summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/fitting/leastsquares/LevenbergMarquardtOptimizer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/fitting/leastsquares/LevenbergMarquardtOptimizer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/fitting/leastsquares/LevenbergMarquardtOptimizer.java1042
1 files changed, 1042 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/fitting/leastsquares/LevenbergMarquardtOptimizer.java b/src/main/java/org/apache/commons/math3/fitting/leastsquares/LevenbergMarquardtOptimizer.java
new file mode 100644
index 0000000..358d240
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/fitting/leastsquares/LevenbergMarquardtOptimizer.java
@@ -0,0 +1,1042 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.fitting.leastsquares;
+
+import java.util.Arrays;
+
+import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.exception.ConvergenceException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.util.Incrementor;
+import org.apache.commons.math3.util.Precision;
+import org.apache.commons.math3.util.FastMath;
+
+
+/**
+ * This class solves a least-squares problem using the Levenberg-Marquardt
+ * algorithm.
+ *
+ * <p>This implementation <em>should</em> work even for over-determined systems
+ * (i.e. systems having more point than equations). Over-determined systems
+ * are solved by ignoring the point which have the smallest impact according
+ * to their jacobian column norm. Only the rank of the matrix and some loop bounds
+ * are changed to implement this.</p>
+ *
+ * <p>The resolution engine is a simple translation of the MINPACK <a
+ * href="http://www.netlib.org/minpack/lmder.f">lmder</a> routine with minor
+ * changes. The changes include the over-determined resolution, the use of
+ * inherited convergence checker and the Q.R. decomposition which has been
+ * rewritten following the algorithm described in the
+ * P. Lascaux and R. Theodor book <i>Analyse num&eacute;rique matricielle
+ * appliqu&eacute;e &agrave; l'art de l'ing&eacute;nieur</i>, Masson 1986.</p>
+ * <p>The authors of the original fortran version are:
+ * <ul>
+ * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
+ * <li>Burton S. Garbow</li>
+ * <li>Kenneth E. Hillstrom</li>
+ * <li>Jorge J. More</li>
+ * </ul>
+ * The redistribution policy for MINPACK is available <a
+ * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
+ * is reproduced below.</p>
+ *
+ * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
+ * <tr><td>
+ * Minpack Copyright Notice (1999) University of Chicago.
+ * All rights reserved
+ * </td></tr>
+ * <tr><td>
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * <ol>
+ * <li>Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.</li>
+ * <li>Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.</li>
+ * <li>The end-user documentation included with the redistribution, if any,
+ * must include the following acknowledgment:
+ * <code>This product includes software developed by the University of
+ * Chicago, as Operator of Argonne National Laboratory.</code>
+ * Alternately, this acknowledgment may appear in the software itself,
+ * if and wherever such third-party acknowledgments normally appear.</li>
+ * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
+ * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
+ * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
+ * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
+ * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
+ * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
+ * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
+ * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
+ * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
+ * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
+ * BE CORRECTED.</strong></li>
+ * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
+ * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
+ * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
+ * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
+ * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
+ * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
+ * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
+ * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
+ * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
+ * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
+ * <ol></td></tr>
+ * </table>
+ *
+ * @since 3.3
+ */
+public class LevenbergMarquardtOptimizer implements LeastSquaresOptimizer {
+
+ /** Twice the "epsilon machine". */
+ private static final double TWO_EPS = 2 * Precision.EPSILON;
+
+ /* configuration parameters */
+ /** Positive input variable used in determining the initial step bound. */
+ private final double initialStepBoundFactor;
+ /** Desired relative error in the sum of squares. */
+ private final double costRelativeTolerance;
+ /** Desired relative error in the approximate solution parameters. */
+ private final double parRelativeTolerance;
+ /** Desired max cosine on the orthogonality between the function vector
+ * and the columns of the jacobian. */
+ private final double orthoTolerance;
+ /** Threshold for QR ranking. */
+ private final double qrRankingThreshold;
+
+ /** Default constructor.
+ * <p>
+ * The default values for the algorithm settings are:
+ * <ul>
+ * <li>Initial step bound factor: 100</li>
+ * <li>Cost relative tolerance: 1e-10</li>
+ * <li>Parameters relative tolerance: 1e-10</li>
+ * <li>Orthogonality tolerance: 1e-10</li>
+ * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li>
+ * </ul>
+ **/
+ public LevenbergMarquardtOptimizer() {
+ this(100, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN);
+ }
+
+ /**
+ * Construct an instance with all parameters specified.
+ *
+ * @param initialStepBoundFactor initial step bound factor
+ * @param costRelativeTolerance cost relative tolerance
+ * @param parRelativeTolerance parameters relative tolerance
+ * @param orthoTolerance orthogonality tolerance
+ * @param qrRankingThreshold threshold in the QR decomposition. Columns with a 2
+ * norm less than this threshold are considered to be
+ * all 0s.
+ */
+ public LevenbergMarquardtOptimizer(
+ final double initialStepBoundFactor,
+ final double costRelativeTolerance,
+ final double parRelativeTolerance,
+ final double orthoTolerance,
+ final double qrRankingThreshold) {
+ this.initialStepBoundFactor = initialStepBoundFactor;
+ this.costRelativeTolerance = costRelativeTolerance;
+ this.parRelativeTolerance = parRelativeTolerance;
+ this.orthoTolerance = orthoTolerance;
+ this.qrRankingThreshold = qrRankingThreshold;
+ }
+
+ /**
+ * @param newInitialStepBoundFactor Positive input variable used in
+ * determining the initial step bound. This bound is set to the
+ * product of initialStepBoundFactor and the euclidean norm of
+ * {@code diag * x} if non-zero, or else to {@code newInitialStepBoundFactor}
+ * itself. In most cases factor should lie in the interval
+ * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value.
+ * of the matrix is reduced.
+ * @return a new instance.
+ */
+ public LevenbergMarquardtOptimizer withInitialStepBoundFactor(double newInitialStepBoundFactor) {
+ return new LevenbergMarquardtOptimizer(
+ newInitialStepBoundFactor,
+ costRelativeTolerance,
+ parRelativeTolerance,
+ orthoTolerance,
+ qrRankingThreshold);
+ }
+
+ /**
+ * @param newCostRelativeTolerance Desired relative error in the sum of squares.
+ * @return a new instance.
+ */
+ public LevenbergMarquardtOptimizer withCostRelativeTolerance(double newCostRelativeTolerance) {
+ return new LevenbergMarquardtOptimizer(
+ initialStepBoundFactor,
+ newCostRelativeTolerance,
+ parRelativeTolerance,
+ orthoTolerance,
+ qrRankingThreshold);
+ }
+
+ /**
+ * @param newParRelativeTolerance Desired relative error in the approximate solution
+ * parameters.
+ * @return a new instance.
+ */
+ public LevenbergMarquardtOptimizer withParameterRelativeTolerance(double newParRelativeTolerance) {
+ return new LevenbergMarquardtOptimizer(
+ initialStepBoundFactor,
+ costRelativeTolerance,
+ newParRelativeTolerance,
+ orthoTolerance,
+ qrRankingThreshold);
+ }
+
+ /**
+ * Modifies the given parameter.
+ *
+ * @param newOrthoTolerance Desired max cosine on the orthogonality between
+ * the function vector and the columns of the Jacobian.
+ * @return a new instance.
+ */
+ public LevenbergMarquardtOptimizer withOrthoTolerance(double newOrthoTolerance) {
+ return new LevenbergMarquardtOptimizer(
+ initialStepBoundFactor,
+ costRelativeTolerance,
+ parRelativeTolerance,
+ newOrthoTolerance,
+ qrRankingThreshold);
+ }
+
+ /**
+ * @param newQRRankingThreshold Desired threshold for QR ranking.
+ * If the squared norm of a column vector is smaller or equal to this
+ * threshold during QR decomposition, it is considered to be a zero vector
+ * and hence the rank of the matrix is reduced.
+ * @return a new instance.
+ */
+ public LevenbergMarquardtOptimizer withRankingThreshold(double newQRRankingThreshold) {
+ return new LevenbergMarquardtOptimizer(
+ initialStepBoundFactor,
+ costRelativeTolerance,
+ parRelativeTolerance,
+ orthoTolerance,
+ newQRRankingThreshold);
+ }
+
+ /**
+ * Gets the value of a tuning parameter.
+ * @see #withInitialStepBoundFactor(double)
+ *
+ * @return the parameter's value.
+ */
+ public double getInitialStepBoundFactor() {
+ return initialStepBoundFactor;
+ }
+
+ /**
+ * Gets the value of a tuning parameter.
+ * @see #withCostRelativeTolerance(double)
+ *
+ * @return the parameter's value.
+ */
+ public double getCostRelativeTolerance() {
+ return costRelativeTolerance;
+ }
+
+ /**
+ * Gets the value of a tuning parameter.
+ * @see #withParameterRelativeTolerance(double)
+ *
+ * @return the parameter's value.
+ */
+ public double getParameterRelativeTolerance() {
+ return parRelativeTolerance;
+ }
+
+ /**
+ * Gets the value of a tuning parameter.
+ * @see #withOrthoTolerance(double)
+ *
+ * @return the parameter's value.
+ */
+ public double getOrthoTolerance() {
+ return orthoTolerance;
+ }
+
+ /**
+ * Gets the value of a tuning parameter.
+ * @see #withRankingThreshold(double)
+ *
+ * @return the parameter's value.
+ */
+ public double getRankingThreshold() {
+ return qrRankingThreshold;
+ }
+
+ /** {@inheritDoc} */
+ public Optimum optimize(final LeastSquaresProblem problem) {
+ // Pull in relevant data from the problem as locals.
+ final int nR = problem.getObservationSize(); // Number of observed data.
+ final int nC = problem.getParameterSize(); // Number of parameters.
+ // Counters.
+ final Incrementor iterationCounter = problem.getIterationCounter();
+ final Incrementor evaluationCounter = problem.getEvaluationCounter();
+ // Convergence criterion.
+ final ConvergenceChecker<Evaluation> checker = problem.getConvergenceChecker();
+
+ // arrays shared with the other private methods
+ final int solvedCols = FastMath.min(nR, nC);
+ /* Parameters evolution direction associated with lmPar. */
+ double[] lmDir = new double[nC];
+ /* Levenberg-Marquardt parameter. */
+ double lmPar = 0;
+
+ // local point
+ double delta = 0;
+ double xNorm = 0;
+ double[] diag = new double[nC];
+ double[] oldX = new double[nC];
+ double[] oldRes = new double[nR];
+ double[] qtf = new double[nR];
+ double[] work1 = new double[nC];
+ double[] work2 = new double[nC];
+ double[] work3 = new double[nC];
+
+
+ // Evaluate the function at the starting point and calculate its norm.
+ evaluationCounter.incrementCount();
+ //value will be reassigned in the loop
+ Evaluation current = problem.evaluate(problem.getStart());
+ double[] currentResiduals = current.getResiduals().toArray();
+ double currentCost = current.getCost();
+ double[] currentPoint = current.getPoint().toArray();
+
+ // Outer loop.
+ boolean firstIteration = true;
+ while (true) {
+ iterationCounter.incrementCount();
+
+ final Evaluation previous = current;
+
+ // QR decomposition of the jacobian matrix
+ final InternalData internalData
+ = qrDecomposition(current.getJacobian(), solvedCols);
+ final double[][] weightedJacobian = internalData.weightedJacobian;
+ final int[] permutation = internalData.permutation;
+ final double[] diagR = internalData.diagR;
+ final double[] jacNorm = internalData.jacNorm;
+
+ //residuals already have weights applied
+ double[] weightedResidual = currentResiduals;
+ for (int i = 0; i < nR; i++) {
+ qtf[i] = weightedResidual[i];
+ }
+
+ // compute Qt.res
+ qTy(qtf, internalData);
+
+ // now we don't need Q anymore,
+ // so let jacobian contain the R matrix with its diagonal elements
+ for (int k = 0; k < solvedCols; ++k) {
+ int pk = permutation[k];
+ weightedJacobian[k][pk] = diagR[pk];
+ }
+
+ if (firstIteration) {
+ // scale the point according to the norms of the columns
+ // of the initial jacobian
+ xNorm = 0;
+ for (int k = 0; k < nC; ++k) {
+ double dk = jacNorm[k];
+ if (dk == 0) {
+ dk = 1.0;
+ }
+ double xk = dk * currentPoint[k];
+ xNorm += xk * xk;
+ diag[k] = dk;
+ }
+ xNorm = FastMath.sqrt(xNorm);
+
+ // initialize the step bound delta
+ delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
+ }
+
+ // check orthogonality between function vector and jacobian columns
+ double maxCosine = 0;
+ if (currentCost != 0) {
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = jacNorm[pj];
+ if (s != 0) {
+ double sum = 0;
+ for (int i = 0; i <= j; ++i) {
+ sum += weightedJacobian[i][pj] * qtf[i];
+ }
+ maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost));
+ }
+ }
+ }
+ if (maxCosine <= orthoTolerance) {
+ // Convergence has been reached.
+ return new OptimumImpl(
+ current,
+ evaluationCounter.getCount(),
+ iterationCounter.getCount());
+ }
+
+ // rescale if necessary
+ for (int j = 0; j < nC; ++j) {
+ diag[j] = FastMath.max(diag[j], jacNorm[j]);
+ }
+
+ // Inner loop.
+ for (double ratio = 0; ratio < 1.0e-4;) {
+
+ // save the state
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ oldX[pj] = currentPoint[pj];
+ }
+ final double previousCost = currentCost;
+ double[] tmpVec = weightedResidual;
+ weightedResidual = oldRes;
+ oldRes = tmpVec;
+
+ // determine the Levenberg-Marquardt parameter
+ lmPar = determineLMParameter(qtf, delta, diag,
+ internalData, solvedCols,
+ work1, work2, work3, lmDir, lmPar);
+
+ // compute the new point and the norm of the evolution direction
+ double lmNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ lmDir[pj] = -lmDir[pj];
+ currentPoint[pj] = oldX[pj] + lmDir[pj];
+ double s = diag[pj] * lmDir[pj];
+ lmNorm += s * s;
+ }
+ lmNorm = FastMath.sqrt(lmNorm);
+ // on the first iteration, adjust the initial step bound.
+ if (firstIteration) {
+ delta = FastMath.min(delta, lmNorm);
+ }
+
+ // Evaluate the function at x + p and calculate its norm.
+ evaluationCounter.incrementCount();
+ current = problem.evaluate(new ArrayRealVector(currentPoint));
+ currentResiduals = current.getResiduals().toArray();
+ currentCost = current.getCost();
+ currentPoint = current.getPoint().toArray();
+
+ // compute the scaled actual reduction
+ double actRed = -1.0;
+ if (0.1 * currentCost < previousCost) {
+ double r = currentCost / previousCost;
+ actRed = 1.0 - r * r;
+ }
+
+ // compute the scaled predicted reduction
+ // and the scaled directional derivative
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double dirJ = lmDir[pj];
+ work1[j] = 0;
+ for (int i = 0; i <= j; ++i) {
+ work1[i] += weightedJacobian[i][pj] * dirJ;
+ }
+ }
+ double coeff1 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ coeff1 += work1[j] * work1[j];
+ }
+ double pc2 = previousCost * previousCost;
+ coeff1 /= pc2;
+ double coeff2 = lmPar * lmNorm * lmNorm / pc2;
+ double preRed = coeff1 + 2 * coeff2;
+ double dirDer = -(coeff1 + coeff2);
+
+ // ratio of the actual to the predicted reduction
+ ratio = (preRed == 0) ? 0 : (actRed / preRed);
+
+ // update the step bound
+ if (ratio <= 0.25) {
+ double tmp =
+ (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
+ if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) {
+ tmp = 0.1;
+ }
+ delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
+ lmPar /= tmp;
+ } else if ((lmPar == 0) || (ratio >= 0.75)) {
+ delta = 2 * lmNorm;
+ lmPar *= 0.5;
+ }
+
+ // test for successful iteration.
+ if (ratio >= 1.0e-4) {
+ // successful iteration, update the norm
+ firstIteration = false;
+ xNorm = 0;
+ for (int k = 0; k < nC; ++k) {
+ double xK = diag[k] * currentPoint[k];
+ xNorm += xK * xK;
+ }
+ xNorm = FastMath.sqrt(xNorm);
+
+ // tests for convergence.
+ if (checker != null && checker.converged(iterationCounter.getCount(), previous, current)) {
+ return new OptimumImpl(current, evaluationCounter.getCount(), iterationCounter.getCount());
+ }
+ } else {
+ // failed iteration, reset the previous values
+ currentCost = previousCost;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ currentPoint[pj] = oldX[pj];
+ }
+ tmpVec = weightedResidual;
+ weightedResidual = oldRes;
+ oldRes = tmpVec;
+ // Reset "current" to previous values.
+ current = previous;
+ }
+
+ // Default convergence criteria.
+ if ((FastMath.abs(actRed) <= costRelativeTolerance &&
+ preRed <= costRelativeTolerance &&
+ ratio <= 2.0) ||
+ delta <= parRelativeTolerance * xNorm) {
+ return new OptimumImpl(current, evaluationCounter.getCount(), iterationCounter.getCount());
+ }
+
+ // tests for termination and stringent tolerances
+ if (FastMath.abs(actRed) <= TWO_EPS &&
+ preRed <= TWO_EPS &&
+ ratio <= 2.0) {
+ throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
+ costRelativeTolerance);
+ } else if (delta <= TWO_EPS * xNorm) {
+ throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
+ parRelativeTolerance);
+ } else if (maxCosine <= TWO_EPS) {
+ throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
+ orthoTolerance);
+ }
+ }
+ }
+ }
+
+ /**
+ * Holds internal data.
+ * This structure was created so that all optimizer fields can be "final".
+ * Code should be further refactored in order to not pass around arguments
+ * that will modified in-place (cf. "work" arrays).
+ */
+ private static class InternalData {
+ /** Weighted Jacobian. */
+ private final double[][] weightedJacobian;
+ /** Columns permutation array. */
+ private final int[] permutation;
+ /** Rank of the Jacobian matrix. */
+ private final int rank;
+ /** Diagonal elements of the R matrix in the QR decomposition. */
+ private final double[] diagR;
+ /** Norms of the columns of the jacobian matrix. */
+ private final double[] jacNorm;
+ /** Coefficients of the Householder transforms vectors. */
+ private final double[] beta;
+
+ /**
+ * @param weightedJacobian Weighted Jacobian.
+ * @param permutation Columns permutation array.
+ * @param rank Rank of the Jacobian matrix.
+ * @param diagR Diagonal elements of the R matrix in the QR decomposition.
+ * @param jacNorm Norms of the columns of the jacobian matrix.
+ * @param beta Coefficients of the Householder transforms vectors.
+ */
+ InternalData(double[][] weightedJacobian,
+ int[] permutation,
+ int rank,
+ double[] diagR,
+ double[] jacNorm,
+ double[] beta) {
+ this.weightedJacobian = weightedJacobian;
+ this.permutation = permutation;
+ this.rank = rank;
+ this.diagR = diagR;
+ this.jacNorm = jacNorm;
+ this.beta = beta;
+ }
+ }
+
+ /**
+ * Determines the Levenberg-Marquardt parameter.
+ *
+ * <p>This implementation is a translation in Java of the MINPACK
+ * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a>
+ * routine.</p>
+ * <p>This method sets the lmPar and lmDir attributes.</p>
+ * <p>The authors of the original fortran function are:</p>
+ * <ul>
+ * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
+ * <li>Burton S. Garbow</li>
+ * <li>Kenneth E. Hillstrom</li>
+ * <li>Jorge J. More</li>
+ * </ul>
+ * <p>Luc Maisonobe did the Java translation.</p>
+ *
+ * @param qy Array containing qTy.
+ * @param delta Upper bound on the euclidean norm of diagR * lmDir.
+ * @param diag Diagonal matrix.
+ * @param internalData Data (modified in-place in this method).
+ * @param solvedCols Number of solved point.
+ * @param work1 work array
+ * @param work2 work array
+ * @param work3 work array
+ * @param lmDir the "returned" LM direction will be stored in this array.
+ * @param lmPar the value of the LM parameter from the previous iteration.
+ * @return the new LM parameter
+ */
+ private double determineLMParameter(double[] qy, double delta, double[] diag,
+ InternalData internalData, int solvedCols,
+ double[] work1, double[] work2, double[] work3,
+ double[] lmDir, double lmPar) {
+ final double[][] weightedJacobian = internalData.weightedJacobian;
+ final int[] permutation = internalData.permutation;
+ final int rank = internalData.rank;
+ final double[] diagR = internalData.diagR;
+
+ final int nC = weightedJacobian[0].length;
+
+ // compute and store in x the gauss-newton direction, if the
+ // jacobian is rank-deficient, obtain a least squares solution
+ for (int j = 0; j < rank; ++j) {
+ lmDir[permutation[j]] = qy[j];
+ }
+ for (int j = rank; j < nC; ++j) {
+ lmDir[permutation[j]] = 0;
+ }
+ for (int k = rank - 1; k >= 0; --k) {
+ int pk = permutation[k];
+ double ypk = lmDir[pk] / diagR[pk];
+ for (int i = 0; i < k; ++i) {
+ lmDir[permutation[i]] -= ypk * weightedJacobian[i][pk];
+ }
+ lmDir[pk] = ypk;
+ }
+
+ // evaluate the function at the origin, and test
+ // for acceptance of the Gauss-Newton direction
+ double dxNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = diag[pj] * lmDir[pj];
+ work1[pj] = s;
+ dxNorm += s * s;
+ }
+ dxNorm = FastMath.sqrt(dxNorm);
+ double fp = dxNorm - delta;
+ if (fp <= 0.1 * delta) {
+ lmPar = 0;
+ return lmPar;
+ }
+
+ // if the jacobian is not rank deficient, the Newton step provides
+ // a lower bound, parl, for the zero of the function,
+ // otherwise set this bound to zero
+ double sum2;
+ double parl = 0;
+ if (rank == solvedCols) {
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] *= diag[pj] / dxNorm;
+ }
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = 0; i < j; ++i) {
+ sum += weightedJacobian[i][pj] * work1[permutation[i]];
+ }
+ double s = (work1[pj] - sum) / diagR[pj];
+ work1[pj] = s;
+ sum2 += s * s;
+ }
+ parl = fp / (delta * sum2);
+ }
+
+ // calculate an upper bound, paru, for the zero of the function
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = 0; i <= j; ++i) {
+ sum += weightedJacobian[i][pj] * qy[i];
+ }
+ sum /= diag[pj];
+ sum2 += sum * sum;
+ }
+ double gNorm = FastMath.sqrt(sum2);
+ double paru = gNorm / delta;
+ if (paru == 0) {
+ paru = Precision.SAFE_MIN / FastMath.min(delta, 0.1);
+ }
+
+ // if the input par lies outside of the interval (parl,paru),
+ // set par to the closer endpoint
+ lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
+ if (lmPar == 0) {
+ lmPar = gNorm / dxNorm;
+ }
+
+ for (int countdown = 10; countdown >= 0; --countdown) {
+
+ // evaluate the function at the current value of lmPar
+ if (lmPar == 0) {
+ lmPar = FastMath.max(Precision.SAFE_MIN, 0.001 * paru);
+ }
+ double sPar = FastMath.sqrt(lmPar);
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] = sPar * diag[pj];
+ }
+ determineLMDirection(qy, work1, work2, internalData, solvedCols, work3, lmDir);
+
+ dxNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = diag[pj] * lmDir[pj];
+ work3[pj] = s;
+ dxNorm += s * s;
+ }
+ dxNorm = FastMath.sqrt(dxNorm);
+ double previousFP = fp;
+ fp = dxNorm - delta;
+
+ // if the function is small enough, accept the current value
+ // of lmPar, also test for the exceptional cases where parl is zero
+ if (FastMath.abs(fp) <= 0.1 * delta ||
+ (parl == 0 &&
+ fp <= previousFP &&
+ previousFP < 0)) {
+ return lmPar;
+ }
+
+ // compute the Newton correction
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] = work3[pj] * diag[pj] / dxNorm;
+ }
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] /= work2[j];
+ double tmp = work1[pj];
+ for (int i = j + 1; i < solvedCols; ++i) {
+ work1[permutation[i]] -= weightedJacobian[i][pj] * tmp;
+ }
+ }
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ double s = work1[permutation[j]];
+ sum2 += s * s;
+ }
+ double correction = fp / (delta * sum2);
+
+ // depending on the sign of the function, update parl or paru.
+ if (fp > 0) {
+ parl = FastMath.max(parl, lmPar);
+ } else if (fp < 0) {
+ paru = FastMath.min(paru, lmPar);
+ }
+
+ // compute an improved estimate for lmPar
+ lmPar = FastMath.max(parl, lmPar + correction);
+ }
+
+ return lmPar;
+ }
+
+ /**
+ * Solve a*x = b and d*x = 0 in the least squares sense.
+ * <p>This implementation is a translation in Java of the MINPACK
+ * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv</a>
+ * routine.</p>
+ * <p>This method sets the lmDir and lmDiag attributes.</p>
+ * <p>The authors of the original fortran function are:</p>
+ * <ul>
+ * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
+ * <li>Burton S. Garbow</li>
+ * <li>Kenneth E. Hillstrom</li>
+ * <li>Jorge J. More</li>
+ * </ul>
+ * <p>Luc Maisonobe did the Java translation.</p>
+ *
+ * @param qy array containing qTy
+ * @param diag diagonal matrix
+ * @param lmDiag diagonal elements associated with lmDir
+ * @param internalData Data (modified in-place in this method).
+ * @param solvedCols Number of sloved point.
+ * @param work work array
+ * @param lmDir the "returned" LM direction is stored in this array
+ */
+ private void determineLMDirection(double[] qy, double[] diag,
+ double[] lmDiag,
+ InternalData internalData,
+ int solvedCols,
+ double[] work,
+ double[] lmDir) {
+ final int[] permutation = internalData.permutation;
+ final double[][] weightedJacobian = internalData.weightedJacobian;
+ final double[] diagR = internalData.diagR;
+
+ // copy R and Qty to preserve input and initialize s
+ // in particular, save the diagonal elements of R in lmDir
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ for (int i = j + 1; i < solvedCols; ++i) {
+ weightedJacobian[i][pj] = weightedJacobian[j][permutation[i]];
+ }
+ lmDir[j] = diagR[pj];
+ work[j] = qy[j];
+ }
+
+ // eliminate the diagonal matrix d using a Givens rotation
+ for (int j = 0; j < solvedCols; ++j) {
+
+ // prepare the row of d to be eliminated, locating the
+ // diagonal element using p from the Q.R. factorization
+ int pj = permutation[j];
+ double dpj = diag[pj];
+ if (dpj != 0) {
+ Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
+ }
+ lmDiag[j] = dpj;
+
+ // the transformations to eliminate the row of d
+ // modify only a single element of Qty
+ // beyond the first n, which is initially zero.
+ double qtbpj = 0;
+ for (int k = j; k < solvedCols; ++k) {
+ int pk = permutation[k];
+
+ // determine a Givens rotation which eliminates the
+ // appropriate element in the current row of d
+ if (lmDiag[k] != 0) {
+
+ final double sin;
+ final double cos;
+ double rkk = weightedJacobian[k][pk];
+ if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
+ final double cotan = rkk / lmDiag[k];
+ sin = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
+ cos = sin * cotan;
+ } else {
+ final double tan = lmDiag[k] / rkk;
+ cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
+ sin = cos * tan;
+ }
+
+ // compute the modified diagonal element of R and
+ // the modified element of (Qty,0)
+ weightedJacobian[k][pk] = cos * rkk + sin * lmDiag[k];
+ final double temp = cos * work[k] + sin * qtbpj;
+ qtbpj = -sin * work[k] + cos * qtbpj;
+ work[k] = temp;
+
+ // accumulate the tranformation in the row of s
+ for (int i = k + 1; i < solvedCols; ++i) {
+ double rik = weightedJacobian[i][pk];
+ final double temp2 = cos * rik + sin * lmDiag[i];
+ lmDiag[i] = -sin * rik + cos * lmDiag[i];
+ weightedJacobian[i][pk] = temp2;
+ }
+ }
+ }
+
+ // store the diagonal element of s and restore
+ // the corresponding diagonal element of R
+ lmDiag[j] = weightedJacobian[j][permutation[j]];
+ weightedJacobian[j][permutation[j]] = lmDir[j];
+ }
+
+ // solve the triangular system for z, if the system is
+ // singular, then obtain a least squares solution
+ int nSing = solvedCols;
+ for (int j = 0; j < solvedCols; ++j) {
+ if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
+ nSing = j;
+ }
+ if (nSing < solvedCols) {
+ work[j] = 0;
+ }
+ }
+ if (nSing > 0) {
+ for (int j = nSing - 1; j >= 0; --j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = j + 1; i < nSing; ++i) {
+ sum += weightedJacobian[i][pj] * work[i];
+ }
+ work[j] = (work[j] - sum) / lmDiag[j];
+ }
+ }
+
+ // permute the components of z back to components of lmDir
+ for (int j = 0; j < lmDir.length; ++j) {
+ lmDir[permutation[j]] = work[j];
+ }
+ }
+
+ /**
+ * Decompose a matrix A as A.P = Q.R using Householder transforms.
+ * <p>As suggested in the P. Lascaux and R. Theodor book
+ * <i>Analyse num&eacute;rique matricielle appliqu&eacute;e &agrave;
+ * l'art de l'ing&eacute;nieur</i> (Masson, 1986), instead of representing
+ * the Householder transforms with u<sub>k</sub> unit vectors such that:
+ * <pre>
+ * H<sub>k</sub> = I - 2u<sub>k</sub>.u<sub>k</sub><sup>t</sup>
+ * </pre>
+ * we use <sub>k</sub> non-unit vectors such that:
+ * <pre>
+ * H<sub>k</sub> = I - beta<sub>k</sub>v<sub>k</sub>.v<sub>k</sub><sup>t</sup>
+ * </pre>
+ * where v<sub>k</sub> = a<sub>k</sub> - alpha<sub>k</sub> e<sub>k</sub>.
+ * The beta<sub>k</sub> coefficients are provided upon exit as recomputing
+ * them from the v<sub>k</sub> vectors would be costly.</p>
+ * <p>This decomposition handles rank deficient cases since the tranformations
+ * are performed in non-increasing columns norms order thanks to columns
+ * pivoting. The diagonal elements of the R matrix are therefore also in
+ * non-increasing absolute values order.</p>
+ *
+ * @param jacobian Weighted Jacobian matrix at the current point.
+ * @param solvedCols Number of solved point.
+ * @return data used in other methods of this class.
+ * @throws ConvergenceException if the decomposition cannot be performed.
+ */
+ private InternalData qrDecomposition(RealMatrix jacobian,
+ int solvedCols) throws ConvergenceException {
+ // Code in this class assumes that the weighted Jacobian is -(W^(1/2) J),
+ // hence the multiplication by -1.
+ final double[][] weightedJacobian = jacobian.scalarMultiply(-1).getData();
+
+ final int nR = weightedJacobian.length;
+ final int nC = weightedJacobian[0].length;
+
+ final int[] permutation = new int[nC];
+ final double[] diagR = new double[nC];
+ final double[] jacNorm = new double[nC];
+ final double[] beta = new double[nC];
+
+ // initializations
+ for (int k = 0; k < nC; ++k) {
+ permutation[k] = k;
+ double norm2 = 0;
+ for (int i = 0; i < nR; ++i) {
+ double akk = weightedJacobian[i][k];
+ norm2 += akk * akk;
+ }
+ jacNorm[k] = FastMath.sqrt(norm2);
+ }
+
+ // transform the matrix column after column
+ for (int k = 0; k < nC; ++k) {
+
+ // select the column with the greatest norm on active components
+ int nextColumn = -1;
+ double ak2 = Double.NEGATIVE_INFINITY;
+ for (int i = k; i < nC; ++i) {
+ double norm2 = 0;
+ for (int j = k; j < nR; ++j) {
+ double aki = weightedJacobian[j][permutation[i]];
+ norm2 += aki * aki;
+ }
+ if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
+ throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
+ nR, nC);
+ }
+ if (norm2 > ak2) {
+ nextColumn = i;
+ ak2 = norm2;
+ }
+ }
+ if (ak2 <= qrRankingThreshold) {
+ return new InternalData(weightedJacobian, permutation, k, diagR, jacNorm, beta);
+ }
+ int pk = permutation[nextColumn];
+ permutation[nextColumn] = permutation[k];
+ permutation[k] = pk;
+
+ // choose alpha such that Hk.u = alpha ek
+ double akk = weightedJacobian[k][pk];
+ double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
+ double betak = 1.0 / (ak2 - akk * alpha);
+ beta[pk] = betak;
+
+ // transform the current column
+ diagR[pk] = alpha;
+ weightedJacobian[k][pk] -= alpha;
+
+ // transform the remaining columns
+ for (int dk = nC - 1 - k; dk > 0; --dk) {
+ double gamma = 0;
+ for (int j = k; j < nR; ++j) {
+ gamma += weightedJacobian[j][pk] * weightedJacobian[j][permutation[k + dk]];
+ }
+ gamma *= betak;
+ for (int j = k; j < nR; ++j) {
+ weightedJacobian[j][permutation[k + dk]] -= gamma * weightedJacobian[j][pk];
+ }
+ }
+ }
+
+ return new InternalData(weightedJacobian, permutation, solvedCols, diagR, jacNorm, beta);
+ }
+
+ /**
+ * Compute the product Qt.y for some Q.R. decomposition.
+ *
+ * @param y vector to multiply (will be overwritten with the result)
+ * @param internalData Data.
+ */
+ private void qTy(double[] y,
+ InternalData internalData) {
+ final double[][] weightedJacobian = internalData.weightedJacobian;
+ final int[] permutation = internalData.permutation;
+ final double[] beta = internalData.beta;
+
+ final int nR = weightedJacobian.length;
+ final int nC = weightedJacobian[0].length;
+
+ for (int k = 0; k < nC; ++k) {
+ int pk = permutation[k];
+ double gamma = 0;
+ for (int i = k; i < nR; ++i) {
+ gamma += weightedJacobian[i][pk] * y[i];
+ }
+ gamma *= beta[pk];
+ for (int i = k; i < nR; ++i) {
+ y[i] -= gamma * weightedJacobian[i][pk];
+ }
+ }
+ }
+}