summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java')
-rw-r--r--src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java141
1 files changed, 141 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java b/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java
new file mode 100644
index 0000000..c3f7239
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java
@@ -0,0 +1,141 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.fitting;
+
+import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
+import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
+import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
+import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
+
+import java.util.Collection;
+
+/**
+ * Base class that contains common code for fitting parametric univariate real functions <code>
+ * y = f(p<sub>i</sub>;x)</code>, where {@code x} is the independent variable and the <code>
+ * p<sub>i</sub></code> are the <em>parameters</em>. <br>
+ * A fitter will find the optimal values of the parameters by <em>fitting</em> the curve so it
+ * remains very close to a set of {@code N} observed points <code>(x<sub>k</sub>, y<sub>k</sub>)
+ * </code>, {@code 0 <= k < N}. <br>
+ * An algorithm usually performs the fit by finding the parameter values that minimizes the
+ * objective function
+ *
+ * <pre><code>
+ * &sum;y<sub>k</sub> - f(x<sub>k</sub>)<sup>2</sup>,
+ * </code></pre>
+ *
+ * which is actually a least-squares problem. This class contains boilerplate code for calling the
+ * {@link #fit(Collection)} method for obtaining the parameters. The problem setup, such as the
+ * choice of optimization algorithm for fitting a specific function is delegated to subclasses.
+ *
+ * @since 3.3
+ */
+public abstract class AbstractCurveFitter {
+ /**
+ * Fits a curve. This method computes the coefficients of the curve that best fit the sample of
+ * observed points.
+ *
+ * @param points Observations.
+ * @return the fitted parameters.
+ */
+ public double[] fit(Collection<WeightedObservedPoint> points) {
+ // Perform the fit.
+ return getOptimizer().optimize(getProblem(points)).getPoint().toArray();
+ }
+
+ /**
+ * Creates an optimizer set up to fit the appropriate curve.
+ *
+ * <p>The default implementation uses a {@link LevenbergMarquardtOptimizer Levenberg-Marquardt}
+ * optimizer.
+ *
+ * @return the optimizer to use for fitting the curve to the given {@code points}.
+ */
+ protected LeastSquaresOptimizer getOptimizer() {
+ return new LevenbergMarquardtOptimizer();
+ }
+
+ /**
+ * Creates a least squares problem corresponding to the appropriate curve.
+ *
+ * @param points Sample points.
+ * @return the least squares problem to use for fitting the curve to the given {@code points}.
+ */
+ protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points);
+
+ /** Vector function for computing function theoretical values. */
+ protected static class TheoreticalValuesFunction {
+ /** Function to fit. */
+ private final ParametricUnivariateFunction f;
+
+ /** Observations. */
+ private final double[] points;
+
+ /**
+ * @param f function to fit.
+ * @param observations Observations.
+ */
+ public TheoreticalValuesFunction(
+ final ParametricUnivariateFunction f,
+ final Collection<WeightedObservedPoint> observations) {
+ this.f = f;
+
+ final int len = observations.size();
+ this.points = new double[len];
+ int i = 0;
+ for (WeightedObservedPoint obs : observations) {
+ this.points[i++] = obs.getX();
+ }
+ }
+
+ /**
+ * @return the model function values.
+ */
+ public MultivariateVectorFunction getModelFunction() {
+ return new MultivariateVectorFunction() {
+ /** {@inheritDoc} */
+ public double[] value(double[] p) {
+ final int len = points.length;
+ final double[] values = new double[len];
+ for (int i = 0; i < len; i++) {
+ values[i] = f.value(points[i], p);
+ }
+
+ return values;
+ }
+ };
+ }
+
+ /**
+ * @return the model function Jacobian.
+ */
+ public MultivariateMatrixFunction getModelFunctionJacobian() {
+ return new MultivariateMatrixFunction() {
+ /** {@inheritDoc} */
+ public double[][] value(double[] p) {
+ final int len = points.length;
+ final double[][] jacobian = new double[len][];
+ for (int i = 0; i < len; i++) {
+ jacobian[i] = f.gradient(points[i], p);
+ }
+ return jacobian;
+ }
+ };
+ }
+ }
+}