summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java')
-rw-r--r--src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java386
1 files changed, 386 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java b/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java
new file mode 100644
index 0000000..1a41398
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java
@@ -0,0 +1,386 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.fitting;
+
+import org.apache.commons.math3.analysis.function.HarmonicOscillator;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Class that implements a curve fitting specialized for sinusoids.
+ *
+ * <p>Harmonic fitting is a very simple case of curve fitting. The estimated coefficients are the
+ * amplitude a, the pulsation &omega; and the phase &phi;: <code>f (t) = a cos (&omega; t + &phi;)
+ * </code>. They are searched by a least square estimator initialized with a rough guess based on
+ * integrals.
+ *
+ * @since 2.0
+ * @deprecated As of 3.3. Please use {@link HarmonicCurveFitter} and {@link WeightedObservedPoints}
+ * instead.
+ */
+@Deprecated
+public class HarmonicFitter extends CurveFitter<HarmonicOscillator.Parametric> {
+ /**
+ * Simple constructor.
+ *
+ * @param optimizer Optimizer to use for the fitting.
+ */
+ public HarmonicFitter(final MultivariateVectorOptimizer optimizer) {
+ super(optimizer);
+ }
+
+ /**
+ * Fit an harmonic function to the observed points.
+ *
+ * @param initialGuess First guess values in the following order:
+ * <ul>
+ * <li>Amplitude
+ * <li>Angular frequency
+ * <li>Phase
+ * </ul>
+ *
+ * @return the parameters of the harmonic function that best fits the observed points (in the
+ * same order as above).
+ */
+ public double[] fit(double[] initialGuess) {
+ return fit(new HarmonicOscillator.Parametric(), initialGuess);
+ }
+
+ /**
+ * Fit an harmonic function to the observed points. An initial guess will be automatically
+ * computed.
+ *
+ * @return the parameters of the harmonic function that best fits the observed points (see the
+ * other {@link #fit(double[]) fit} method.
+ * @throws NumberIsTooSmallException if the sample is too short for the the first guess to be
+ * computed.
+ * @throws ZeroException if the first guess cannot be computed because the abscissa range is
+ * zero.
+ */
+ public double[] fit() {
+ return fit((new ParameterGuesser(getObservations())).guess());
+ }
+
+ /**
+ * This class guesses harmonic coefficients from a sample.
+ *
+ * <p>The algorithm used to guess the coefficients is as follows:
+ *
+ * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a, &omega; and &phi;
+ * such that f (t) = a cos (&omega; t + &phi;).
+ *
+ * <p>From the analytical expression, we can compute two primitives :
+ *
+ * <pre>
+ * If2 (t) = &int; f<sup>2</sup> = a<sup>2</sup> &times; [t + S (t)] / 2
+ * If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
+ * where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
+ * </pre>
+ *
+ * <p>We can remove S between these expressions :
+ *
+ * <pre>
+ * If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
+ * </pre>
+ *
+ * <p>The preceding expression shows that If'2 (t) is a linear combination of both t and If2
+ * (t): If'2 (t) = A &times; t + B &times; If2 (t)
+ *
+ * <p>From the primitive, we can deduce the same form for definite integrals between
+ * t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
+ *
+ * <pre>
+ * If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
+ * </pre>
+ *
+ * <p>We can find the coefficients A and B that best fit the sample to this linear expression by
+ * computing the definite integrals for each sample points.
+ *
+ * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B
+ * &times; y<sub>i</sub>, the coefficients A and B that minimize a least square criterion &sum;
+ * (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these
+ * expressions:
+ *
+ * <pre>
+ *
+ * &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ * A = ------------------------
+ * &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+ *
+ * &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
+ * B = ------------------------
+ * &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+ * </pre>
+ *
+ * <p>In fact, we can assume both a and &omega; are positive and compute them directly, knowing
+ * that A = a<sup>2</sup> &omega;<sup>2</sup> and that B = - &omega;<sup>2</sup>. The complete
+ * algorithm is therefore:
+ *
+ * <pre>
+ *
+ * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
+ * f (t<sub>i</sub>)
+ * f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
+ * x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
+ * y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
+ * z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
+ * update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
+ * end for
+ *
+ * |--------------------------
+ * \ | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ * a = \ | ------------------------
+ * \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ *
+ *
+ * |--------------------------
+ * \ | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ * &omega; = \ | ------------------------
+ * \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+ *
+ * </pre>
+ *
+ * <p>Once we know &omega;, we can compute:
+ *
+ * <pre>
+ * fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
+ * fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
+ * </pre>
+ *
+ * <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and <code>
+ * fs = -a &omega; sin (&phi;)</code>, so we can use these expressions to compute &phi;. The
+ * best estimate over the sample is given by averaging these expressions.
+ *
+ * <p>Since integrals and means are involved in the preceding estimations, these operations run
+ * in O(n) time, where n is the number of measurements.
+ */
+ public static class ParameterGuesser {
+ /** Amplitude. */
+ private final double a;
+
+ /** Angular frequency. */
+ private final double omega;
+
+ /** Phase. */
+ private final double phi;
+
+ /**
+ * Simple constructor.
+ *
+ * @param observations Sampled observations.
+ * @throws NumberIsTooSmallException if the sample is too short.
+ * @throws ZeroException if the abscissa range is zero.
+ * @throws MathIllegalStateException when the guessing procedure cannot produce sensible
+ * results.
+ */
+ public ParameterGuesser(WeightedObservedPoint[] observations) {
+ if (observations.length < 4) {
+ throw new NumberIsTooSmallException(
+ LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
+ observations.length,
+ 4,
+ true);
+ }
+
+ final WeightedObservedPoint[] sorted = sortObservations(observations);
+
+ final double aOmega[] = guessAOmega(sorted);
+ a = aOmega[0];
+ omega = aOmega[1];
+
+ phi = guessPhi(sorted);
+ }
+
+ /**
+ * Gets an estimation of the parameters.
+ *
+ * @return the guessed parameters, in the following order:
+ * <ul>
+ * <li>Amplitude
+ * <li>Angular frequency
+ * <li>Phase
+ * </ul>
+ */
+ public double[] guess() {
+ return new double[] {a, omega, phi};
+ }
+
+ /**
+ * Sort the observations with respect to the abscissa.
+ *
+ * @param unsorted Input observations.
+ * @return the input observations, sorted.
+ */
+ private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
+ final WeightedObservedPoint[] observations = unsorted.clone();
+
+ // Since the samples are almost always already sorted, this
+ // method is implemented as an insertion sort that reorders the
+ // elements in place. Insertion sort is very efficient in this case.
+ WeightedObservedPoint curr = observations[0];
+ for (int j = 1; j < observations.length; ++j) {
+ WeightedObservedPoint prec = curr;
+ curr = observations[j];
+ if (curr.getX() < prec.getX()) {
+ // the current element should be inserted closer to the beginning
+ int i = j - 1;
+ WeightedObservedPoint mI = observations[i];
+ while ((i >= 0) && (curr.getX() < mI.getX())) {
+ observations[i + 1] = mI;
+ if (i-- != 0) {
+ mI = observations[i];
+ }
+ }
+ observations[i + 1] = curr;
+ curr = observations[j];
+ }
+ }
+
+ return observations;
+ }
+
+ /**
+ * Estimate a first guess of the amplitude and angular frequency. This method assumes that
+ * the {@link #sortObservations(WeightedObservedPoint[])} method has been called previously.
+ *
+ * @param observations Observations, sorted w.r.t. abscissa.
+ * @throws ZeroException if the abscissa range is zero.
+ * @throws MathIllegalStateException when the guessing procedure cannot produce sensible
+ * results.
+ * @return the guessed amplitude (at index 0) and circular frequency (at index 1).
+ */
+ private double[] guessAOmega(WeightedObservedPoint[] observations) {
+ final double[] aOmega = new double[2];
+
+ // initialize the sums for the linear model between the two integrals
+ double sx2 = 0;
+ double sy2 = 0;
+ double sxy = 0;
+ double sxz = 0;
+ double syz = 0;
+
+ double currentX = observations[0].getX();
+ double currentY = observations[0].getY();
+ double f2Integral = 0;
+ double fPrime2Integral = 0;
+ final double startX = currentX;
+ for (int i = 1; i < observations.length; ++i) {
+ // one step forward
+ final double previousX = currentX;
+ final double previousY = currentY;
+ currentX = observations[i].getX();
+ currentY = observations[i].getY();
+
+ // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
+ // considering a linear model for f (and therefore constant f')
+ final double dx = currentX - previousX;
+ final double dy = currentY - previousY;
+ final double f2StepIntegral =
+ dx
+ * (previousY * previousY
+ + previousY * currentY
+ + currentY * currentY)
+ / 3;
+ final double fPrime2StepIntegral = dy * dy / dx;
+
+ final double x = currentX - startX;
+ f2Integral += f2StepIntegral;
+ fPrime2Integral += fPrime2StepIntegral;
+
+ sx2 += x * x;
+ sy2 += f2Integral * f2Integral;
+ sxy += x * f2Integral;
+ sxz += x * fPrime2Integral;
+ syz += f2Integral * fPrime2Integral;
+ }
+
+ // compute the amplitude and pulsation coefficients
+ double c1 = sy2 * sxz - sxy * syz;
+ double c2 = sxy * sxz - sx2 * syz;
+ double c3 = sx2 * sy2 - sxy * sxy;
+ if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
+ final int last = observations.length - 1;
+ // Range of the observations, assuming that the
+ // observations are sorted.
+ final double xRange = observations[last].getX() - observations[0].getX();
+ if (xRange == 0) {
+ throw new ZeroException();
+ }
+ aOmega[1] = 2 * Math.PI / xRange;
+
+ double yMin = Double.POSITIVE_INFINITY;
+ double yMax = Double.NEGATIVE_INFINITY;
+ for (int i = 1; i < observations.length; ++i) {
+ final double y = observations[i].getY();
+ if (y < yMin) {
+ yMin = y;
+ }
+ if (y > yMax) {
+ yMax = y;
+ }
+ }
+ aOmega[0] = 0.5 * (yMax - yMin);
+ } else {
+ if (c2 == 0) {
+ // In some ill-conditioned cases (cf. MATH-844), the guesser
+ // procedure cannot produce sensible results.
+ throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR);
+ }
+
+ aOmega[0] = FastMath.sqrt(c1 / c2);
+ aOmega[1] = FastMath.sqrt(c2 / c3);
+ }
+
+ return aOmega;
+ }
+
+ /**
+ * Estimate a first guess of the phase.
+ *
+ * @param observations Observations, sorted w.r.t. abscissa.
+ * @return the guessed phase.
+ */
+ private double guessPhi(WeightedObservedPoint[] observations) {
+ // initialize the means
+ double fcMean = 0;
+ double fsMean = 0;
+
+ double currentX = observations[0].getX();
+ double currentY = observations[0].getY();
+ for (int i = 1; i < observations.length; ++i) {
+ // one step forward
+ final double previousX = currentX;
+ final double previousY = currentY;
+ currentX = observations[i].getX();
+ currentY = observations[i].getY();
+ final double currentYPrime = (currentY - previousY) / (currentX - previousX);
+
+ double omegaX = omega * currentX;
+ double cosine = FastMath.cos(omegaX);
+ double sine = FastMath.sin(omegaX);
+ fcMean += omega * currentY * cosine - currentYPrime * sine;
+ fsMean += omega * currentY * sine + currentYPrime * cosine;
+ }
+
+ return FastMath.atan2(-fsMean, fcMean);
+ }
+ }
+}