summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/FieldVector3D.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/geometry/euclidean/threed/FieldVector3D.java')
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/euclidean/threed/FieldVector3D.java1185
1 files changed, 1185 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/FieldVector3D.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/FieldVector3D.java
new file mode 100644
index 0000000..0bd04e5
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/FieldVector3D.java
@@ -0,0 +1,1185 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.geometry.euclidean.threed;
+
+import java.io.Serializable;
+import java.text.NumberFormat;
+
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MathArithmeticException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+
+/**
+ * This class is a re-implementation of {@link Vector3D} using {@link RealFieldElement}.
+ * <p>Instance of this class are guaranteed to be immutable.</p>
+ * @param <T> the type of the field elements
+ * @since 3.2
+ */
+public class FieldVector3D<T extends RealFieldElement<T>> implements Serializable {
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = 20130224L;
+
+ /** Abscissa. */
+ private final T x;
+
+ /** Ordinate. */
+ private final T y;
+
+ /** Height. */
+ private final T z;
+
+ /** Simple constructor.
+ * Build a vector from its coordinates
+ * @param x abscissa
+ * @param y ordinate
+ * @param z height
+ * @see #getX()
+ * @see #getY()
+ * @see #getZ()
+ */
+ public FieldVector3D(final T x, final T y, final T z) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ /** Simple constructor.
+ * Build a vector from its coordinates
+ * @param v coordinates array
+ * @exception DimensionMismatchException if array does not have 3 elements
+ * @see #toArray()
+ */
+ public FieldVector3D(final T[] v) throws DimensionMismatchException {
+ if (v.length != 3) {
+ throw new DimensionMismatchException(v.length, 3);
+ }
+ this.x = v[0];
+ this.y = v[1];
+ this.z = v[2];
+ }
+
+ /** Simple constructor.
+ * Build a vector from its azimuthal coordinates
+ * @param alpha azimuth (&alpha;) around Z
+ * (0 is +X, &pi;/2 is +Y, &pi; is -X and 3&pi;/2 is -Y)
+ * @param delta elevation (&delta;) above (XY) plane, from -&pi;/2 to +&pi;/2
+ * @see #getAlpha()
+ * @see #getDelta()
+ */
+ public FieldVector3D(final T alpha, final T delta) {
+ T cosDelta = delta.cos();
+ this.x = alpha.cos().multiply(cosDelta);
+ this.y = alpha.sin().multiply(cosDelta);
+ this.z = delta.sin();
+ }
+
+ /** Multiplicative constructor
+ * Build a vector from another one and a scale factor.
+ * The vector built will be a * u
+ * @param a scale factor
+ * @param u base (unscaled) vector
+ */
+ public FieldVector3D(final T a, final FieldVector3D<T>u) {
+ this.x = a.multiply(u.x);
+ this.y = a.multiply(u.y);
+ this.z = a.multiply(u.z);
+ }
+
+ /** Multiplicative constructor
+ * Build a vector from another one and a scale factor.
+ * The vector built will be a * u
+ * @param a scale factor
+ * @param u base (unscaled) vector
+ */
+ public FieldVector3D(final T a, final Vector3D u) {
+ this.x = a.multiply(u.getX());
+ this.y = a.multiply(u.getY());
+ this.z = a.multiply(u.getZ());
+ }
+
+ /** Multiplicative constructor
+ * Build a vector from another one and a scale factor.
+ * The vector built will be a * u
+ * @param a scale factor
+ * @param u base (unscaled) vector
+ */
+ public FieldVector3D(final double a, final FieldVector3D<T> u) {
+ this.x = u.x.multiply(a);
+ this.y = u.y.multiply(a);
+ this.z = u.z.multiply(a);
+ }
+
+ /** Linear constructor
+ * Build a vector from two other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ */
+ public FieldVector3D(final T a1, final FieldVector3D<T> u1,
+ final T a2, final FieldVector3D<T> u2) {
+ final T prototype = a1;
+ this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
+ this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
+ this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ());
+ }
+
+ /** Linear constructor
+ * Build a vector from two other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ */
+ public FieldVector3D(final T a1, final Vector3D u1,
+ final T a2, final Vector3D u2) {
+ final T prototype = a1;
+ this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2);
+ this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2);
+ this.z = prototype.linearCombination(u1.getZ(), a1, u2.getZ(), a2);
+ }
+
+ /** Linear constructor
+ * Build a vector from two other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ */
+ public FieldVector3D(final double a1, final FieldVector3D<T> u1,
+ final double a2, final FieldVector3D<T> u2) {
+ final T prototype = u1.getX();
+ this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
+ this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
+ this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ());
+ }
+
+ /** Linear constructor
+ * Build a vector from three other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ */
+ public FieldVector3D(final T a1, final FieldVector3D<T> u1,
+ final T a2, final FieldVector3D<T> u2,
+ final T a3, final FieldVector3D<T> u3) {
+ final T prototype = a1;
+ this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
+ this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
+ this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ());
+ }
+
+ /** Linear constructor
+ * Build a vector from three other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ */
+ public FieldVector3D(final T a1, final Vector3D u1,
+ final T a2, final Vector3D u2,
+ final T a3, final Vector3D u3) {
+ final T prototype = a1;
+ this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3);
+ this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3);
+ this.z = prototype.linearCombination(u1.getZ(), a1, u2.getZ(), a2, u3.getZ(), a3);
+ }
+
+ /** Linear constructor
+ * Build a vector from three other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ */
+ public FieldVector3D(final double a1, final FieldVector3D<T> u1,
+ final double a2, final FieldVector3D<T> u2,
+ final double a3, final FieldVector3D<T> u3) {
+ final T prototype = u1.getX();
+ this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
+ this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
+ this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ());
+ }
+
+ /** Linear constructor
+ * Build a vector from four other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ * @param a4 fourth scale factor
+ * @param u4 fourth base (unscaled) vector
+ */
+ public FieldVector3D(final T a1, final FieldVector3D<T> u1,
+ final T a2, final FieldVector3D<T> u2,
+ final T a3, final FieldVector3D<T> u3,
+ final T a4, final FieldVector3D<T> u4) {
+ final T prototype = a1;
+ this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
+ this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
+ this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ(), a4, u4.getZ());
+ }
+
+ /** Linear constructor
+ * Build a vector from four other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ * @param a4 fourth scale factor
+ * @param u4 fourth base (unscaled) vector
+ */
+ public FieldVector3D(final T a1, final Vector3D u1,
+ final T a2, final Vector3D u2,
+ final T a3, final Vector3D u3,
+ final T a4, final Vector3D u4) {
+ final T prototype = a1;
+ this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3, u4.getX(), a4);
+ this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3, u4.getY(), a4);
+ this.z = prototype.linearCombination(u1.getZ(), a1, u2.getZ(), a2, u3.getZ(), a3, u4.getZ(), a4);
+ }
+
+ /** Linear constructor
+ * Build a vector from four other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ * @param a4 fourth scale factor
+ * @param u4 fourth base (unscaled) vector
+ */
+ public FieldVector3D(final double a1, final FieldVector3D<T> u1,
+ final double a2, final FieldVector3D<T> u2,
+ final double a3, final FieldVector3D<T> u3,
+ final double a4, final FieldVector3D<T> u4) {
+ final T prototype = u1.getX();
+ this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
+ this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
+ this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ(), a4, u4.getZ());
+ }
+
+ /** Get the abscissa of the vector.
+ * @return abscissa of the vector
+ * @see #FieldVector3D(RealFieldElement, RealFieldElement, RealFieldElement)
+ */
+ public T getX() {
+ return x;
+ }
+
+ /** Get the ordinate of the vector.
+ * @return ordinate of the vector
+ * @see #FieldVector3D(RealFieldElement, RealFieldElement, RealFieldElement)
+ */
+ public T getY() {
+ return y;
+ }
+
+ /** Get the height of the vector.
+ * @return height of the vector
+ * @see #FieldVector3D(RealFieldElement, RealFieldElement, RealFieldElement)
+ */
+ public T getZ() {
+ return z;
+ }
+
+ /** Get the vector coordinates as a dimension 3 array.
+ * @return vector coordinates
+ * @see #FieldVector3D(RealFieldElement[])
+ */
+ public T[] toArray() {
+ final T[] array = MathArrays.buildArray(x.getField(), 3);
+ array[0] = x;
+ array[1] = y;
+ array[2] = z;
+ return array;
+ }
+
+ /** Convert to a constant vector without derivatives.
+ * @return a constant vector
+ */
+ public Vector3D toVector3D() {
+ return new Vector3D(x.getReal(), y.getReal(), z.getReal());
+ }
+
+ /** Get the L<sub>1</sub> norm for the vector.
+ * @return L<sub>1</sub> norm for the vector
+ */
+ public T getNorm1() {
+ return x.abs().add(y.abs()).add(z.abs());
+ }
+
+ /** Get the L<sub>2</sub> norm for the vector.
+ * @return Euclidean norm for the vector
+ */
+ public T getNorm() {
+ // there are no cancellation problems here, so we use the straightforward formula
+ return x.multiply(x).add(y.multiply(y)).add(z.multiply(z)).sqrt();
+ }
+
+ /** Get the square of the norm for the vector.
+ * @return square of the Euclidean norm for the vector
+ */
+ public T getNormSq() {
+ // there are no cancellation problems here, so we use the straightforward formula
+ return x.multiply(x).add(y.multiply(y)).add(z.multiply(z));
+ }
+
+ /** Get the L<sub>&infin;</sub> norm for the vector.
+ * @return L<sub>&infin;</sub> norm for the vector
+ */
+ public T getNormInf() {
+ final T xAbs = x.abs();
+ final T yAbs = y.abs();
+ final T zAbs = z.abs();
+ if (xAbs.getReal() <= yAbs.getReal()) {
+ if (yAbs.getReal() <= zAbs.getReal()) {
+ return zAbs;
+ } else {
+ return yAbs;
+ }
+ } else {
+ if (xAbs.getReal() <= zAbs.getReal()) {
+ return zAbs;
+ } else {
+ return xAbs;
+ }
+ }
+ }
+
+ /** Get the azimuth of the vector.
+ * @return azimuth (&alpha;) of the vector, between -&pi; and +&pi;
+ * @see #FieldVector3D(RealFieldElement, RealFieldElement)
+ */
+ public T getAlpha() {
+ return y.atan2(x);
+ }
+
+ /** Get the elevation of the vector.
+ * @return elevation (&delta;) of the vector, between -&pi;/2 and +&pi;/2
+ * @see #FieldVector3D(RealFieldElement, RealFieldElement)
+ */
+ public T getDelta() {
+ return z.divide(getNorm()).asin();
+ }
+
+ /** Add a vector to the instance.
+ * @param v vector to add
+ * @return a new vector
+ */
+ public FieldVector3D<T> add(final FieldVector3D<T> v) {
+ return new FieldVector3D<T>(x.add(v.x), y.add(v.y), z.add(v.z));
+ }
+
+ /** Add a vector to the instance.
+ * @param v vector to add
+ * @return a new vector
+ */
+ public FieldVector3D<T> add(final Vector3D v) {
+ return new FieldVector3D<T>(x.add(v.getX()), y.add(v.getY()), z.add(v.getZ()));
+ }
+
+ /** Add a scaled vector to the instance.
+ * @param factor scale factor to apply to v before adding it
+ * @param v vector to add
+ * @return a new vector
+ */
+ public FieldVector3D<T> add(final T factor, final FieldVector3D<T> v) {
+ return new FieldVector3D<T>(x.getField().getOne(), this, factor, v);
+ }
+
+ /** Add a scaled vector to the instance.
+ * @param factor scale factor to apply to v before adding it
+ * @param v vector to add
+ * @return a new vector
+ */
+ public FieldVector3D<T> add(final T factor, final Vector3D v) {
+ return new FieldVector3D<T>(x.add(factor.multiply(v.getX())),
+ y.add(factor.multiply(v.getY())),
+ z.add(factor.multiply(v.getZ())));
+ }
+
+ /** Add a scaled vector to the instance.
+ * @param factor scale factor to apply to v before adding it
+ * @param v vector to add
+ * @return a new vector
+ */
+ public FieldVector3D<T> add(final double factor, final FieldVector3D<T> v) {
+ return new FieldVector3D<T>(1.0, this, factor, v);
+ }
+
+ /** Add a scaled vector to the instance.
+ * @param factor scale factor to apply to v before adding it
+ * @param v vector to add
+ * @return a new vector
+ */
+ public FieldVector3D<T> add(final double factor, final Vector3D v) {
+ return new FieldVector3D<T>(x.add(factor * v.getX()),
+ y.add(factor * v.getY()),
+ z.add(factor * v.getZ()));
+ }
+
+ /** Subtract a vector from the instance.
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public FieldVector3D<T> subtract(final FieldVector3D<T> v) {
+ return new FieldVector3D<T>(x.subtract(v.x), y.subtract(v.y), z.subtract(v.z));
+ }
+
+ /** Subtract a vector from the instance.
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public FieldVector3D<T> subtract(final Vector3D v) {
+ return new FieldVector3D<T>(x.subtract(v.getX()), y.subtract(v.getY()), z.subtract(v.getZ()));
+ }
+
+ /** Subtract a scaled vector from the instance.
+ * @param factor scale factor to apply to v before subtracting it
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public FieldVector3D<T> subtract(final T factor, final FieldVector3D<T> v) {
+ return new FieldVector3D<T>(x.getField().getOne(), this, factor.negate(), v);
+ }
+
+ /** Subtract a scaled vector from the instance.
+ * @param factor scale factor to apply to v before subtracting it
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public FieldVector3D<T> subtract(final T factor, final Vector3D v) {
+ return new FieldVector3D<T>(x.subtract(factor.multiply(v.getX())),
+ y.subtract(factor.multiply(v.getY())),
+ z.subtract(factor.multiply(v.getZ())));
+ }
+
+ /** Subtract a scaled vector from the instance.
+ * @param factor scale factor to apply to v before subtracting it
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public FieldVector3D<T> subtract(final double factor, final FieldVector3D<T> v) {
+ return new FieldVector3D<T>(1.0, this, -factor, v);
+ }
+
+ /** Subtract a scaled vector from the instance.
+ * @param factor scale factor to apply to v before subtracting it
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public FieldVector3D<T> subtract(final double factor, final Vector3D v) {
+ return new FieldVector3D<T>(x.subtract(factor * v.getX()),
+ y.subtract(factor * v.getY()),
+ z.subtract(factor * v.getZ()));
+ }
+
+ /** Get a normalized vector aligned with the instance.
+ * @return a new normalized vector
+ * @exception MathArithmeticException if the norm is zero
+ */
+ public FieldVector3D<T> normalize() throws MathArithmeticException {
+ final T s = getNorm();
+ if (s.getReal() == 0) {
+ throw new MathArithmeticException(LocalizedFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
+ }
+ return scalarMultiply(s.reciprocal());
+ }
+
+ /** Get a vector orthogonal to the instance.
+ * <p>There are an infinite number of normalized vectors orthogonal
+ * to the instance. This method picks up one of them almost
+ * arbitrarily. It is useful when one needs to compute a reference
+ * frame with one of the axes in a predefined direction. The
+ * following example shows how to build a frame having the k axis
+ * aligned with the known vector u :
+ * <pre><code>
+ * Vector3D k = u.normalize();
+ * Vector3D i = k.orthogonal();
+ * Vector3D j = Vector3D.crossProduct(k, i);
+ * </code></pre></p>
+ * @return a new normalized vector orthogonal to the instance
+ * @exception MathArithmeticException if the norm of the instance is null
+ */
+ public FieldVector3D<T> orthogonal() throws MathArithmeticException {
+
+ final double threshold = 0.6 * getNorm().getReal();
+ if (threshold == 0) {
+ throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
+ }
+
+ if (FastMath.abs(x.getReal()) <= threshold) {
+ final T inverse = y.multiply(y).add(z.multiply(z)).sqrt().reciprocal();
+ return new FieldVector3D<T>(inverse.getField().getZero(), inverse.multiply(z), inverse.multiply(y).negate());
+ } else if (FastMath.abs(y.getReal()) <= threshold) {
+ final T inverse = x.multiply(x).add(z.multiply(z)).sqrt().reciprocal();
+ return new FieldVector3D<T>(inverse.multiply(z).negate(), inverse.getField().getZero(), inverse.multiply(x));
+ } else {
+ final T inverse = x.multiply(x).add(y.multiply(y)).sqrt().reciprocal();
+ return new FieldVector3D<T>(inverse.multiply(y), inverse.multiply(x).negate(), inverse.getField().getZero());
+ }
+
+ }
+
+ /** Compute the angular separation between two vectors.
+ * <p>This method computes the angular separation between two
+ * vectors using the dot product for well separated vectors and the
+ * cross product for almost aligned vectors. This allows to have a
+ * good accuracy in all cases, even for vectors very close to each
+ * other.</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return angular separation between v1 and v2
+ * @exception MathArithmeticException if either vector has a null norm
+ */
+ public static <T extends RealFieldElement<T>> T angle(final FieldVector3D<T> v1, final FieldVector3D<T> v2)
+ throws MathArithmeticException {
+
+ final T normProduct = v1.getNorm().multiply(v2.getNorm());
+ if (normProduct.getReal() == 0) {
+ throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
+ }
+
+ final T dot = dotProduct(v1, v2);
+ final double threshold = normProduct.getReal() * 0.9999;
+ if ((dot.getReal() < -threshold) || (dot.getReal() > threshold)) {
+ // the vectors are almost aligned, compute using the sine
+ FieldVector3D<T> v3 = crossProduct(v1, v2);
+ if (dot.getReal() >= 0) {
+ return v3.getNorm().divide(normProduct).asin();
+ }
+ return v3.getNorm().divide(normProduct).asin().subtract(FastMath.PI).negate();
+ }
+
+ // the vectors are sufficiently separated to use the cosine
+ return dot.divide(normProduct).acos();
+
+ }
+
+ /** Compute the angular separation between two vectors.
+ * <p>This method computes the angular separation between two
+ * vectors using the dot product for well separated vectors and the
+ * cross product for almost aligned vectors. This allows to have a
+ * good accuracy in all cases, even for vectors very close to each
+ * other.</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return angular separation between v1 and v2
+ * @exception MathArithmeticException if either vector has a null norm
+ */
+ public static <T extends RealFieldElement<T>> T angle(final FieldVector3D<T> v1, final Vector3D v2)
+ throws MathArithmeticException {
+
+ final T normProduct = v1.getNorm().multiply(v2.getNorm());
+ if (normProduct.getReal() == 0) {
+ throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
+ }
+
+ final T dot = dotProduct(v1, v2);
+ final double threshold = normProduct.getReal() * 0.9999;
+ if ((dot.getReal() < -threshold) || (dot.getReal() > threshold)) {
+ // the vectors are almost aligned, compute using the sine
+ FieldVector3D<T> v3 = crossProduct(v1, v2);
+ if (dot.getReal() >= 0) {
+ return v3.getNorm().divide(normProduct).asin();
+ }
+ return v3.getNorm().divide(normProduct).asin().subtract(FastMath.PI).negate();
+ }
+
+ // the vectors are sufficiently separated to use the cosine
+ return dot.divide(normProduct).acos();
+
+ }
+
+ /** Compute the angular separation between two vectors.
+ * <p>This method computes the angular separation between two
+ * vectors using the dot product for well separated vectors and the
+ * cross product for almost aligned vectors. This allows to have a
+ * good accuracy in all cases, even for vectors very close to each
+ * other.</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return angular separation between v1 and v2
+ * @exception MathArithmeticException if either vector has a null norm
+ */
+ public static <T extends RealFieldElement<T>> T angle(final Vector3D v1, final FieldVector3D<T> v2)
+ throws MathArithmeticException {
+ return angle(v2, v1);
+ }
+
+ /** Get the opposite of the instance.
+ * @return a new vector which is opposite to the instance
+ */
+ public FieldVector3D<T> negate() {
+ return new FieldVector3D<T>(x.negate(), y.negate(), z.negate());
+ }
+
+ /** Multiply the instance by a scalar.
+ * @param a scalar
+ * @return a new vector
+ */
+ public FieldVector3D<T> scalarMultiply(final T a) {
+ return new FieldVector3D<T>(x.multiply(a), y.multiply(a), z.multiply(a));
+ }
+
+ /** Multiply the instance by a scalar.
+ * @param a scalar
+ * @return a new vector
+ */
+ public FieldVector3D<T> scalarMultiply(final double a) {
+ return new FieldVector3D<T>(x.multiply(a), y.multiply(a), z.multiply(a));
+ }
+
+ /**
+ * Returns true if any coordinate of this vector is NaN; false otherwise
+ * @return true if any coordinate of this vector is NaN; false otherwise
+ */
+ public boolean isNaN() {
+ return Double.isNaN(x.getReal()) || Double.isNaN(y.getReal()) || Double.isNaN(z.getReal());
+ }
+
+ /**
+ * Returns true if any coordinate of this vector is infinite and none are NaN;
+ * false otherwise
+ * @return true if any coordinate of this vector is infinite and none are NaN;
+ * false otherwise
+ */
+ public boolean isInfinite() {
+ return !isNaN() && (Double.isInfinite(x.getReal()) || Double.isInfinite(y.getReal()) || Double.isInfinite(z.getReal()));
+ }
+
+ /**
+ * Test for the equality of two 3D vectors.
+ * <p>
+ * If all coordinates of two 3D vectors are exactly the same, and none of their
+ * {@link RealFieldElement#getReal() real part} are <code>NaN</code>, the
+ * two 3D vectors are considered to be equal.
+ * </p>
+ * <p>
+ * <code>NaN</code> coordinates are considered to affect globally the vector
+ * and be equals to each other - i.e, if either (or all) real part of the
+ * coordinates of the 3D vector are <code>NaN</code>, the 3D vector is <code>NaN</code>.
+ * </p>
+ *
+ * @param other Object to test for equality to this
+ * @return true if two 3D vector objects are equal, false if
+ * object is null, not an instance of Vector3D, or
+ * not equal to this Vector3D instance
+ *
+ */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof FieldVector3D) {
+ @SuppressWarnings("unchecked")
+ final FieldVector3D<T> rhs = (FieldVector3D<T>) other;
+ if (rhs.isNaN()) {
+ return this.isNaN();
+ }
+
+ return x.equals(rhs.x) && y.equals(rhs.y) && z.equals(rhs.z);
+
+ }
+ return false;
+ }
+
+ /**
+ * Get a hashCode for the 3D vector.
+ * <p>
+ * All NaN values have the same hash code.</p>
+ *
+ * @return a hash code value for this object
+ */
+ @Override
+ public int hashCode() {
+ if (isNaN()) {
+ return 409;
+ }
+ return 311 * (107 * x.hashCode() + 83 * y.hashCode() + z.hashCode());
+ }
+
+ /** Compute the dot-product of the instance and another vector.
+ * <p>
+ * The implementation uses specific multiplication and addition
+ * algorithms to preserve accuracy and reduce cancellation effects.
+ * It should be very accurate even for nearly orthogonal vectors.
+ * </p>
+ * @see MathArrays#linearCombination(double, double, double, double, double, double)
+ * @param v second vector
+ * @return the dot product this.v
+ */
+ public T dotProduct(final FieldVector3D<T> v) {
+ return x.linearCombination(x, v.x, y, v.y, z, v.z);
+ }
+
+ /** Compute the dot-product of the instance and another vector.
+ * <p>
+ * The implementation uses specific multiplication and addition
+ * algorithms to preserve accuracy and reduce cancellation effects.
+ * It should be very accurate even for nearly orthogonal vectors.
+ * </p>
+ * @see MathArrays#linearCombination(double, double, double, double, double, double)
+ * @param v second vector
+ * @return the dot product this.v
+ */
+ public T dotProduct(final Vector3D v) {
+ return x.linearCombination(v.getX(), x, v.getY(), y, v.getZ(), z);
+ }
+
+ /** Compute the cross-product of the instance with another vector.
+ * @param v other vector
+ * @return the cross product this ^ v as a new Vector3D
+ */
+ public FieldVector3D<T> crossProduct(final FieldVector3D<T> v) {
+ return new FieldVector3D<T>(x.linearCombination(y, v.z, z.negate(), v.y),
+ y.linearCombination(z, v.x, x.negate(), v.z),
+ z.linearCombination(x, v.y, y.negate(), v.x));
+ }
+
+ /** Compute the cross-product of the instance with another vector.
+ * @param v other vector
+ * @return the cross product this ^ v as a new Vector3D
+ */
+ public FieldVector3D<T> crossProduct(final Vector3D v) {
+ return new FieldVector3D<T>(x.linearCombination(v.getZ(), y, -v.getY(), z),
+ y.linearCombination(v.getX(), z, -v.getZ(), x),
+ z.linearCombination(v.getY(), x, -v.getX(), y));
+ }
+
+ /** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNorm1()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the distance between the instance and p according to the L<sub>1</sub> norm
+ */
+ public T distance1(final FieldVector3D<T> v) {
+ final T dx = v.x.subtract(x).abs();
+ final T dy = v.y.subtract(y).abs();
+ final T dz = v.z.subtract(z).abs();
+ return dx.add(dy).add(dz);
+ }
+
+ /** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNorm1()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the distance between the instance and p according to the L<sub>1</sub> norm
+ */
+ public T distance1(final Vector3D v) {
+ final T dx = x.subtract(v.getX()).abs();
+ final T dy = y.subtract(v.getY()).abs();
+ final T dz = z.subtract(v.getZ()).abs();
+ return dx.add(dy).add(dz);
+ }
+
+ /** Compute the distance between the instance and another vector according to the L<sub>2</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNorm()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the distance between the instance and p according to the L<sub>2</sub> norm
+ */
+ public T distance(final FieldVector3D<T> v) {
+ final T dx = v.x.subtract(x);
+ final T dy = v.y.subtract(y);
+ final T dz = v.z.subtract(z);
+ return dx.multiply(dx).add(dy.multiply(dy)).add(dz.multiply(dz)).sqrt();
+ }
+
+ /** Compute the distance between the instance and another vector according to the L<sub>2</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNorm()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the distance between the instance and p according to the L<sub>2</sub> norm
+ */
+ public T distance(final Vector3D v) {
+ final T dx = x.subtract(v.getX());
+ final T dy = y.subtract(v.getY());
+ final T dz = z.subtract(v.getZ());
+ return dx.multiply(dx).add(dy.multiply(dy)).add(dz.multiply(dz)).sqrt();
+ }
+
+ /** Compute the distance between the instance and another vector according to the L<sub>&infin;</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNormInf()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the distance between the instance and p according to the L<sub>&infin;</sub> norm
+ */
+ public T distanceInf(final FieldVector3D<T> v) {
+ final T dx = v.x.subtract(x).abs();
+ final T dy = v.y.subtract(y).abs();
+ final T dz = v.z.subtract(z).abs();
+ if (dx.getReal() <= dy.getReal()) {
+ if (dy.getReal() <= dz.getReal()) {
+ return dz;
+ } else {
+ return dy;
+ }
+ } else {
+ if (dx.getReal() <= dz.getReal()) {
+ return dz;
+ } else {
+ return dx;
+ }
+ }
+ }
+
+ /** Compute the distance between the instance and another vector according to the L<sub>&infin;</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNormInf()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the distance between the instance and p according to the L<sub>&infin;</sub> norm
+ */
+ public T distanceInf(final Vector3D v) {
+ final T dx = x.subtract(v.getX()).abs();
+ final T dy = y.subtract(v.getY()).abs();
+ final T dz = z.subtract(v.getZ()).abs();
+ if (dx.getReal() <= dy.getReal()) {
+ if (dy.getReal() <= dz.getReal()) {
+ return dz;
+ } else {
+ return dy;
+ }
+ } else {
+ if (dx.getReal() <= dz.getReal()) {
+ return dz;
+ } else {
+ return dx;
+ }
+ }
+ }
+
+ /** Compute the square of the distance between the instance and another vector.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNormSq()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the square of the distance between the instance and p
+ */
+ public T distanceSq(final FieldVector3D<T> v) {
+ final T dx = v.x.subtract(x);
+ final T dy = v.y.subtract(y);
+ final T dz = v.z.subtract(z);
+ return dx.multiply(dx).add(dy.multiply(dy)).add(dz.multiply(dz));
+ }
+
+ /** Compute the square of the distance between the instance and another vector.
+ * <p>Calling this method is equivalent to calling:
+ * <code>q.subtract(p).getNormSq()</code> except that no intermediate
+ * vector is built</p>
+ * @param v second vector
+ * @return the square of the distance between the instance and p
+ */
+ public T distanceSq(final Vector3D v) {
+ final T dx = x.subtract(v.getX());
+ final T dy = y.subtract(v.getY());
+ final T dz = z.subtract(v.getZ());
+ return dx.multiply(dx).add(dy.multiply(dy)).add(dz.multiply(dz));
+ }
+
+ /** Compute the dot-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the dot product v1.v2
+ */
+ public static <T extends RealFieldElement<T>> T dotProduct(final FieldVector3D<T> v1,
+ final FieldVector3D<T> v2) {
+ return v1.dotProduct(v2);
+ }
+
+ /** Compute the dot-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the dot product v1.v2
+ */
+ public static <T extends RealFieldElement<T>> T dotProduct(final FieldVector3D<T> v1,
+ final Vector3D v2) {
+ return v1.dotProduct(v2);
+ }
+
+ /** Compute the dot-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the dot product v1.v2
+ */
+ public static <T extends RealFieldElement<T>> T dotProduct(final Vector3D v1,
+ final FieldVector3D<T> v2) {
+ return v2.dotProduct(v1);
+ }
+
+ /** Compute the cross-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the cross product v1 ^ v2 as a new Vector
+ */
+ public static <T extends RealFieldElement<T>> FieldVector3D<T> crossProduct(final FieldVector3D<T> v1,
+ final FieldVector3D<T> v2) {
+ return v1.crossProduct(v2);
+ }
+
+ /** Compute the cross-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the cross product v1 ^ v2 as a new Vector
+ */
+ public static <T extends RealFieldElement<T>> FieldVector3D<T> crossProduct(final FieldVector3D<T> v1,
+ final Vector3D v2) {
+ return v1.crossProduct(v2);
+ }
+
+ /** Compute the cross-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the cross product v1 ^ v2 as a new Vector
+ */
+ public static <T extends RealFieldElement<T>> FieldVector3D<T> crossProduct(final Vector3D v1,
+ final FieldVector3D<T> v2) {
+ return new FieldVector3D<T>(v2.x.linearCombination(v1.getY(), v2.z, -v1.getZ(), v2.y),
+ v2.y.linearCombination(v1.getZ(), v2.x, -v1.getX(), v2.z),
+ v2.z.linearCombination(v1.getX(), v2.y, -v1.getY(), v2.x));
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distance1(final FieldVector3D<T> v1,
+ final FieldVector3D<T> v2) {
+ return v1.distance1(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distance1(final FieldVector3D<T> v1,
+ final Vector3D v2) {
+ return v1.distance1(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distance1(final Vector3D v1,
+ final FieldVector3D<T> v2) {
+ return v2.distance1(v1);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distance(final FieldVector3D<T> v1,
+ final FieldVector3D<T> v2) {
+ return v1.distance(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distance(final FieldVector3D<T> v1,
+ final Vector3D v2) {
+ return v1.distance(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distance(final Vector3D v1,
+ final FieldVector3D<T> v2) {
+ return v2.distance(v1);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>&infin;</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>&infin;</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distanceInf(final FieldVector3D<T> v1,
+ final FieldVector3D<T> v2) {
+ return v1.distanceInf(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>&infin;</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>&infin;</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distanceInf(final FieldVector3D<T> v1,
+ final Vector3D v2) {
+ return v1.distanceInf(v2);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>&infin;</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the distance between v1 and v2 according to the L<sub>&infin;</sub> norm
+ */
+ public static <T extends RealFieldElement<T>> T distanceInf(final Vector3D v1,
+ final FieldVector3D<T> v2) {
+ return v2.distanceInf(v1);
+ }
+
+ /** Compute the square of the distance between two vectors.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the square of the distance between v1 and v2
+ */
+ public static <T extends RealFieldElement<T>> T distanceSq(final FieldVector3D<T> v1,
+ final FieldVector3D<T> v2) {
+ return v1.distanceSq(v2);
+ }
+
+ /** Compute the square of the distance between two vectors.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the square of the distance between v1 and v2
+ */
+ public static <T extends RealFieldElement<T>> T distanceSq(final FieldVector3D<T> v1,
+ final Vector3D v2) {
+ return v1.distanceSq(v2);
+ }
+
+ /** Compute the square of the distance between two vectors.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @param <T> the type of the field elements
+ * @return the square of the distance between v1 and v2
+ */
+ public static <T extends RealFieldElement<T>> T distanceSq(final Vector3D v1,
+ final FieldVector3D<T> v2) {
+ return v2.distanceSq(v1);
+ }
+
+ /** Get a string representation of this vector.
+ * @return a string representation of this vector
+ */
+ @Override
+ public String toString() {
+ return Vector3DFormat.getInstance().format(toVector3D());
+ }
+
+ /** Get a string representation of this vector.
+ * @param format the custom format for components
+ * @return a string representation of this vector
+ */
+ public String toString(final NumberFormat format) {
+ return new Vector3DFormat(format).format(toVector3D());
+ }
+
+}