code>.
+ * @see #pow(Complex)
+ */
+ public Complex pow(double x) {
+ return this.log().multiply(x).exp();
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/Sine.html" TARGET="_top"> sine</a> of this
+ * complex number. Implements the formula:
+ *
+ * <pre>
+ * <code>
+ * sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
+ * </code>
+ * </pre>
+ *
+ * where the (real) functions on the right-hand side are {@link FastMath#sin}, {@link
+ * FastMath#cos}, {@link FastMath#cosh} and {@link FastMath#sinh}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}.
+ *
+ * <p>Infinite values in real or imaginary parts of the input may result in infinite or {@code
+ * NaN} values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * sin(1 &plusmn; INFINITY i) = 1 &plusmn; INFINITY i
+ * sin(&plusmn;INFINITY + i) = NaN + NaN i
+ * sin(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * </code>
+ * </pre>
+ *
+ * @return the sine of this complex number.
+ * @since 1.2
+ */
+ public Complex sin() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return createComplex(
+ FastMath.sin(real) * FastMath.cosh(imaginary),
+ FastMath.cos(real) * FastMath.sinh(imaginary));
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/HyperbolicSine.html" TARGET="_top">
+ * hyperbolic sine</a> of this complex number. Implements the formula:
+ *
+ * <pre>
+ * <code>
+ * sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
+ * </code>
+ * </pre>
+ *
+ * where the (real) functions on the right-hand side are {@link FastMath#sin}, {@link
+ * FastMath#cos}, {@link FastMath#cosh} and {@link FastMath#sinh}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}.
+ *
+ * <p>Infinite values in real or imaginary parts of the input may result in infinite or NaN
+ * values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * sinh(1 &plusmn; INFINITY i) = NaN + NaN i
+ * sinh(&plusmn;INFINITY + i) = &plusmn; INFINITY + INFINITY i
+ * sinh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * </code>
+ * </pre>
+ *
+ * @return the hyperbolic sine of {@code this}.
+ * @since 1.2
+ */
+ public Complex sinh() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ return createComplex(
+ FastMath.sinh(real) * FastMath.cos(imaginary),
+ FastMath.cosh(real) * FastMath.sin(imaginary));
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top"> square
+ * root</a> of this complex number. Implements the following algorithm to compute {@code sqrt(a
+ * + bi)}:
+ *
+ * <ol>
+ * <li>Let {@code t = sqrt((|a| + |a + bi|) / 2)}
+ * <li>
+ * <pre>if {@code a &#8805; 0} return {@code t + (b/2t)i}
+ * else return {@code |b|/2t + sign(b)t i }</pre>
+ * </ol>
+ *
+ * where
+ *
+ * <ul>
+ * <li>{@code |a| = }{@link FastMath#abs}(a)
+ * <li>{@code |a + bi| = }{@link Complex#abs}(a + bi)
+ * <li>{@code sign(b) = }{@link FastMath#copySign(double,double) copySign(1d, b)}
+ * </ul>
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}. Infinite values in real or imaginary parts of the input may result in infinite
+ * or NaN values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * sqrt(1 &plusmn; INFINITY i) = INFINITY + NaN i
+ * sqrt(INFINITY + i) = INFINITY + 0i
+ * sqrt(-INFINITY + i) = 0 + INFINITY i
+ * sqrt(INFINITY &plusmn; INFINITY i) = INFINITY + NaN i
+ * sqrt(-INFINITY &plusmn; INFINITY i) = NaN &plusmn; INFINITY i
+ * </code>
+ * </pre>
+ *
+ * @return the square root of {@code this}.
+ * @since 1.2
+ */
+ public Complex sqrt() {
+ if (isNaN) {
+ return NaN;
+ }
+
+ if (real == 0.0 && imaginary == 0.0) {
+ return createComplex(0.0, 0.0);
+ }
+
+ double t = FastMath.sqrt((FastMath.abs(real) + abs()) / 2.0);
+ if (real >= 0.0) {
+ return createComplex(t, imaginary / (2.0 * t));
+ } else {
+ return createComplex(
+ FastMath.abs(imaginary) / (2.0 * t), FastMath.copySign(1d, imaginary) * t);
+ }
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top"> square
+ * root</a> of <code>1 - this<sup>2</sup></code> for this complex number. Computes the result
+ * directly as {@code sqrt(ONE.subtract(z.multiply(z)))}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}. Infinite values in real or imaginary parts of the input may result in infinite
+ * or NaN values returned in parts of the result.
+ *
+ * @return the square root of <code>1 - this<sup>2</sup></code>.
+ * @since 1.2
+ */
+ public Complex sqrt1z() {
+ return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt();
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/Tangent.html" TARGET="_top"> tangent</a> of
+ * this complex number. Implements the formula:
+ *
+ * <pre>
+ * <code>
+ * tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
+ * </code>
+ * </pre>
+ *
+ * where the (real) functions on the right-hand side are {@link FastMath#sin}, {@link
+ * FastMath#cos}, {@link FastMath#cosh} and {@link FastMath#sinh}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}. Infinite (or critical) values in real or imaginary parts of the input may result
+ * in infinite or NaN values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * tan(a &plusmn; INFINITY i) = 0 &plusmn; i
+ * tan(&plusmn;INFINITY + bi) = NaN + NaN i
+ * tan(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * tan(&plusmn;&pi;/2 + 0 i) = &plusmn;INFINITY + NaN i
+ * </code>
+ * </pre>
+ *
+ * @return the tangent of {@code this}.
+ * @since 1.2
+ */
+ public Complex tan() {
+ if (isNaN || Double.isInfinite(real)) {
+ return NaN;
+ }
+ if (imaginary > 20.0) {
+ return createComplex(0.0, 1.0);
+ }
+ if (imaginary < -20.0) {
+ return createComplex(0.0, -1.0);
+ }
+
+ double real2 = 2.0 * real;
+ double imaginary2 = 2.0 * imaginary;
+ double d = FastMath.cos(real2) + FastMath.cosh(imaginary2);
+
+ return createComplex(FastMath.sin(real2) / d, FastMath.sinh(imaginary2) / d);
+ }
+
+ /**
+ * Compute the <a href="http://mathworld.wolfram.com/HyperbolicTangent.html" TARGET="_top">
+ * hyperbolic tangent</a> of this complex number. Implements the formula:
+ *
+ * <pre>
+ * <code>
+ * tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
+ * </code>
+ * </pre>
+ *
+ * where the (real) functions on the right-hand side are {@link FastMath#sin}, {@link
+ * FastMath#cos}, {@link FastMath#cosh} and {@link FastMath#sinh}.
+ *
+ * <p>Returns {@link Complex#NaN} if either real or imaginary part of the input argument is
+ * {@code NaN}. Infinite values in real or imaginary parts of the input may result in infinite
+ * or NaN values returned in parts of the result.
+ *
+ * <pre>
+ * Examples:
+ * <code>
+ * tanh(a &plusmn; INFINITY i) = NaN + NaN i
+ * tanh(&plusmn;INFINITY + bi) = &plusmn;1 + 0 i
+ * tanh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * tanh(0 + (&pi;/2)i) = NaN + INFINITY i
+ * </code>
+ * </pre>
+ *
+ * @return the hyperbolic tangent of {@code this}.
+ * @since 1.2
+ */
+ public Complex tanh() {
+ if (isNaN || Double.isInfinite(imaginary)) {
+ return NaN;
+ }
+ if (real > 20.0) {
+ return createComplex(1.0, 0.0);
+ }
+ if (real < -20.0) {
+ return createComplex(-1.0, 0.0);
+ }
+ double real2 = 2.0 * real;
+ double imaginary2 = 2.0 * imaginary;
+ double d = FastMath.cosh(real2) + FastMath.cos(imaginary2);
+
+ return createComplex(FastMath.sinh(real2) / d, FastMath.sin(imaginary2) / d);
+ }
+
+ /**
+ * Compute the argument of this complex number. The argument is the angle phi between the
+ * positive real axis and the point representing this number in the complex plane. The value
+ * returned is between -PI (not inclusive) and PI (inclusive), with negative values returned for
+ * numbers with negative imaginary parts.
+ *
+ * <p>If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are
+ * handled as {@code Math.atan2} handles them, essentially treating finite parts as zero in the
+ * presence of an infinite coordinate and returning a multiple of pi/4 depending on the signs of
+ * the infinite parts. See the javadoc for {@code Math.atan2} for full details.
+ *
+ * @return the argument of {@code this}.
+ */
+ public double getArgument() {
+ return FastMath.atan2(getImaginary(), getReal());
+ }
+
+ /**
+ * Computes the n-th roots of this complex number. The nth roots are defined by the formula:
+ *
+ * <pre>
+ * <code>
+ * z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi + 2&pi;k/n))
+ * </code>
+ * </pre>
+ *
+ * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi} are respectively the
+ * {@link #abs() modulus} and {@link #getArgument() argument} of this complex number.
+ *
+ * <p>If one or both parts of this complex number is NaN, a list with just one element, {@link
+ * #NaN} is returned. if neither part is NaN, but at least one part is infinite, the result is a
+ * one-element list containing {@link #INF}.
+ *
+ * @param n Degree of root.
+ * @return a List of all {@code n}-th roots of {@code this}.
+ * @throws NotPositiveException if {@code n <= 0}.
+ * @since 2.0
+ */
+ public List<Complex> nthRoot(int n) throws NotPositiveException {
+
+ if (n <= 0) {
+ throw new NotPositiveException(
+ LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n);
+ }
+
+ final List<Complex> result = new ArrayList<Complex>();
+
+ if (isNaN) {
+ result.add(NaN);
+ return result;
+ }
+ if (isInfinite()) {
+ result.add(INF);
+ return result;
+ }
+
+ // nth root of abs -- faster / more accurate to use a solver here?
+ final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n);
+
+ // Compute nth roots of complex number with k = 0, 1, ... n-1
+ final double nthPhi = getArgument() / n;
+ final double slice = 2 * FastMath.PI / n;
+ double innerPart = nthPhi;
+ for (int k = 0; k < n; k++) {
+ // inner part
+ final double realPart = nthRootOfAbs * FastMath.cos(innerPart);
+ final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart);
+ result.add(createComplex(realPart, imaginaryPart));
+ innerPart += slice;
+ }
+
+ return result;
+ }
+
+ /**
+ * Create a complex number given the real and imaginary parts.
+ *
+ * @param realPart Real part.
+ * @param imaginaryPart Imaginary part.
+ * @return a new complex number instance.
+ * @since 1.2
+ * @see #valueOf(double, double)
+ */
+ protected Complex createComplex(double realPart, double imaginaryPart) {
+ return new Complex(realPart, imaginaryPart);
+ }
+
+ /**
+ * Create a complex number given the real and imaginary parts.
+ *
+ * @param realPart Real part.
+ * @param imaginaryPart Imaginary part.
+ * @return a Complex instance.
+ */
+ public static Complex valueOf(double realPart, double imaginaryPart) {
+ if (Double.isNaN(realPart) || Double.isNaN(imaginaryPart)) {
+ return NaN;
+ }
+ return new Complex(realPart, imaginaryPart);
+ }
+
+ /**
+ * Create a complex number given only the real part.
+ *
+ * @param realPart Real part.
+ * @return a Complex instance.
+ */
+ public static Complex valueOf(double realPart) {
+ if (Double.isNaN(realPart)) {
+ return NaN;
+ }
+ return new Complex(realPart);
+ }
+
+ /**
+ * Resolve the transient fields in a deserialized Complex Object. Subclasses will need to
+ * override {@link #createComplex} to deserialize properly.
+ *
+ * @return A Complex instance with all fields resolved.
+ * @since 2.0
+ */
+ protected final Object readResolve() {
+ return createComplex(real, imaginary);
+ }
+
+ /** {@inheritDoc} */
+ public ComplexField getField() {
+ return ComplexField.getInstance();
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public String toString() {
+ return "(" + real + ", " + imaginary + ")";
+ }
+}