summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/BetaDistribution.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/distribution/BetaDistribution.java')
-rw-r--r--src/main/java/org/apache/commons/math3/distribution/BetaDistribution.java417
1 files changed, 417 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/distribution/BetaDistribution.java b/src/main/java/org/apache/commons/math3/distribution/BetaDistribution.java
new file mode 100644
index 0000000..c7c2663
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/distribution/BetaDistribution.java
@@ -0,0 +1,417 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.distribution;
+
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.random.RandomGenerator;
+import org.apache.commons.math3.random.Well19937c;
+import org.apache.commons.math3.special.Beta;
+import org.apache.commons.math3.special.Gamma;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.Precision;
+
+/**
+ * Implements the Beta distribution.
+ *
+ * @see <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a>
+ * @since 2.0 (changed to concrete class in 3.0)
+ */
+public class BetaDistribution extends AbstractRealDistribution {
+ /**
+ * Default inverse cumulative probability accuracy.
+ *
+ * @since 2.1
+ */
+ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -1221965979403477668L;
+
+ /** First shape parameter. */
+ private final double alpha;
+
+ /** Second shape parameter. */
+ private final double beta;
+
+ /**
+ * Normalizing factor used in density computations. updated whenever alpha or beta are changed.
+ */
+ private double z;
+
+ /** Inverse cumulative probability accuracy. */
+ private final double solverAbsoluteAccuracy;
+
+ /**
+ * Build a new instance.
+ *
+ * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
+ * random generator to be used for sampling only (see {@link #sample()} and {@link
+ * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
+ * pass {@code null} as random generator via the appropriate constructors to avoid the
+ * additional initialisation overhead.
+ *
+ * @param alpha First shape parameter (must be positive).
+ * @param beta Second shape parameter (must be positive).
+ */
+ public BetaDistribution(double alpha, double beta) {
+ this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Build a new instance.
+ *
+ * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
+ * random generator to be used for sampling only (see {@link #sample()} and {@link
+ * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
+ * pass {@code null} as random generator via the appropriate constructors to avoid the
+ * additional initialisation overhead.
+ *
+ * @param alpha First shape parameter (must be positive).
+ * @param beta Second shape parameter (must be positive).
+ * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
+ * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
+ * @since 2.1
+ */
+ public BetaDistribution(double alpha, double beta, double inverseCumAccuracy) {
+ this(new Well19937c(), alpha, beta, inverseCumAccuracy);
+ }
+
+ /**
+ * Creates a &beta; distribution.
+ *
+ * @param rng Random number generator.
+ * @param alpha First shape parameter (must be positive).
+ * @param beta Second shape parameter (must be positive).
+ * @since 3.3
+ */
+ public BetaDistribution(RandomGenerator rng, double alpha, double beta) {
+ this(rng, alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Creates a &beta; distribution.
+ *
+ * @param rng Random number generator.
+ * @param alpha First shape parameter (must be positive).
+ * @param beta Second shape parameter (must be positive).
+ * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
+ * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
+ * @since 3.1
+ */
+ public BetaDistribution(
+ RandomGenerator rng, double alpha, double beta, double inverseCumAccuracy) {
+ super(rng);
+
+ this.alpha = alpha;
+ this.beta = beta;
+ z = Double.NaN;
+ solverAbsoluteAccuracy = inverseCumAccuracy;
+ }
+
+ /**
+ * Access the first shape parameter, {@code alpha}.
+ *
+ * @return the first shape parameter.
+ */
+ public double getAlpha() {
+ return alpha;
+ }
+
+ /**
+ * Access the second shape parameter, {@code beta}.
+ *
+ * @return the second shape parameter.
+ */
+ public double getBeta() {
+ return beta;
+ }
+
+ /** Recompute the normalization factor. */
+ private void recomputeZ() {
+ if (Double.isNaN(z)) {
+ z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta);
+ }
+ }
+
+ /** {@inheritDoc} */
+ public double density(double x) {
+ final double logDensity = logDensity(x);
+ return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
+ }
+
+ /** {@inheritDoc} * */
+ @Override
+ public double logDensity(double x) {
+ recomputeZ();
+ if (x < 0 || x > 1) {
+ return Double.NEGATIVE_INFINITY;
+ } else if (x == 0) {
+ if (alpha < 1) {
+ throw new NumberIsTooSmallException(
+ LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA,
+ alpha,
+ 1,
+ false);
+ }
+ return Double.NEGATIVE_INFINITY;
+ } else if (x == 1) {
+ if (beta < 1) {
+ throw new NumberIsTooSmallException(
+ LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA,
+ beta,
+ 1,
+ false);
+ }
+ return Double.NEGATIVE_INFINITY;
+ } else {
+ double logX = FastMath.log(x);
+ double log1mX = FastMath.log1p(-x);
+ return (alpha - 1) * logX + (beta - 1) * log1mX - z;
+ }
+ }
+
+ /** {@inheritDoc} */
+ public double cumulativeProbability(double x) {
+ if (x <= 0) {
+ return 0;
+ } else if (x >= 1) {
+ return 1;
+ } else {
+ return Beta.regularizedBeta(x, alpha, beta);
+ }
+ }
+
+ /**
+ * Return the absolute accuracy setting of the solver used to estimate inverse cumulative
+ * probabilities.
+ *
+ * @return the solver absolute accuracy.
+ * @since 2.1
+ */
+ @Override
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>For first shape parameter {@code alpha} and second shape parameter {@code beta}, the mean
+ * is {@code alpha / (alpha + beta)}.
+ */
+ public double getNumericalMean() {
+ final double a = getAlpha();
+ return a / (a + getBeta());
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>For first shape parameter {@code alpha} and second shape parameter {@code beta}, the
+ * variance is {@code (alpha * beta) / [(alpha + beta)^2 * (alpha + beta + 1)]}.
+ */
+ public double getNumericalVariance() {
+ final double a = getAlpha();
+ final double b = getBeta();
+ final double alphabetasum = a + b;
+ return (a * b) / ((alphabetasum * alphabetasum) * (alphabetasum + 1));
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The lower bound of the support is always 0 no matter the parameters.
+ *
+ * @return lower bound of the support (always 0)
+ */
+ public double getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The upper bound of the support is always 1 no matter the parameters.
+ *
+ * @return upper bound of the support (always 1)
+ */
+ public double getSupportUpperBound() {
+ return 1;
+ }
+
+ /** {@inheritDoc} */
+ public boolean isSupportLowerBoundInclusive() {
+ return false;
+ }
+
+ /** {@inheritDoc} */
+ public boolean isSupportUpperBoundInclusive() {
+ return false;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The support of this distribution is connected.
+ *
+ * @return {@code true}
+ */
+ public boolean isSupportConnected() {
+ return true;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>Sampling is performed using Cheng algorithms:
+ *
+ * <p>R. C. H. Cheng, "Generating beta variates with nonintegral shape parameters.".
+ * Communications of the ACM, 21, 317–322, 1978.
+ */
+ @Override
+ public double sample() {
+ return ChengBetaSampler.sample(random, alpha, beta);
+ }
+
+ /**
+ * Utility class implementing Cheng's algorithms for beta distribution sampling.
+ *
+ * <p>R. C. H. Cheng, "Generating beta variates with nonintegral shape parameters.".
+ * Communications of the ACM, 21, 317–322, 1978.
+ *
+ * @since 3.6
+ */
+ private static final class ChengBetaSampler {
+
+ /**
+ * Returns one sample using Cheng's sampling algorithm.
+ *
+ * @param random random generator to use
+ * @param alpha distribution first shape parameter
+ * @param beta distribution second shape parameter
+ * @return sampled value
+ */
+ static double sample(RandomGenerator random, final double alpha, final double beta) {
+ final double a = FastMath.min(alpha, beta);
+ final double b = FastMath.max(alpha, beta);
+
+ if (a > 1) {
+ return algorithmBB(random, alpha, a, b);
+ } else {
+ return algorithmBC(random, alpha, b, a);
+ }
+ }
+
+ /**
+ * Returns one sample using Cheng's BB algorithm, when both &alpha; and &beta; are greater
+ * than 1.
+ *
+ * @param random random generator to use
+ * @param a0 distribution first shape parameter (&alpha;)
+ * @param a min(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
+ * parameters
+ * @param b max(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
+ * parameters
+ * @return sampled value
+ */
+ private static double algorithmBB(
+ RandomGenerator random, final double a0, final double a, final double b) {
+ final double alpha = a + b;
+ final double beta = FastMath.sqrt((alpha - 2.) / (2. * a * b - alpha));
+ final double gamma = a + 1. / beta;
+
+ double r;
+ double w;
+ double t;
+ do {
+ final double u1 = random.nextDouble();
+ final double u2 = random.nextDouble();
+ final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1));
+ w = a * FastMath.exp(v);
+ final double z = u1 * u1 * u2;
+ r = gamma * v - 1.3862944;
+ final double s = a + r - w;
+ if (s + 2.609438 >= 5 * z) {
+ break;
+ }
+
+ t = FastMath.log(z);
+ if (s >= t) {
+ break;
+ }
+ } while (r + alpha * (FastMath.log(alpha) - FastMath.log(b + w)) < t);
+
+ w = FastMath.min(w, Double.MAX_VALUE);
+ return Precision.equals(a, a0) ? w / (b + w) : b / (b + w);
+ }
+
+ /**
+ * Returns one sample using Cheng's BC algorithm, when at least one of &alpha; and &beta; is
+ * smaller than 1.
+ *
+ * @param random random generator to use
+ * @param a0 distribution first shape parameter (&alpha;)
+ * @param a max(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
+ * parameters
+ * @param b min(&alpha;, &beta;) where &alpha;, &beta; are the two distribution shape
+ * parameters
+ * @return sampled value
+ */
+ private static double algorithmBC(
+ RandomGenerator random, final double a0, final double a, final double b) {
+ final double alpha = a + b;
+ final double beta = 1. / b;
+ final double delta = 1. + a - b;
+ final double k1 = delta * (0.0138889 + 0.0416667 * b) / (a * beta - 0.777778);
+ final double k2 = 0.25 + (0.5 + 0.25 / delta) * b;
+
+ double w;
+ for (; ; ) {
+ final double u1 = random.nextDouble();
+ final double u2 = random.nextDouble();
+ final double y = u1 * u2;
+ final double z = u1 * y;
+ if (u1 < 0.5) {
+ if (0.25 * u2 + z - y >= k1) {
+ continue;
+ }
+ } else {
+ if (z <= 0.25) {
+ final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1));
+ w = a * FastMath.exp(v);
+ break;
+ }
+
+ if (z >= k2) {
+ continue;
+ }
+ }
+
+ final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1));
+ w = a * FastMath.exp(v);
+ if (alpha * (FastMath.log(alpha) - FastMath.log(b + w) + v) - 1.3862944
+ >= FastMath.log(z)) {
+ break;
+ }
+ }
+
+ w = FastMath.min(w, Double.MAX_VALUE);
+ return Precision.equals(a, a0) ? w / (b + w) : b / (b + w);
+ }
+ }
+}