summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/fitting/leastsquares/GaussNewtonOptimizer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/fitting/leastsquares/GaussNewtonOptimizer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/fitting/leastsquares/GaussNewtonOptimizer.java299
1 files changed, 299 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/fitting/leastsquares/GaussNewtonOptimizer.java b/src/main/java/org/apache/commons/math3/fitting/leastsquares/GaussNewtonOptimizer.java
new file mode 100644
index 0000000..8157706
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/fitting/leastsquares/GaussNewtonOptimizer.java
@@ -0,0 +1,299 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.fitting.leastsquares;
+
+import org.apache.commons.math3.exception.ConvergenceException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.CholeskyDecomposition;
+import org.apache.commons.math3.linear.LUDecomposition;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException;
+import org.apache.commons.math3.linear.QRDecomposition;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.linear.RealVector;
+import org.apache.commons.math3.linear.SingularMatrixException;
+import org.apache.commons.math3.linear.SingularValueDecomposition;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.util.Incrementor;
+import org.apache.commons.math3.util.Pair;
+
+/**
+ * Gauss-Newton least-squares solver.
+ * <p> This class solve a least-square problem by
+ * solving the normal equations of the linearized problem at each iteration. Either LU
+ * decomposition or Cholesky decomposition can be used to solve the normal equations,
+ * or QR decomposition or SVD decomposition can be used to solve the linear system. LU
+ * decomposition is faster but QR decomposition is more robust for difficult problems,
+ * and SVD can compute a solution for rank-deficient problems.
+ * </p>
+ *
+ * @since 3.3
+ */
+public class GaussNewtonOptimizer implements LeastSquaresOptimizer {
+
+ /** The decomposition algorithm to use to solve the normal equations. */
+ //TODO move to linear package and expand options?
+ public enum Decomposition {
+ /**
+ * Solve by forming the normal equations (J<sup>T</sup>Jx=J<sup>T</sup>r) and
+ * using the {@link LUDecomposition}.
+ *
+ * <p> Theoretically this method takes mn<sup>2</sup>/2 operations to compute the
+ * normal matrix and n<sup>3</sup>/3 operations (m > n) to solve the system using
+ * the LU decomposition. </p>
+ */
+ LU {
+ @Override
+ protected RealVector solve(final RealMatrix jacobian,
+ final RealVector residuals) {
+ try {
+ final Pair<RealMatrix, RealVector> normalEquation =
+ computeNormalMatrix(jacobian, residuals);
+ final RealMatrix normal = normalEquation.getFirst();
+ final RealVector jTr = normalEquation.getSecond();
+ return new LUDecomposition(normal, SINGULARITY_THRESHOLD)
+ .getSolver()
+ .solve(jTr);
+ } catch (SingularMatrixException e) {
+ throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
+ }
+ }
+ },
+ /**
+ * Solve the linear least squares problem (Jx=r) using the {@link
+ * QRDecomposition}.
+ *
+ * <p> Theoretically this method takes mn<sup>2</sup> - n<sup>3</sup>/3 operations
+ * (m > n) and has better numerical accuracy than any method that forms the normal
+ * equations. </p>
+ */
+ QR {
+ @Override
+ protected RealVector solve(final RealMatrix jacobian,
+ final RealVector residuals) {
+ try {
+ return new QRDecomposition(jacobian, SINGULARITY_THRESHOLD)
+ .getSolver()
+ .solve(residuals);
+ } catch (SingularMatrixException e) {
+ throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
+ }
+ }
+ },
+ /**
+ * Solve by forming the normal equations (J<sup>T</sup>Jx=J<sup>T</sup>r) and
+ * using the {@link CholeskyDecomposition}.
+ *
+ * <p> Theoretically this method takes mn<sup>2</sup>/2 operations to compute the
+ * normal matrix and n<sup>3</sup>/6 operations (m > n) to solve the system using
+ * the Cholesky decomposition. </p>
+ */
+ CHOLESKY {
+ @Override
+ protected RealVector solve(final RealMatrix jacobian,
+ final RealVector residuals) {
+ try {
+ final Pair<RealMatrix, RealVector> normalEquation =
+ computeNormalMatrix(jacobian, residuals);
+ final RealMatrix normal = normalEquation.getFirst();
+ final RealVector jTr = normalEquation.getSecond();
+ return new CholeskyDecomposition(
+ normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
+ .getSolver()
+ .solve(jTr);
+ } catch (NonPositiveDefiniteMatrixException e) {
+ throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
+ }
+ }
+ },
+ /**
+ * Solve the linear least squares problem using the {@link
+ * SingularValueDecomposition}.
+ *
+ * <p> This method is slower, but can provide a solution for rank deficient and
+ * nearly singular systems.
+ */
+ SVD {
+ @Override
+ protected RealVector solve(final RealMatrix jacobian,
+ final RealVector residuals) {
+ return new SingularValueDecomposition(jacobian)
+ .getSolver()
+ .solve(residuals);
+ }
+ };
+
+ /**
+ * Solve the linear least squares problem Jx=r.
+ *
+ * @param jacobian the Jacobian matrix, J. the number of rows >= the number or
+ * columns.
+ * @param residuals the computed residuals, r.
+ * @return the solution x, to the linear least squares problem Jx=r.
+ * @throws ConvergenceException if the matrix properties (e.g. singular) do not
+ * permit a solution.
+ */
+ protected abstract RealVector solve(RealMatrix jacobian,
+ RealVector residuals);
+ }
+
+ /**
+ * The singularity threshold for matrix decompositions. Determines when a {@link
+ * ConvergenceException} is thrown. The current value was the default value for {@link
+ * LUDecomposition}.
+ */
+ private static final double SINGULARITY_THRESHOLD = 1e-11;
+
+ /** Indicator for using LU decomposition. */
+ private final Decomposition decomposition;
+
+ /**
+ * Creates a Gauss Newton optimizer.
+ * <p/>
+ * The default for the algorithm is to solve the normal equations using QR
+ * decomposition.
+ */
+ public GaussNewtonOptimizer() {
+ this(Decomposition.QR);
+ }
+
+ /**
+ * Create a Gauss Newton optimizer that uses the given decomposition algorithm to
+ * solve the normal equations.
+ *
+ * @param decomposition the {@link Decomposition} algorithm.
+ */
+ public GaussNewtonOptimizer(final Decomposition decomposition) {
+ this.decomposition = decomposition;
+ }
+
+ /**
+ * Get the matrix decomposition algorithm used to solve the normal equations.
+ *
+ * @return the matrix {@link Decomposition} algoritm.
+ */
+ public Decomposition getDecomposition() {
+ return this.decomposition;
+ }
+
+ /**
+ * Configure the decomposition algorithm.
+ *
+ * @param newDecomposition the {@link Decomposition} algorithm to use.
+ * @return a new instance.
+ */
+ public GaussNewtonOptimizer withDecomposition(final Decomposition newDecomposition) {
+ return new GaussNewtonOptimizer(newDecomposition);
+ }
+
+ /** {@inheritDoc} */
+ public Optimum optimize(final LeastSquaresProblem lsp) {
+ //create local evaluation and iteration counts
+ final Incrementor evaluationCounter = lsp.getEvaluationCounter();
+ final Incrementor iterationCounter = lsp.getIterationCounter();
+ final ConvergenceChecker<Evaluation> checker
+ = lsp.getConvergenceChecker();
+
+ // Computation will be useless without a checker (see "for-loop").
+ if (checker == null) {
+ throw new NullArgumentException();
+ }
+
+ RealVector currentPoint = lsp.getStart();
+
+ // iterate until convergence is reached
+ Evaluation current = null;
+ while (true) {
+ iterationCounter.incrementCount();
+
+ // evaluate the objective function and its jacobian
+ Evaluation previous = current;
+ // Value of the objective function at "currentPoint".
+ evaluationCounter.incrementCount();
+ current = lsp.evaluate(currentPoint);
+ final RealVector currentResiduals = current.getResiduals();
+ final RealMatrix weightedJacobian = current.getJacobian();
+ currentPoint = current.getPoint();
+
+ // Check convergence.
+ if (previous != null &&
+ checker.converged(iterationCounter.getCount(), previous, current)) {
+ return new OptimumImpl(current,
+ evaluationCounter.getCount(),
+ iterationCounter.getCount());
+ }
+
+ // solve the linearized least squares problem
+ final RealVector dX = this.decomposition.solve(weightedJacobian, currentResiduals);
+ // update the estimated parameters
+ currentPoint = currentPoint.add(dX);
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public String toString() {
+ return "GaussNewtonOptimizer{" +
+ "decomposition=" + decomposition +
+ '}';
+ }
+
+ /**
+ * Compute the normal matrix, J<sup>T</sup>J.
+ *
+ * @param jacobian the m by n jacobian matrix, J. Input.
+ * @param residuals the m by 1 residual vector, r. Input.
+ * @return the n by n normal matrix and the n by 1 J<sup>Tr vector.
+ */
+ private static Pair<RealMatrix, RealVector> computeNormalMatrix(final RealMatrix jacobian,
+ final RealVector residuals) {
+ //since the normal matrix is symmetric, we only need to compute half of it.
+ final int nR = jacobian.getRowDimension();
+ final int nC = jacobian.getColumnDimension();
+ //allocate space for return values
+ final RealMatrix normal = MatrixUtils.createRealMatrix(nC, nC);
+ final RealVector jTr = new ArrayRealVector(nC);
+ //for each measurement
+ for (int i = 0; i < nR; ++i) {
+ //compute JTr for measurement i
+ for (int j = 0; j < nC; j++) {
+ jTr.setEntry(j, jTr.getEntry(j) +
+ residuals.getEntry(i) * jacobian.getEntry(i, j));
+ }
+
+ // add the the contribution to the normal matrix for measurement i
+ for (int k = 0; k < nC; ++k) {
+ //only compute the upper triangular part
+ for (int l = k; l < nC; ++l) {
+ normal.setEntry(k, l, normal.getEntry(k, l) +
+ jacobian.getEntry(i, k) * jacobian.getEntry(i, l));
+ }
+ }
+ }
+ //copy the upper triangular part to the lower triangular part.
+ for (int i = 0; i < nC; i++) {
+ for (int j = 0; j < i; j++) {
+ normal.setEntry(i, j, normal.getEntry(j, i));
+ }
+ }
+ return new Pair<RealMatrix, RealVector>(normal, jTr);
+ }
+
+}