summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/PoissonDistribution.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/distribution/PoissonDistribution.java')
-rw-r--r--src/main/java/org/apache/commons/math3/distribution/PoissonDistribution.java394
1 files changed, 394 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/distribution/PoissonDistribution.java b/src/main/java/org/apache/commons/math3/distribution/PoissonDistribution.java
new file mode 100644
index 0000000..7d9eab3
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/distribution/PoissonDistribution.java
@@ -0,0 +1,394 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.distribution;
+
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.random.RandomGenerator;
+import org.apache.commons.math3.random.Well19937c;
+import org.apache.commons.math3.special.Gamma;
+import org.apache.commons.math3.util.CombinatoricsUtils;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * Implementation of the Poisson distribution.
+ *
+ * @see <a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution
+ * (Wikipedia)</a>
+ * @see <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution
+ * (MathWorld)</a>
+ */
+public class PoissonDistribution extends AbstractIntegerDistribution {
+ /**
+ * Default maximum number of iterations for cumulative probability calculations.
+ *
+ * @since 2.1
+ */
+ public static final int DEFAULT_MAX_ITERATIONS = 10000000;
+
+ /**
+ * Default convergence criterion.
+ *
+ * @since 2.1
+ */
+ public static final double DEFAULT_EPSILON = 1e-12;
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -3349935121172596109L;
+
+ /** Distribution used to compute normal approximation. */
+ private final NormalDistribution normal;
+
+ /** Distribution needed for the {@link #sample()} method. */
+ private final ExponentialDistribution exponential;
+
+ /** Mean of the distribution. */
+ private final double mean;
+
+ /**
+ * Maximum number of iterations for cumulative probability. Cumulative probabilities are
+ * estimated using either Lanczos series approximation of {@link Gamma#regularizedGammaP(double,
+ * double, double, int)} or continued fraction approximation of {@link
+ * Gamma#regularizedGammaQ(double, double, double, int)}.
+ */
+ private final int maxIterations;
+
+ /** Convergence criterion for cumulative probability. */
+ private final double epsilon;
+
+ /**
+ * Creates a new Poisson distribution with specified mean.
+ *
+ * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
+ * random generator to be used for sampling only (see {@link #sample()} and {@link
+ * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
+ * pass {@code null} as random generator via the appropriate constructors to avoid the
+ * additional initialisation overhead.
+ *
+ * @param p the Poisson mean
+ * @throws NotStrictlyPositiveException if {@code p <= 0}.
+ */
+ public PoissonDistribution(double p) throws NotStrictlyPositiveException {
+ this(p, DEFAULT_EPSILON, DEFAULT_MAX_ITERATIONS);
+ }
+
+ /**
+ * Creates a new Poisson distribution with specified mean, convergence criterion and maximum
+ * number of iterations.
+ *
+ * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
+ * random generator to be used for sampling only (see {@link #sample()} and {@link
+ * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
+ * pass {@code null} as random generator via the appropriate constructors to avoid the
+ * additional initialisation overhead.
+ *
+ * @param p Poisson mean.
+ * @param epsilon Convergence criterion for cumulative probabilities.
+ * @param maxIterations the maximum number of iterations for cumulative probabilities.
+ * @throws NotStrictlyPositiveException if {@code p <= 0}.
+ * @since 2.1
+ */
+ public PoissonDistribution(double p, double epsilon, int maxIterations)
+ throws NotStrictlyPositiveException {
+ this(new Well19937c(), p, epsilon, maxIterations);
+ }
+
+ /**
+ * Creates a new Poisson distribution with specified mean, convergence criterion and maximum
+ * number of iterations.
+ *
+ * @param rng Random number generator.
+ * @param p Poisson mean.
+ * @param epsilon Convergence criterion for cumulative probabilities.
+ * @param maxIterations the maximum number of iterations for cumulative probabilities.
+ * @throws NotStrictlyPositiveException if {@code p <= 0}.
+ * @since 3.1
+ */
+ public PoissonDistribution(RandomGenerator rng, double p, double epsilon, int maxIterations)
+ throws NotStrictlyPositiveException {
+ super(rng);
+
+ if (p <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, p);
+ }
+ mean = p;
+ this.epsilon = epsilon;
+ this.maxIterations = maxIterations;
+
+ // Use the same RNG instance as the parent class.
+ normal =
+ new NormalDistribution(
+ rng,
+ p,
+ FastMath.sqrt(p),
+ NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ exponential =
+ new ExponentialDistribution(
+ rng, 1, ExponentialDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Creates a new Poisson distribution with the specified mean and convergence criterion.
+ *
+ * @param p Poisson mean.
+ * @param epsilon Convergence criterion for cumulative probabilities.
+ * @throws NotStrictlyPositiveException if {@code p <= 0}.
+ * @since 2.1
+ */
+ public PoissonDistribution(double p, double epsilon) throws NotStrictlyPositiveException {
+ this(p, epsilon, DEFAULT_MAX_ITERATIONS);
+ }
+
+ /**
+ * Creates a new Poisson distribution with the specified mean and maximum number of iterations.
+ *
+ * @param p Poisson mean.
+ * @param maxIterations Maximum number of iterations for cumulative probabilities.
+ * @since 2.1
+ */
+ public PoissonDistribution(double p, int maxIterations) {
+ this(p, DEFAULT_EPSILON, maxIterations);
+ }
+
+ /**
+ * Get the mean for the distribution.
+ *
+ * @return the mean for the distribution.
+ */
+ public double getMean() {
+ return mean;
+ }
+
+ /** {@inheritDoc} */
+ public double probability(int x) {
+ final double logProbability = logProbability(x);
+ return logProbability == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logProbability);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public double logProbability(int x) {
+ double ret;
+ if (x < 0 || x == Integer.MAX_VALUE) {
+ ret = Double.NEGATIVE_INFINITY;
+ } else if (x == 0) {
+ ret = -mean;
+ } else {
+ ret =
+ -SaddlePointExpansion.getStirlingError(x)
+ - SaddlePointExpansion.getDeviancePart(x, mean)
+ - 0.5 * FastMath.log(MathUtils.TWO_PI)
+ - 0.5 * FastMath.log(x);
+ }
+ return ret;
+ }
+
+ /** {@inheritDoc} */
+ public double cumulativeProbability(int x) {
+ if (x < 0) {
+ return 0;
+ }
+ if (x == Integer.MAX_VALUE) {
+ return 1;
+ }
+ return Gamma.regularizedGammaQ((double) x + 1, mean, epsilon, maxIterations);
+ }
+
+ /**
+ * Calculates the Poisson distribution function using a normal approximation. The {@code N(mean,
+ * sqrt(mean))} distribution is used to approximate the Poisson distribution. The computation
+ * uses "half-correction" (evaluating the normal distribution function at {@code x + 0.5}).
+ *
+ * @param x Upper bound, inclusive.
+ * @return the distribution function value calculated using a normal approximation.
+ */
+ public double normalApproximateProbability(int x) {
+ // calculate the probability using half-correction
+ return normal.cumulativeProbability(x + 0.5);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>For mean parameter {@code p}, the mean is {@code p}.
+ */
+ public double getNumericalMean() {
+ return getMean();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>For mean parameter {@code p}, the variance is {@code p}.
+ */
+ public double getNumericalVariance() {
+ return getMean();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The lower bound of the support is always 0 no matter the mean parameter.
+ *
+ * @return lower bound of the support (always 0)
+ */
+ public int getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The upper bound of the support is positive infinity, regardless of the parameter values.
+ * There is no integer infinity, so this method returns {@code Integer.MAX_VALUE}.
+ *
+ * @return upper bound of the support (always {@code Integer.MAX_VALUE} for positive infinity)
+ */
+ public int getSupportUpperBound() {
+ return Integer.MAX_VALUE;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>The support of this distribution is connected.
+ *
+ * @return {@code true}
+ */
+ public boolean isSupportConnected() {
+ return true;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p><strong>Algorithm Description</strong>:
+ *
+ * <ul>
+ * <li>For small means, uses simulation of a Poisson process using Uniform deviates, as
+ * described <a href="http://mathaa.epfl.ch/cours/PMMI2001/interactive/rng7.htm">here</a>.
+ * The Poisson process (and hence value returned) is bounded by 1000 * mean.
+ * <li>For large means, uses the rejection algorithm described in
+ * <blockquote>
+ * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i><br>
+ * <strong>Computing</strong> vol. 26 pp. 197-207.<br>
+ * </blockquote>
+ * </ul>
+ *
+ * @return a random value.
+ * @since 2.2
+ */
+ @Override
+ public int sample() {
+ return (int) FastMath.min(nextPoisson(mean), Integer.MAX_VALUE);
+ }
+
+ /**
+ * @param meanPoisson Mean of the Poisson distribution.
+ * @return the next sample.
+ */
+ private long nextPoisson(double meanPoisson) {
+ final double pivot = 40.0d;
+ if (meanPoisson < pivot) {
+ double p = FastMath.exp(-meanPoisson);
+ long n = 0;
+ double r = 1.0d;
+ double rnd = 1.0d;
+
+ while (n < 1000 * meanPoisson) {
+ rnd = random.nextDouble();
+ r *= rnd;
+ if (r >= p) {
+ n++;
+ } else {
+ return n;
+ }
+ }
+ return n;
+ } else {
+ final double lambda = FastMath.floor(meanPoisson);
+ final double lambdaFractional = meanPoisson - lambda;
+ final double logLambda = FastMath.log(lambda);
+ final double logLambdaFactorial = CombinatoricsUtils.factorialLog((int) lambda);
+ final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
+ final double delta =
+ FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1));
+ final double halfDelta = delta / 2;
+ final double twolpd = 2 * lambda + delta;
+ final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / (8 * lambda));
+ final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd);
+ final double aSum = a1 + a2 + 1;
+ final double p1 = a1 / aSum;
+ final double p2 = a2 / aSum;
+ final double c1 = 1 / (8 * lambda);
+
+ double x = 0;
+ double y = 0;
+ double v = 0;
+ int a = 0;
+ double t = 0;
+ double qr = 0;
+ double qa = 0;
+ for (; ; ) {
+ final double u = random.nextDouble();
+ if (u <= p1) {
+ final double n = random.nextGaussian();
+ x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d;
+ if (x > delta || x < -lambda) {
+ continue;
+ }
+ y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x);
+ final double e = exponential.sample();
+ v = -e - (n * n / 2) + c1;
+ } else {
+ if (u > p1 + p2) {
+ y = lambda;
+ break;
+ } else {
+ x = delta + (twolpd / delta) * exponential.sample();
+ y = FastMath.ceil(x);
+ v = -exponential.sample() - delta * (x + 1) / twolpd;
+ }
+ }
+ a = x < 0 ? 1 : 0;
+ t = y * (y + 1) / (2 * lambda);
+ if (v < -t && a == 0) {
+ y = lambda + y;
+ break;
+ }
+ qr = t * ((2 * y + 1) / (6 * lambda) - 1);
+ qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
+ if (v < qa) {
+ y = lambda + y;
+ break;
+ }
+ if (v > qr) {
+ continue;
+ }
+ if (v
+ < y * logLambda
+ - CombinatoricsUtils.factorialLog((int) (y + lambda))
+ + logLambdaFactorial) {
+ y = lambda + y;
+ break;
+ }
+ }
+ return y2 + (long) y;
+ }
+ }
+}