summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/AbstractRealDistribution.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/distribution/AbstractRealDistribution.java')
-rw-r--r--src/main/java/org/apache/commons/math3/distribution/AbstractRealDistribution.java306
1 files changed, 306 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/distribution/AbstractRealDistribution.java b/src/main/java/org/apache/commons/math3/distribution/AbstractRealDistribution.java
new file mode 100644
index 0000000..b9e5bca
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/distribution/AbstractRealDistribution.java
@@ -0,0 +1,306 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.distribution;
+
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.analysis.solvers.UnivariateSolverUtils;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.NumberIsTooLargeException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.random.RandomGenerator;
+import org.apache.commons.math3.util.FastMath;
+
+import java.io.Serializable;
+
+/**
+ * Base class for probability distributions on the reals. Default implementations are provided for
+ * some of the methods that do not vary from distribution to distribution.
+ *
+ * @since 3.0
+ */
+public abstract class AbstractRealDistribution implements RealDistribution, Serializable {
+ /** Default accuracy. */
+ public static final double SOLVER_DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -38038050983108802L;
+
+ /**
+ * RandomData instance used to generate samples from the distribution.
+ *
+ * @deprecated As of 3.1, to be removed in 4.0. Please use the {@link #random} instance variable
+ * instead.
+ */
+ @Deprecated
+ protected org.apache.commons.math3.random.RandomDataImpl randomData =
+ new org.apache.commons.math3.random.RandomDataImpl();
+
+ /**
+ * RNG instance used to generate samples from the distribution.
+ *
+ * @since 3.1
+ */
+ protected final RandomGenerator random;
+
+ /** Solver absolute accuracy for inverse cumulative computation */
+ private double solverAbsoluteAccuracy = SOLVER_DEFAULT_ABSOLUTE_ACCURACY;
+
+ /**
+ * @deprecated As of 3.1, to be removed in 4.0. Please use {@link
+ * #AbstractRealDistribution(RandomGenerator)} instead.
+ */
+ @Deprecated
+ protected AbstractRealDistribution() {
+ // Legacy users are only allowed to access the deprecated "randomData".
+ // New users are forbidden to use this constructor.
+ random = null;
+ }
+
+ /**
+ * @param rng Random number generator.
+ * @since 3.1
+ */
+ protected AbstractRealDistribution(RandomGenerator rng) {
+ random = rng;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The default implementation uses the identity
+ *
+ * <p>{@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0). Please use {@link #probability(double,double)}
+ * instead.
+ */
+ @Deprecated
+ public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException {
+ return probability(x0, x1);
+ }
+
+ /**
+ * For a random variable {@code X} whose values are distributed according to this distribution,
+ * this method returns {@code P(x0 < X <= x1)}.
+ *
+ * @param x0 Lower bound (excluded).
+ * @param x1 Upper bound (included).
+ * @return the probability that a random variable with this distribution takes a value between
+ * {@code x0} and {@code x1}, excluding the lower and including the upper endpoint.
+ * @throws NumberIsTooLargeException if {@code x0 > x1}.
+ * <p>The default implementation uses the identity {@code P(x0 < X <= x1) = P(X <= x1) - P(X
+ * <= x0)}
+ * @since 3.1
+ */
+ public double probability(double x0, double x1) {
+ if (x0 > x1) {
+ throw new NumberIsTooLargeException(
+ LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true);
+ }
+ return cumulativeProbability(x1) - cumulativeProbability(x0);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The default implementation returns
+ *
+ * <ul>
+ * <li>{@link #getSupportLowerBound()} for {@code p = 0},
+ * <li>{@link #getSupportUpperBound()} for {@code p = 1}.
+ * </ul>
+ */
+ public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
+ /*
+ * IMPLEMENTATION NOTES
+ * --------------------
+ * Where applicable, use is made of the one-sided Chebyshev inequality
+ * to bracket the root. This inequality states that
+ * P(X - mu >= k * sig) <= 1 / (1 + k^2),
+ * mu: mean, sig: standard deviation. Equivalently
+ * 1 - P(X < mu + k * sig) <= 1 / (1 + k^2),
+ * F(mu + k * sig) >= k^2 / (1 + k^2).
+ *
+ * For k = sqrt(p / (1 - p)), we find
+ * F(mu + k * sig) >= p,
+ * and (mu + k * sig) is an upper-bound for the root.
+ *
+ * Then, introducing Y = -X, mean(Y) = -mu, sd(Y) = sig, and
+ * P(Y >= -mu + k * sig) <= 1 / (1 + k^2),
+ * P(-X >= -mu + k * sig) <= 1 / (1 + k^2),
+ * P(X <= mu - k * sig) <= 1 / (1 + k^2),
+ * F(mu - k * sig) <= 1 / (1 + k^2).
+ *
+ * For k = sqrt((1 - p) / p), we find
+ * F(mu - k * sig) <= p,
+ * and (mu - k * sig) is a lower-bound for the root.
+ *
+ * In cases where the Chebyshev inequality does not apply, geometric
+ * progressions 1, 2, 4, ... and -1, -2, -4, ... are used to bracket
+ * the root.
+ */
+ if (p < 0.0 || p > 1.0) {
+ throw new OutOfRangeException(p, 0, 1);
+ }
+
+ double lowerBound = getSupportLowerBound();
+ if (p == 0.0) {
+ return lowerBound;
+ }
+
+ double upperBound = getSupportUpperBound();
+ if (p == 1.0) {
+ return upperBound;
+ }
+
+ final double mu = getNumericalMean();
+ final double sig = FastMath.sqrt(getNumericalVariance());
+ final boolean chebyshevApplies;
+ chebyshevApplies =
+ !(Double.isInfinite(mu)
+ || Double.isNaN(mu)
+ || Double.isInfinite(sig)
+ || Double.isNaN(sig));
+
+ if (lowerBound == Double.NEGATIVE_INFINITY) {
+ if (chebyshevApplies) {
+ lowerBound = mu - sig * FastMath.sqrt((1. - p) / p);
+ } else {
+ lowerBound = -1.0;
+ while (cumulativeProbability(lowerBound) >= p) {
+ lowerBound *= 2.0;
+ }
+ }
+ }
+
+ if (upperBound == Double.POSITIVE_INFINITY) {
+ if (chebyshevApplies) {
+ upperBound = mu + sig * FastMath.sqrt(p / (1. - p));
+ } else {
+ upperBound = 1.0;
+ while (cumulativeProbability(upperBound) < p) {
+ upperBound *= 2.0;
+ }
+ }
+ }
+
+ final UnivariateFunction toSolve =
+ new UnivariateFunction() {
+ /** {@inheritDoc} */
+ public double value(final double x) {
+ return cumulativeProbability(x) - p;
+ }
+ };
+
+ double x =
+ UnivariateSolverUtils.solve(
+ toSolve, lowerBound, upperBound, getSolverAbsoluteAccuracy());
+
+ if (!isSupportConnected()) {
+ /* Test for plateau. */
+ final double dx = getSolverAbsoluteAccuracy();
+ if (x - dx >= getSupportLowerBound()) {
+ double px = cumulativeProbability(x);
+ if (cumulativeProbability(x - dx) == px) {
+ upperBound = x;
+ while (upperBound - lowerBound > dx) {
+ final double midPoint = 0.5 * (lowerBound + upperBound);
+ if (cumulativeProbability(midPoint) < px) {
+ lowerBound = midPoint;
+ } else {
+ upperBound = midPoint;
+ }
+ }
+ return upperBound;
+ }
+ }
+ }
+ return x;
+ }
+
+ /**
+ * Returns the solver absolute accuracy for inverse cumulative computation. You can override
+ * this method in order to use a Brent solver with an absolute accuracy different from the
+ * default.
+ *
+ * @return the maximum absolute error in inverse cumulative probability estimates
+ */
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+ /** {@inheritDoc} */
+ public void reseedRandomGenerator(long seed) {
+ random.setSeed(seed);
+ randomData.reSeed(seed);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The default implementation uses the <a
+ * href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">inversion method. </a>
+ */
+ public double sample() {
+ return inverseCumulativeProbability(random.nextDouble());
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The default implementation generates the sample by calling {@link #sample()} in a loop.
+ */
+ public double[] sample(int sampleSize) {
+ if (sampleSize <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize);
+ }
+ double[] out = new double[sampleSize];
+ for (int i = 0; i < sampleSize; i++) {
+ out[i] = sample();
+ }
+ return out;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @return zero.
+ * @since 3.1
+ */
+ public double probability(double x) {
+ return 0d;
+ }
+
+ /**
+ * Returns the natural logarithm of the probability density function (PDF) of this distribution
+ * evaluated at the specified point {@code x}. In general, the PDF is the derivative of the
+ * {@link #cumulativeProbability(double) CDF}. If the derivative does not exist at {@code x},
+ * then an appropriate replacement should be returned, e.g. {@code Double.POSITIVE_INFINITY},
+ * {@code Double.NaN}, or the limit inferior or limit superior of the difference quotient. Note
+ * that due to the floating point precision and under/overflow issues, this method will for some
+ * distributions be more precise and faster than computing the logarithm of {@link
+ * #density(double)}. The default implementation simply computes the logarithm of {@code
+ * density(x)}.
+ *
+ * @param x the point at which the PDF is evaluated
+ * @return the logarithm of the value of the probability density function at point {@code x}
+ */
+ public double logDensity(double x) {
+ return FastMath.log(density(x));
+ }
+}