summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/geometry/partitioning
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/geometry/partitioning')
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractRegion.java540
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractSubHyperplane.java191
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTree.java821
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTreeVisitor.java114
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryAttribute.java116
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryBuilder.java95
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjection.java83
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjector.java200
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/BoundarySizeVisitor.java65
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/Characterization.java190
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/Embedding.java68
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/Hyperplane.java98
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/InsideFinder.java150
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/NodesSet.java72
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/Region.java221
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/RegionFactory.java378
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/Side.java37
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/SubHyperplane.java155
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/Transform.java80
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/package-info.java114
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java634
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java431
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.pngbin0 -> 28882 bytes
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java24
24 files changed, 4877 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractRegion.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractRegion.java
new file mode 100644
index 0000000..d901ab4
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractRegion.java
@@ -0,0 +1,540 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import java.util.ArrayList;
+import java.util.Collection;
+import java.util.Comparator;
+import java.util.HashMap;
+import java.util.Iterator;
+import java.util.Map;
+import java.util.TreeSet;
+
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+import org.apache.commons.math3.geometry.Vector;
+
+/** Abstract class for all regions, independently of geometry type or dimension.
+
+ * @param <S> Type of the space.
+ * @param <T> Type of the sub-space.
+
+ * @since 3.0
+ */
+public abstract class AbstractRegion<S extends Space, T extends Space> implements Region<S> {
+
+ /** Inside/Outside BSP tree. */
+ private BSPTree<S> tree;
+
+ /** Tolerance below which points are considered to belong to hyperplanes. */
+ private final double tolerance;
+
+ /** Size of the instance. */
+ private double size;
+
+ /** Barycenter. */
+ private Point<S> barycenter;
+
+ /** Build a region representing the whole space.
+ * @param tolerance tolerance below which points are considered identical.
+ */
+ protected AbstractRegion(final double tolerance) {
+ this.tree = new BSPTree<S>(Boolean.TRUE);
+ this.tolerance = tolerance;
+ }
+
+ /** Build a region from an inside/outside BSP tree.
+ * <p>The leaf nodes of the BSP tree <em>must</em> have a
+ * {@code Boolean} attribute representing the inside status of
+ * the corresponding cell (true for inside cells, false for outside
+ * cells). In order to avoid building too many small objects, it is
+ * recommended to use the predefined constants
+ * {@code Boolean.TRUE} and {@code Boolean.FALSE}. The
+ * tree also <em>must</em> have either null internal nodes or
+ * internal nodes representing the boundary as specified in the
+ * {@link #getTree getTree} method).</p>
+ * @param tree inside/outside BSP tree representing the region
+ * @param tolerance tolerance below which points are considered identical.
+ */
+ protected AbstractRegion(final BSPTree<S> tree, final double tolerance) {
+ this.tree = tree;
+ this.tolerance = tolerance;
+ }
+
+ /** Build a Region from a Boundary REPresentation (B-rep).
+ * <p>The boundary is provided as a collection of {@link
+ * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
+ * interior part of the region on its minus side and the exterior on
+ * its plus side.</p>
+ * <p>The boundary elements can be in any order, and can form
+ * several non-connected sets (like for example polygons with holes
+ * or a set of disjoints polyhedrons considered as a whole). In
+ * fact, the elements do not even need to be connected together
+ * (their topological connections are not used here). However, if the
+ * boundary does not really separate an inside open from an outside
+ * open (open having here its topological meaning), then subsequent
+ * calls to the {@link #checkPoint(Point) checkPoint} method will not be
+ * meaningful anymore.</p>
+ * <p>If the boundary is empty, the region will represent the whole
+ * space.</p>
+ * @param boundary collection of boundary elements, as a
+ * collection of {@link SubHyperplane SubHyperplane} objects
+ * @param tolerance tolerance below which points are considered identical.
+ */
+ protected AbstractRegion(final Collection<SubHyperplane<S>> boundary, final double tolerance) {
+
+ this.tolerance = tolerance;
+
+ if (boundary.size() == 0) {
+
+ // the tree represents the whole space
+ tree = new BSPTree<S>(Boolean.TRUE);
+
+ } else {
+
+ // sort the boundary elements in decreasing size order
+ // (we don't want equal size elements to be removed, so
+ // we use a trick to fool the TreeSet)
+ final TreeSet<SubHyperplane<S>> ordered = new TreeSet<SubHyperplane<S>>(new Comparator<SubHyperplane<S>>() {
+ /** {@inheritDoc} */
+ public int compare(final SubHyperplane<S> o1, final SubHyperplane<S> o2) {
+ final double size1 = o1.getSize();
+ final double size2 = o2.getSize();
+ return (size2 < size1) ? -1 : ((o1 == o2) ? 0 : +1);
+ }
+ });
+ ordered.addAll(boundary);
+
+ // build the tree top-down
+ tree = new BSPTree<S>();
+ insertCuts(tree, ordered);
+
+ // set up the inside/outside flags
+ tree.visit(new BSPTreeVisitor<S>() {
+
+ /** {@inheritDoc} */
+ public Order visitOrder(final BSPTree<S> node) {
+ return Order.PLUS_SUB_MINUS;
+ }
+
+ /** {@inheritDoc} */
+ public void visitInternalNode(final BSPTree<S> node) {
+ }
+
+ /** {@inheritDoc} */
+ public void visitLeafNode(final BSPTree<S> node) {
+ if (node.getParent() == null || node == node.getParent().getMinus()) {
+ node.setAttribute(Boolean.TRUE);
+ } else {
+ node.setAttribute(Boolean.FALSE);
+ }
+ }
+ });
+
+ }
+
+ }
+
+ /** Build a convex region from an array of bounding hyperplanes.
+ * @param hyperplanes array of bounding hyperplanes (if null, an
+ * empty region will be built)
+ * @param tolerance tolerance below which points are considered identical.
+ */
+ public AbstractRegion(final Hyperplane<S>[] hyperplanes, final double tolerance) {
+ this.tolerance = tolerance;
+ if ((hyperplanes == null) || (hyperplanes.length == 0)) {
+ tree = new BSPTree<S>(Boolean.FALSE);
+ } else {
+
+ // use the first hyperplane to build the right class
+ tree = hyperplanes[0].wholeSpace().getTree(false);
+
+ // chop off parts of the space
+ BSPTree<S> node = tree;
+ node.setAttribute(Boolean.TRUE);
+ for (final Hyperplane<S> hyperplane : hyperplanes) {
+ if (node.insertCut(hyperplane)) {
+ node.setAttribute(null);
+ node.getPlus().setAttribute(Boolean.FALSE);
+ node = node.getMinus();
+ node.setAttribute(Boolean.TRUE);
+ }
+ }
+
+ }
+
+ }
+
+ /** {@inheritDoc} */
+ public abstract AbstractRegion<S, T> buildNew(BSPTree<S> newTree);
+
+ /** Get the tolerance below which points are considered to belong to hyperplanes.
+ * @return tolerance below which points are considered to belong to hyperplanes
+ */
+ public double getTolerance() {
+ return tolerance;
+ }
+
+ /** Recursively build a tree by inserting cut sub-hyperplanes.
+ * @param node current tree node (it is a leaf node at the beginning
+ * of the call)
+ * @param boundary collection of edges belonging to the cell defined
+ * by the node
+ */
+ private void insertCuts(final BSPTree<S> node, final Collection<SubHyperplane<S>> boundary) {
+
+ final Iterator<SubHyperplane<S>> iterator = boundary.iterator();
+
+ // build the current level
+ Hyperplane<S> inserted = null;
+ while ((inserted == null) && iterator.hasNext()) {
+ inserted = iterator.next().getHyperplane();
+ if (!node.insertCut(inserted.copySelf())) {
+ inserted = null;
+ }
+ }
+
+ if (!iterator.hasNext()) {
+ return;
+ }
+
+ // distribute the remaining edges in the two sub-trees
+ final ArrayList<SubHyperplane<S>> plusList = new ArrayList<SubHyperplane<S>>();
+ final ArrayList<SubHyperplane<S>> minusList = new ArrayList<SubHyperplane<S>>();
+ while (iterator.hasNext()) {
+ final SubHyperplane<S> other = iterator.next();
+ final SubHyperplane.SplitSubHyperplane<S> split = other.split(inserted);
+ switch (split.getSide()) {
+ case PLUS:
+ plusList.add(other);
+ break;
+ case MINUS:
+ minusList.add(other);
+ break;
+ case BOTH:
+ plusList.add(split.getPlus());
+ minusList.add(split.getMinus());
+ break;
+ default:
+ // ignore the sub-hyperplanes belonging to the cut hyperplane
+ }
+ }
+
+ // recurse through lower levels
+ insertCuts(node.getPlus(), plusList);
+ insertCuts(node.getMinus(), minusList);
+
+ }
+
+ /** {@inheritDoc} */
+ public AbstractRegion<S, T> copySelf() {
+ return buildNew(tree.copySelf());
+ }
+
+ /** {@inheritDoc} */
+ public boolean isEmpty() {
+ return isEmpty(tree);
+ }
+
+ /** {@inheritDoc} */
+ public boolean isEmpty(final BSPTree<S> node) {
+
+ // we use a recursive function rather than the BSPTreeVisitor
+ // interface because we can stop visiting the tree as soon as we
+ // have found an inside cell
+
+ if (node.getCut() == null) {
+ // if we find an inside node, the region is not empty
+ return !((Boolean) node.getAttribute());
+ }
+
+ // check both sides of the sub-tree
+ return isEmpty(node.getMinus()) && isEmpty(node.getPlus());
+
+ }
+
+ /** {@inheritDoc} */
+ public boolean isFull() {
+ return isFull(tree);
+ }
+
+ /** {@inheritDoc} */
+ public boolean isFull(final BSPTree<S> node) {
+
+ // we use a recursive function rather than the BSPTreeVisitor
+ // interface because we can stop visiting the tree as soon as we
+ // have found an outside cell
+
+ if (node.getCut() == null) {
+ // if we find an outside node, the region does not cover full space
+ return (Boolean) node.getAttribute();
+ }
+
+ // check both sides of the sub-tree
+ return isFull(node.getMinus()) && isFull(node.getPlus());
+
+ }
+
+ /** {@inheritDoc} */
+ public boolean contains(final Region<S> region) {
+ return new RegionFactory<S>().difference(region, this).isEmpty();
+ }
+
+ /** {@inheritDoc}
+ * @since 3.3
+ */
+ public BoundaryProjection<S> projectToBoundary(final Point<S> point) {
+ final BoundaryProjector<S, T> projector = new BoundaryProjector<S, T>(point);
+ getTree(true).visit(projector);
+ return projector.getProjection();
+ }
+
+ /** Check a point with respect to the region.
+ * @param point point to check
+ * @return a code representing the point status: either {@link
+ * Region.Location#INSIDE}, {@link Region.Location#OUTSIDE} or
+ * {@link Region.Location#BOUNDARY}
+ */
+ public Location checkPoint(final Vector<S> point) {
+ return checkPoint((Point<S>) point);
+ }
+
+ /** {@inheritDoc} */
+ public Location checkPoint(final Point<S> point) {
+ return checkPoint(tree, point);
+ }
+
+ /** Check a point with respect to the region starting at a given node.
+ * @param node root node of the region
+ * @param point point to check
+ * @return a code representing the point status: either {@link
+ * Region.Location#INSIDE INSIDE}, {@link Region.Location#OUTSIDE
+ * OUTSIDE} or {@link Region.Location#BOUNDARY BOUNDARY}
+ */
+ protected Location checkPoint(final BSPTree<S> node, final Vector<S> point) {
+ return checkPoint(node, (Point<S>) point);
+ }
+
+ /** Check a point with respect to the region starting at a given node.
+ * @param node root node of the region
+ * @param point point to check
+ * @return a code representing the point status: either {@link
+ * Region.Location#INSIDE INSIDE}, {@link Region.Location#OUTSIDE
+ * OUTSIDE} or {@link Region.Location#BOUNDARY BOUNDARY}
+ */
+ protected Location checkPoint(final BSPTree<S> node, final Point<S> point) {
+ final BSPTree<S> cell = node.getCell(point, tolerance);
+ if (cell.getCut() == null) {
+ // the point is in the interior of a cell, just check the attribute
+ return ((Boolean) cell.getAttribute()) ? Location.INSIDE : Location.OUTSIDE;
+ }
+
+ // the point is on a cut-sub-hyperplane, is it on a boundary ?
+ final Location minusCode = checkPoint(cell.getMinus(), point);
+ final Location plusCode = checkPoint(cell.getPlus(), point);
+ return (minusCode == plusCode) ? minusCode : Location.BOUNDARY;
+
+ }
+
+ /** {@inheritDoc} */
+ public BSPTree<S> getTree(final boolean includeBoundaryAttributes) {
+ if (includeBoundaryAttributes && (tree.getCut() != null) && (tree.getAttribute() == null)) {
+ // compute the boundary attributes
+ tree.visit(new BoundaryBuilder<S>());
+ }
+ return tree;
+ }
+
+ /** {@inheritDoc} */
+ public double getBoundarySize() {
+ final BoundarySizeVisitor<S> visitor = new BoundarySizeVisitor<S>();
+ getTree(true).visit(visitor);
+ return visitor.getSize();
+ }
+
+ /** {@inheritDoc} */
+ public double getSize() {
+ if (barycenter == null) {
+ computeGeometricalProperties();
+ }
+ return size;
+ }
+
+ /** Set the size of the instance.
+ * @param size size of the instance
+ */
+ protected void setSize(final double size) {
+ this.size = size;
+ }
+
+ /** {@inheritDoc} */
+ public Point<S> getBarycenter() {
+ if (barycenter == null) {
+ computeGeometricalProperties();
+ }
+ return barycenter;
+ }
+
+ /** Set the barycenter of the instance.
+ * @param barycenter barycenter of the instance
+ */
+ protected void setBarycenter(final Vector<S> barycenter) {
+ setBarycenter((Point<S>) barycenter);
+ }
+
+ /** Set the barycenter of the instance.
+ * @param barycenter barycenter of the instance
+ */
+ protected void setBarycenter(final Point<S> barycenter) {
+ this.barycenter = barycenter;
+ }
+
+ /** Compute some geometrical properties.
+ * <p>The properties to compute are the barycenter and the size.</p>
+ */
+ protected abstract void computeGeometricalProperties();
+
+ /** {@inheritDoc} */
+ @Deprecated
+ public Side side(final Hyperplane<S> hyperplane) {
+ final InsideFinder<S> finder = new InsideFinder<S>(this);
+ finder.recurseSides(tree, hyperplane.wholeHyperplane());
+ return finder.plusFound() ?
+ (finder.minusFound() ? Side.BOTH : Side.PLUS) :
+ (finder.minusFound() ? Side.MINUS : Side.HYPER);
+ }
+
+ /** {@inheritDoc} */
+ public SubHyperplane<S> intersection(final SubHyperplane<S> sub) {
+ return recurseIntersection(tree, sub);
+ }
+
+ /** Recursively compute the parts of a sub-hyperplane that are
+ * contained in the region.
+ * @param node current BSP tree node
+ * @param sub sub-hyperplane traversing the region
+ * @return filtered sub-hyperplane
+ */
+ private SubHyperplane<S> recurseIntersection(final BSPTree<S> node, final SubHyperplane<S> sub) {
+
+ if (node.getCut() == null) {
+ return (Boolean) node.getAttribute() ? sub.copySelf() : null;
+ }
+
+ final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
+ final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
+ if (split.getPlus() != null) {
+ if (split.getMinus() != null) {
+ // both sides
+ final SubHyperplane<S> plus = recurseIntersection(node.getPlus(), split.getPlus());
+ final SubHyperplane<S> minus = recurseIntersection(node.getMinus(), split.getMinus());
+ if (plus == null) {
+ return minus;
+ } else if (minus == null) {
+ return plus;
+ } else {
+ return plus.reunite(minus);
+ }
+ } else {
+ // only on plus side
+ return recurseIntersection(node.getPlus(), sub);
+ }
+ } else if (split.getMinus() != null) {
+ // only on minus side
+ return recurseIntersection(node.getMinus(), sub);
+ } else {
+ // on hyperplane
+ return recurseIntersection(node.getPlus(),
+ recurseIntersection(node.getMinus(), sub));
+ }
+
+ }
+
+ /** Transform a region.
+ * <p>Applying a transform to a region consist in applying the
+ * transform to all the hyperplanes of the underlying BSP tree and
+ * of the boundary (and also to the sub-hyperplanes embedded in
+ * these hyperplanes) and to the barycenter. The instance is not
+ * modified, a new instance is built.</p>
+ * @param transform transform to apply
+ * @return a new region, resulting from the application of the
+ * transform to the instance
+ */
+ public AbstractRegion<S, T> applyTransform(final Transform<S, T> transform) {
+
+ // transform the tree, except for boundary attribute splitters
+ final Map<BSPTree<S>, BSPTree<S>> map = new HashMap<BSPTree<S>, BSPTree<S>>();
+ final BSPTree<S> transformedTree = recurseTransform(getTree(false), transform, map);
+
+ // set up the boundary attributes splitters
+ for (final Map.Entry<BSPTree<S>, BSPTree<S>> entry : map.entrySet()) {
+ if (entry.getKey().getCut() != null) {
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<S> original = (BoundaryAttribute<S>) entry.getKey().getAttribute();
+ if (original != null) {
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<S> transformed = (BoundaryAttribute<S>) entry.getValue().getAttribute();
+ for (final BSPTree<S> splitter : original.getSplitters()) {
+ transformed.getSplitters().add(map.get(splitter));
+ }
+ }
+ }
+ }
+
+ return buildNew(transformedTree);
+
+ }
+
+ /** Recursively transform an inside/outside BSP-tree.
+ * @param node current BSP tree node
+ * @param transform transform to apply
+ * @param map transformed nodes map
+ * @return a new tree
+ */
+ @SuppressWarnings("unchecked")
+ private BSPTree<S> recurseTransform(final BSPTree<S> node, final Transform<S, T> transform,
+ final Map<BSPTree<S>, BSPTree<S>> map) {
+
+ final BSPTree<S> transformedNode;
+ if (node.getCut() == null) {
+ transformedNode = new BSPTree<S>(node.getAttribute());
+ } else {
+
+ final SubHyperplane<S> sub = node.getCut();
+ final SubHyperplane<S> tSub = ((AbstractSubHyperplane<S, T>) sub).applyTransform(transform);
+ BoundaryAttribute<S> attribute = (BoundaryAttribute<S>) node.getAttribute();
+ if (attribute != null) {
+ final SubHyperplane<S> tPO = (attribute.getPlusOutside() == null) ?
+ null : ((AbstractSubHyperplane<S, T>) attribute.getPlusOutside()).applyTransform(transform);
+ final SubHyperplane<S> tPI = (attribute.getPlusInside() == null) ?
+ null : ((AbstractSubHyperplane<S, T>) attribute.getPlusInside()).applyTransform(transform);
+ // we start with an empty list of splitters, it will be filled in out of recursion
+ attribute = new BoundaryAttribute<S>(tPO, tPI, new NodesSet<S>());
+ }
+
+ transformedNode = new BSPTree<S>(tSub,
+ recurseTransform(node.getPlus(), transform, map),
+ recurseTransform(node.getMinus(), transform, map),
+ attribute);
+ }
+
+ map.put(node, transformedNode);
+ return transformedNode;
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractSubHyperplane.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractSubHyperplane.java
new file mode 100644
index 0000000..396b795
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/AbstractSubHyperplane.java
@@ -0,0 +1,191 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import java.util.HashMap;
+import java.util.Map;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** This class implements the dimension-independent parts of {@link SubHyperplane}.
+
+ * <p>sub-hyperplanes are obtained when parts of an {@link
+ * Hyperplane hyperplane} are chopped off by other hyperplanes that
+ * intersect it. The remaining part is a convex region. Such objects
+ * appear in {@link BSPTree BSP trees} as the intersection of a cut
+ * hyperplane with the convex region which it splits, the chopping
+ * hyperplanes are the cut hyperplanes closer to the tree root.</p>
+
+ * @param <S> Type of the embedding space.
+ * @param <T> Type of the embedded sub-space.
+
+ * @since 3.0
+ */
+public abstract class AbstractSubHyperplane<S extends Space, T extends Space>
+ implements SubHyperplane<S> {
+
+ /** Underlying hyperplane. */
+ private final Hyperplane<S> hyperplane;
+
+ /** Remaining region of the hyperplane. */
+ private final Region<T> remainingRegion;
+
+ /** Build a sub-hyperplane from an hyperplane and a region.
+ * @param hyperplane underlying hyperplane
+ * @param remainingRegion remaining region of the hyperplane
+ */
+ protected AbstractSubHyperplane(final Hyperplane<S> hyperplane,
+ final Region<T> remainingRegion) {
+ this.hyperplane = hyperplane;
+ this.remainingRegion = remainingRegion;
+ }
+
+ /** Build a sub-hyperplane from an hyperplane and a region.
+ * @param hyper underlying hyperplane
+ * @param remaining remaining region of the hyperplane
+ * @return a new sub-hyperplane
+ */
+ protected abstract AbstractSubHyperplane<S, T> buildNew(final Hyperplane<S> hyper,
+ final Region<T> remaining);
+
+ /** {@inheritDoc} */
+ public AbstractSubHyperplane<S, T> copySelf() {
+ return buildNew(hyperplane.copySelf(), remainingRegion);
+ }
+
+ /** Get the underlying hyperplane.
+ * @return underlying hyperplane
+ */
+ public Hyperplane<S> getHyperplane() {
+ return hyperplane;
+ }
+
+ /** Get the remaining region of the hyperplane.
+ * <p>The returned region is expressed in the canonical hyperplane
+ * frame and has the hyperplane dimension. For example a chopped
+ * hyperplane in the 3D euclidean is a 2D plane and the
+ * corresponding region is a convex 2D polygon.</p>
+ * @return remaining region of the hyperplane
+ */
+ public Region<T> getRemainingRegion() {
+ return remainingRegion;
+ }
+
+ /** {@inheritDoc} */
+ public double getSize() {
+ return remainingRegion.getSize();
+ }
+
+ /** {@inheritDoc} */
+ public AbstractSubHyperplane<S, T> reunite(final SubHyperplane<S> other) {
+ @SuppressWarnings("unchecked")
+ AbstractSubHyperplane<S, T> o = (AbstractSubHyperplane<S, T>) other;
+ return buildNew(hyperplane,
+ new RegionFactory<T>().union(remainingRegion, o.remainingRegion));
+ }
+
+ /** Apply a transform to the instance.
+ * <p>The instance must be a (D-1)-dimension sub-hyperplane with
+ * respect to the transform <em>not</em> a (D-2)-dimension
+ * sub-hyperplane the transform knows how to transform by
+ * itself. The transform will consist in transforming first the
+ * hyperplane and then the all region using the various methods
+ * provided by the transform.</p>
+ * @param transform D-dimension transform to apply
+ * @return the transformed instance
+ */
+ public AbstractSubHyperplane<S, T> applyTransform(final Transform<S, T> transform) {
+ final Hyperplane<S> tHyperplane = transform.apply(hyperplane);
+
+ // transform the tree, except for boundary attribute splitters
+ final Map<BSPTree<T>, BSPTree<T>> map = new HashMap<BSPTree<T>, BSPTree<T>>();
+ final BSPTree<T> tTree =
+ recurseTransform(remainingRegion.getTree(false), tHyperplane, transform, map);
+
+ // set up the boundary attributes splitters
+ for (final Map.Entry<BSPTree<T>, BSPTree<T>> entry : map.entrySet()) {
+ if (entry.getKey().getCut() != null) {
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<T> original = (BoundaryAttribute<T>) entry.getKey().getAttribute();
+ if (original != null) {
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<T> transformed = (BoundaryAttribute<T>) entry.getValue().getAttribute();
+ for (final BSPTree<T> splitter : original.getSplitters()) {
+ transformed.getSplitters().add(map.get(splitter));
+ }
+ }
+ }
+ }
+
+ return buildNew(tHyperplane, remainingRegion.buildNew(tTree));
+
+ }
+
+ /** Recursively transform a BSP-tree from a sub-hyperplane.
+ * @param node current BSP tree node
+ * @param transformed image of the instance hyperplane by the transform
+ * @param transform transform to apply
+ * @param map transformed nodes map
+ * @return a new tree
+ */
+ private BSPTree<T> recurseTransform(final BSPTree<T> node,
+ final Hyperplane<S> transformed,
+ final Transform<S, T> transform,
+ final Map<BSPTree<T>, BSPTree<T>> map) {
+
+ final BSPTree<T> transformedNode;
+ if (node.getCut() == null) {
+ transformedNode = new BSPTree<T>(node.getAttribute());
+ } else {
+
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<T> attribute = (BoundaryAttribute<T>) node.getAttribute();
+ if (attribute != null) {
+ final SubHyperplane<T> tPO = (attribute.getPlusOutside() == null) ?
+ null : transform.apply(attribute.getPlusOutside(), hyperplane, transformed);
+ final SubHyperplane<T> tPI = (attribute.getPlusInside() == null) ?
+ null : transform.apply(attribute.getPlusInside(), hyperplane, transformed);
+ // we start with an empty list of splitters, it will be filled in out of recursion
+ attribute = new BoundaryAttribute<T>(tPO, tPI, new NodesSet<T>());
+ }
+
+ transformedNode = new BSPTree<T>(transform.apply(node.getCut(), hyperplane, transformed),
+ recurseTransform(node.getPlus(), transformed, transform, map),
+ recurseTransform(node.getMinus(), transformed, transform, map),
+ attribute);
+ }
+
+ map.put(node, transformedNode);
+ return transformedNode;
+
+ }
+
+ /** {@inheritDoc} */
+ @Deprecated
+ public Side side(Hyperplane<S> hyper) {
+ return split(hyper).getSide();
+ }
+
+ /** {@inheritDoc} */
+ public abstract SplitSubHyperplane<S> split(Hyperplane<S> hyper);
+
+ /** {@inheritDoc} */
+ public boolean isEmpty() {
+ return remainingRegion.isEmpty();
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTree.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTree.java
new file mode 100644
index 0000000..1f1a6ea
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTree.java
@@ -0,0 +1,821 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+import org.apache.commons.math3.geometry.Vector;
+import org.apache.commons.math3.util.FastMath;
+
+/** This class represent a Binary Space Partition tree.
+
+ * <p>BSP trees are an efficient way to represent space partitions and
+ * to associate attributes with each cell. Each node in a BSP tree
+ * represents a convex region which is partitioned in two convex
+ * sub-regions at each side of a cut hyperplane. The root tree
+ * contains the complete space.</p>
+
+ * <p>The main use of such partitions is to use a boolean attribute to
+ * define an inside/outside property, hence representing arbitrary
+ * polytopes (line segments in 1D, polygons in 2D and polyhedrons in
+ * 3D) and to operate on them.</p>
+
+ * <p>Another example would be to represent Voronoi tesselations, the
+ * attribute of each cell holding the defining point of the cell.</p>
+
+ * <p>The application-defined attributes are shared among copied
+ * instances and propagated to split parts. These attributes are not
+ * used by the BSP-tree algorithms themselves, so the application can
+ * use them for any purpose. Since the tree visiting method holds
+ * internal and leaf nodes differently, it is possible to use
+ * different classes for internal nodes attributes and leaf nodes
+ * attributes. This should be used with care, though, because if the
+ * tree is modified in any way after attributes have been set, some
+ * internal nodes may become leaf nodes and some leaf nodes may become
+ * internal nodes.</p>
+
+ * <p>One of the main sources for the development of this package was
+ * Bruce Naylor, John Amanatides and William Thibault paper <a
+ * href="http://www.cs.yorku.ca/~amana/research/bsptSetOp.pdf">Merging
+ * BSP Trees Yields Polyhedral Set Operations</a> Proc. Siggraph '90,
+ * Computer Graphics 24(4), August 1990, pp 115-124, published by the
+ * Association for Computing Machinery (ACM).</p>
+
+ * @param <S> Type of the space.
+
+ * @since 3.0
+ */
+public class BSPTree<S extends Space> {
+
+ /** Cut sub-hyperplane. */
+ private SubHyperplane<S> cut;
+
+ /** Tree at the plus side of the cut hyperplane. */
+ private BSPTree<S> plus;
+
+ /** Tree at the minus side of the cut hyperplane. */
+ private BSPTree<S> minus;
+
+ /** Parent tree. */
+ private BSPTree<S> parent;
+
+ /** Application-defined attribute. */
+ private Object attribute;
+
+ /** Build a tree having only one root cell representing the whole space.
+ */
+ public BSPTree() {
+ cut = null;
+ plus = null;
+ minus = null;
+ parent = null;
+ attribute = null;
+ }
+
+ /** Build a tree having only one root cell representing the whole space.
+ * @param attribute attribute of the tree (may be null)
+ */
+ public BSPTree(final Object attribute) {
+ cut = null;
+ plus = null;
+ minus = null;
+ parent = null;
+ this.attribute = attribute;
+ }
+
+ /** Build a BSPTree from its underlying elements.
+ * <p>This method does <em>not</em> perform any verification on
+ * consistency of its arguments, it should therefore be used only
+ * when then caller knows what it is doing.</p>
+ * <p>This method is mainly useful to build trees
+ * bottom-up. Building trees top-down is realized with the help of
+ * method {@link #insertCut insertCut}.</p>
+ * @param cut cut sub-hyperplane for the tree
+ * @param plus plus side sub-tree
+ * @param minus minus side sub-tree
+ * @param attribute attribute associated with the node (may be null)
+ * @see #insertCut
+ */
+ public BSPTree(final SubHyperplane<S> cut, final BSPTree<S> plus, final BSPTree<S> minus,
+ final Object attribute) {
+ this.cut = cut;
+ this.plus = plus;
+ this.minus = minus;
+ this.parent = null;
+ this.attribute = attribute;
+ plus.parent = this;
+ minus.parent = this;
+ }
+
+ /** Insert a cut sub-hyperplane in a node.
+ * <p>The sub-tree starting at this node will be completely
+ * overwritten. The new cut sub-hyperplane will be built from the
+ * intersection of the provided hyperplane with the cell. If the
+ * hyperplane does intersect the cell, the cell will have two
+ * children cells with {@code null} attributes on each side of
+ * the inserted cut sub-hyperplane. If the hyperplane does not
+ * intersect the cell then <em>no</em> cut hyperplane will be
+ * inserted and the cell will be changed to a leaf cell. The
+ * attribute of the node is never changed.</p>
+ * <p>This method is mainly useful when called on leaf nodes
+ * (i.e. nodes for which {@link #getCut getCut} returns
+ * {@code null}), in this case it provides a way to build a
+ * tree top-down (whereas the {@link #BSPTree(SubHyperplane,
+ * BSPTree, BSPTree, Object) 4 arguments constructor} is devoted to
+ * build trees bottom-up).</p>
+ * @param hyperplane hyperplane to insert, it will be chopped in
+ * order to fit in the cell defined by the parent nodes of the
+ * instance
+ * @return true if a cut sub-hyperplane has been inserted (i.e. if
+ * the cell now has two leaf child nodes)
+ * @see #BSPTree(SubHyperplane, BSPTree, BSPTree, Object)
+ */
+ public boolean insertCut(final Hyperplane<S> hyperplane) {
+
+ if (cut != null) {
+ plus.parent = null;
+ minus.parent = null;
+ }
+
+ final SubHyperplane<S> chopped = fitToCell(hyperplane.wholeHyperplane());
+ if (chopped == null || chopped.isEmpty()) {
+ cut = null;
+ plus = null;
+ minus = null;
+ return false;
+ }
+
+ cut = chopped;
+ plus = new BSPTree<S>();
+ plus.parent = this;
+ minus = new BSPTree<S>();
+ minus.parent = this;
+ return true;
+
+ }
+
+ /** Copy the instance.
+ * <p>The instance created is completely independent of the original
+ * one. A deep copy is used, none of the underlying objects are
+ * shared (except for the nodes attributes and immutable
+ * objects).</p>
+ * @return a new tree, copy of the instance
+ */
+ public BSPTree<S> copySelf() {
+
+ if (cut == null) {
+ return new BSPTree<S>(attribute);
+ }
+
+ return new BSPTree<S>(cut.copySelf(), plus.copySelf(), minus.copySelf(),
+ attribute);
+
+ }
+
+ /** Get the cut sub-hyperplane.
+ * @return cut sub-hyperplane, null if this is a leaf tree
+ */
+ public SubHyperplane<S> getCut() {
+ return cut;
+ }
+
+ /** Get the tree on the plus side of the cut hyperplane.
+ * @return tree on the plus side of the cut hyperplane, null if this
+ * is a leaf tree
+ */
+ public BSPTree<S> getPlus() {
+ return plus;
+ }
+
+ /** Get the tree on the minus side of the cut hyperplane.
+ * @return tree on the minus side of the cut hyperplane, null if this
+ * is a leaf tree
+ */
+ public BSPTree<S> getMinus() {
+ return minus;
+ }
+
+ /** Get the parent node.
+ * @return parent node, null if the node has no parents
+ */
+ public BSPTree<S> getParent() {
+ return parent;
+ }
+
+ /** Associate an attribute with the instance.
+ * @param attribute attribute to associate with the node
+ * @see #getAttribute
+ */
+ public void setAttribute(final Object attribute) {
+ this.attribute = attribute;
+ }
+
+ /** Get the attribute associated with the instance.
+ * @return attribute associated with the node or null if no
+ * attribute has been explicitly set using the {@link #setAttribute
+ * setAttribute} method
+ * @see #setAttribute
+ */
+ public Object getAttribute() {
+ return attribute;
+ }
+
+ /** Visit the BSP tree nodes.
+ * @param visitor object visiting the tree nodes
+ */
+ public void visit(final BSPTreeVisitor<S> visitor) {
+ if (cut == null) {
+ visitor.visitLeafNode(this);
+ } else {
+ switch (visitor.visitOrder(this)) {
+ case PLUS_MINUS_SUB:
+ plus.visit(visitor);
+ minus.visit(visitor);
+ visitor.visitInternalNode(this);
+ break;
+ case PLUS_SUB_MINUS:
+ plus.visit(visitor);
+ visitor.visitInternalNode(this);
+ minus.visit(visitor);
+ break;
+ case MINUS_PLUS_SUB:
+ minus.visit(visitor);
+ plus.visit(visitor);
+ visitor.visitInternalNode(this);
+ break;
+ case MINUS_SUB_PLUS:
+ minus.visit(visitor);
+ visitor.visitInternalNode(this);
+ plus.visit(visitor);
+ break;
+ case SUB_PLUS_MINUS:
+ visitor.visitInternalNode(this);
+ plus.visit(visitor);
+ minus.visit(visitor);
+ break;
+ case SUB_MINUS_PLUS:
+ visitor.visitInternalNode(this);
+ minus.visit(visitor);
+ plus.visit(visitor);
+ break;
+ default:
+ throw new MathInternalError();
+ }
+
+ }
+ }
+
+ /** Fit a sub-hyperplane inside the cell defined by the instance.
+ * <p>Fitting is done by chopping off the parts of the
+ * sub-hyperplane that lie outside of the cell using the
+ * cut-hyperplanes of the parent nodes of the instance.</p>
+ * @param sub sub-hyperplane to fit
+ * @return a new sub-hyperplane, guaranteed to have no part outside
+ * of the instance cell
+ */
+ private SubHyperplane<S> fitToCell(final SubHyperplane<S> sub) {
+ SubHyperplane<S> s = sub;
+ for (BSPTree<S> tree = this; tree.parent != null && s != null; tree = tree.parent) {
+ if (tree == tree.parent.plus) {
+ s = s.split(tree.parent.cut.getHyperplane()).getPlus();
+ } else {
+ s = s.split(tree.parent.cut.getHyperplane()).getMinus();
+ }
+ }
+ return s;
+ }
+
+ /** Get the cell to which a point belongs.
+ * <p>If the returned cell is a leaf node the points belongs to the
+ * interior of the node, if the cell is an internal node the points
+ * belongs to the node cut sub-hyperplane.</p>
+ * @param point point to check
+ * @return the tree cell to which the point belongs
+ * @deprecated as of 3.3, replaced with {@link #getCell(Point, double)}
+ */
+ @Deprecated
+ public BSPTree<S> getCell(final Vector<S> point) {
+ return getCell((Point<S>) point, 1.0e-10);
+ }
+
+ /** Get the cell to which a point belongs.
+ * <p>If the returned cell is a leaf node the points belongs to the
+ * interior of the node, if the cell is an internal node the points
+ * belongs to the node cut sub-hyperplane.</p>
+ * @param point point to check
+ * @param tolerance tolerance below which points close to a cut hyperplane
+ * are considered to belong to the hyperplane itself
+ * @return the tree cell to which the point belongs
+ */
+ public BSPTree<S> getCell(final Point<S> point, final double tolerance) {
+
+ if (cut == null) {
+ return this;
+ }
+
+ // position of the point with respect to the cut hyperplane
+ final double offset = cut.getHyperplane().getOffset(point);
+
+ if (FastMath.abs(offset) < tolerance) {
+ return this;
+ } else if (offset <= 0) {
+ // point is on the minus side of the cut hyperplane
+ return minus.getCell(point, tolerance);
+ } else {
+ // point is on the plus side of the cut hyperplane
+ return plus.getCell(point, tolerance);
+ }
+
+ }
+
+ /** Get the cells whose cut sub-hyperplanes are close to the point.
+ * @param point point to check
+ * @param maxOffset offset below which a cut sub-hyperplane is considered
+ * close to the point (in absolute value)
+ * @return close cells (may be empty if all cut sub-hyperplanes are farther
+ * than maxOffset from the point)
+ */
+ public List<BSPTree<S>> getCloseCuts(final Point<S> point, final double maxOffset) {
+ final List<BSPTree<S>> close = new ArrayList<BSPTree<S>>();
+ recurseCloseCuts(point, maxOffset, close);
+ return close;
+ }
+
+ /** Get the cells whose cut sub-hyperplanes are close to the point.
+ * @param point point to check
+ * @param maxOffset offset below which a cut sub-hyperplane is considered
+ * close to the point (in absolute value)
+ * @param close list to fill
+ */
+ private void recurseCloseCuts(final Point<S> point, final double maxOffset,
+ final List<BSPTree<S>> close) {
+ if (cut != null) {
+
+ // position of the point with respect to the cut hyperplane
+ final double offset = cut.getHyperplane().getOffset(point);
+
+ if (offset < -maxOffset) {
+ // point is on the minus side of the cut hyperplane
+ minus.recurseCloseCuts(point, maxOffset, close);
+ } else if (offset > maxOffset) {
+ // point is on the plus side of the cut hyperplane
+ plus.recurseCloseCuts(point, maxOffset, close);
+ } else {
+ // point is close to the cut hyperplane
+ close.add(this);
+ minus.recurseCloseCuts(point, maxOffset, close);
+ plus.recurseCloseCuts(point, maxOffset, close);
+ }
+
+ }
+ }
+
+ /** Perform condensation on a tree.
+ * <p>The condensation operation is not recursive, it must be called
+ * explicitly from leaves to root.</p>
+ */
+ private void condense() {
+ if ((cut != null) && (plus.cut == null) && (minus.cut == null) &&
+ (((plus.attribute == null) && (minus.attribute == null)) ||
+ ((plus.attribute != null) && plus.attribute.equals(minus.attribute)))) {
+ attribute = (plus.attribute == null) ? minus.attribute : plus.attribute;
+ cut = null;
+ plus = null;
+ minus = null;
+ }
+ }
+
+ /** Merge a BSP tree with the instance.
+ * <p>All trees are modified (parts of them are reused in the new
+ * tree), it is the responsibility of the caller to ensure a copy
+ * has been done before if any of the former tree should be
+ * preserved, <em>no</em> such copy is done here!</p>
+ * <p>The algorithm used here is directly derived from the one
+ * described in the Naylor, Amanatides and Thibault paper (section
+ * III, Binary Partitioning of a BSP Tree).</p>
+ * @param tree other tree to merge with the instance (will be
+ * <em>unusable</em> after the operation, as well as the
+ * instance itself)
+ * @param leafMerger object implementing the final merging phase
+ * (this is where the semantic of the operation occurs, generally
+ * depending on the attribute of the leaf node)
+ * @return a new tree, result of <code>instance &lt;op&gt;
+ * tree</code>, this value can be ignored if parentTree is not null
+ * since all connections have already been established
+ */
+ public BSPTree<S> merge(final BSPTree<S> tree, final LeafMerger<S> leafMerger) {
+ return merge(tree, leafMerger, null, false);
+ }
+
+ /** Merge a BSP tree with the instance.
+ * @param tree other tree to merge with the instance (will be
+ * <em>unusable</em> after the operation, as well as the
+ * instance itself)
+ * @param leafMerger object implementing the final merging phase
+ * (this is where the semantic of the operation occurs, generally
+ * depending on the attribute of the leaf node)
+ * @param parentTree parent tree to connect to (may be null)
+ * @param isPlusChild if true and if parentTree is not null, the
+ * resulting tree should be the plus child of its parent, ignored if
+ * parentTree is null
+ * @return a new tree, result of <code>instance &lt;op&gt;
+ * tree</code>, this value can be ignored if parentTree is not null
+ * since all connections have already been established
+ */
+ private BSPTree<S> merge(final BSPTree<S> tree, final LeafMerger<S> leafMerger,
+ final BSPTree<S> parentTree, final boolean isPlusChild) {
+ if (cut == null) {
+ // cell/tree operation
+ return leafMerger.merge(this, tree, parentTree, isPlusChild, true);
+ } else if (tree.cut == null) {
+ // tree/cell operation
+ return leafMerger.merge(tree, this, parentTree, isPlusChild, false);
+ } else {
+ // tree/tree operation
+ final BSPTree<S> merged = tree.split(cut);
+ if (parentTree != null) {
+ merged.parent = parentTree;
+ if (isPlusChild) {
+ parentTree.plus = merged;
+ } else {
+ parentTree.minus = merged;
+ }
+ }
+
+ // merging phase
+ plus.merge(merged.plus, leafMerger, merged, true);
+ minus.merge(merged.minus, leafMerger, merged, false);
+ merged.condense();
+ if (merged.cut != null) {
+ merged.cut = merged.fitToCell(merged.cut.getHyperplane().wholeHyperplane());
+ }
+
+ return merged;
+
+ }
+ }
+
+ /** This interface gather the merging operations between a BSP tree
+ * leaf and another BSP tree.
+ * <p>As explained in Bruce Naylor, John Amanatides and William
+ * Thibault paper <a
+ * href="http://www.cs.yorku.ca/~amana/research/bsptSetOp.pdf">Merging
+ * BSP Trees Yields Polyhedral Set Operations</a>,
+ * the operations on {@link BSPTree BSP trees} can be expressed as a
+ * generic recursive merging operation where only the final part,
+ * when one of the operand is a leaf, is specific to the real
+ * operation semantics. For example, a tree representing a region
+ * using a boolean attribute to identify inside cells and outside
+ * cells would use four different objects to implement the final
+ * merging phase of the four set operations union, intersection,
+ * difference and symmetric difference (exclusive or).</p>
+ * @param <S> Type of the space.
+ */
+ public interface LeafMerger<S extends Space> {
+
+ /** Merge a leaf node and a tree node.
+ * <p>This method is called at the end of a recursive merging
+ * resulting from a {@code tree1.merge(tree2, leafMerger)}
+ * call, when one of the sub-trees involved is a leaf (i.e. when
+ * its cut-hyperplane is null). This is the only place where the
+ * precise semantics of the operation are required. For all upper
+ * level nodes in the tree, the merging operation is only a
+ * generic partitioning algorithm.</p>
+ * <p>Since the final operation may be non-commutative, it is
+ * important to know if the leaf node comes from the instance tree
+ * ({@code tree1}) or the argument tree
+ * ({@code tree2}). The third argument of the method is
+ * devoted to this. It can be ignored for commutative
+ * operations.</p>
+ * <p>The {@link BSPTree#insertInTree BSPTree.insertInTree} method
+ * may be useful to implement this method.</p>
+ * @param leaf leaf node (its cut hyperplane is guaranteed to be
+ * null)
+ * @param tree tree node (its cut hyperplane may be null or not)
+ * @param parentTree parent tree to connect to (may be null)
+ * @param isPlusChild if true and if parentTree is not null, the
+ * resulting tree should be the plus child of its parent, ignored if
+ * parentTree is null
+ * @param leafFromInstance if true, the leaf node comes from the
+ * instance tree ({@code tree1}) and the tree node comes from
+ * the argument tree ({@code tree2})
+ * @return the BSP tree resulting from the merging (may be one of
+ * the arguments)
+ */
+ BSPTree<S> merge(BSPTree<S> leaf, BSPTree<S> tree, BSPTree<S> parentTree,
+ boolean isPlusChild, boolean leafFromInstance);
+
+ }
+
+ /** This interface handles the corner cases when an internal node cut sub-hyperplane vanishes.
+ * <p>
+ * Such cases happens for example when a cut sub-hyperplane is inserted into
+ * another tree (during a merge operation), and is split in several parts,
+ * some of which becomes smaller than the tolerance. The corresponding node
+ * as then no cut sub-hyperplane anymore, but does have children. This interface
+ * specifies how to handle this situation.
+ * setting
+ * </p>
+ * @param <S> Type of the space.
+ * @since 3.4
+ */
+ public interface VanishingCutHandler<S extends Space> {
+
+ /** Fix a node with both vanished cut and children.
+ * @param node node to fix
+ * @return fixed node
+ */
+ BSPTree<S> fixNode(BSPTree<S> node);
+
+ }
+
+ /** Split a BSP tree by an external sub-hyperplane.
+ * <p>Split a tree in two halves, on each side of the
+ * sub-hyperplane. The instance is not modified.</p>
+ * <p>The tree returned is not upward-consistent: despite all of its
+ * sub-trees cut sub-hyperplanes (including its own cut
+ * sub-hyperplane) are bounded to the current cell, it is <em>not</em>
+ * attached to any parent tree yet. This tree is intended to be
+ * later inserted into an higher level tree.</p>
+ * <p>The algorithm used here is the one given in Naylor, Amanatides
+ * and Thibault paper (section III, Binary Partitioning of a BSP
+ * Tree).</p>
+ * @param sub partitioning sub-hyperplane, must be already clipped
+ * to the convex region represented by the instance, will be used as
+ * the cut sub-hyperplane of the returned tree
+ * @return a tree having the specified sub-hyperplane as its cut
+ * sub-hyperplane, the two parts of the split instance as its two
+ * sub-trees and a null parent
+ */
+ public BSPTree<S> split(final SubHyperplane<S> sub) {
+
+ if (cut == null) {
+ return new BSPTree<S>(sub, copySelf(), new BSPTree<S>(attribute), null);
+ }
+
+ final Hyperplane<S> cHyperplane = cut.getHyperplane();
+ final Hyperplane<S> sHyperplane = sub.getHyperplane();
+ final SubHyperplane.SplitSubHyperplane<S> subParts = sub.split(cHyperplane);
+ switch (subParts.getSide()) {
+ case PLUS :
+ { // the partitioning sub-hyperplane is entirely in the plus sub-tree
+ final BSPTree<S> split = plus.split(sub);
+ if (cut.split(sHyperplane).getSide() == Side.PLUS) {
+ split.plus =
+ new BSPTree<S>(cut.copySelf(), split.plus, minus.copySelf(), attribute);
+ split.plus.condense();
+ split.plus.parent = split;
+ } else {
+ split.minus =
+ new BSPTree<S>(cut.copySelf(), split.minus, minus.copySelf(), attribute);
+ split.minus.condense();
+ split.minus.parent = split;
+ }
+ return split;
+ }
+ case MINUS :
+ { // the partitioning sub-hyperplane is entirely in the minus sub-tree
+ final BSPTree<S> split = minus.split(sub);
+ if (cut.split(sHyperplane).getSide() == Side.PLUS) {
+ split.plus =
+ new BSPTree<S>(cut.copySelf(), plus.copySelf(), split.plus, attribute);
+ split.plus.condense();
+ split.plus.parent = split;
+ } else {
+ split.minus =
+ new BSPTree<S>(cut.copySelf(), plus.copySelf(), split.minus, attribute);
+ split.minus.condense();
+ split.minus.parent = split;
+ }
+ return split;
+ }
+ case BOTH :
+ {
+ final SubHyperplane.SplitSubHyperplane<S> cutParts = cut.split(sHyperplane);
+ final BSPTree<S> split =
+ new BSPTree<S>(sub, plus.split(subParts.getPlus()), minus.split(subParts.getMinus()),
+ null);
+ split.plus.cut = cutParts.getPlus();
+ split.minus.cut = cutParts.getMinus();
+ final BSPTree<S> tmp = split.plus.minus;
+ split.plus.minus = split.minus.plus;
+ split.plus.minus.parent = split.plus;
+ split.minus.plus = tmp;
+ split.minus.plus.parent = split.minus;
+ split.plus.condense();
+ split.minus.condense();
+ return split;
+ }
+ default :
+ return cHyperplane.sameOrientationAs(sHyperplane) ?
+ new BSPTree<S>(sub, plus.copySelf(), minus.copySelf(), attribute) :
+ new BSPTree<S>(sub, minus.copySelf(), plus.copySelf(), attribute);
+ }
+
+ }
+
+ /** Insert the instance into another tree.
+ * <p>The instance itself is modified so its former parent should
+ * not be used anymore.</p>
+ * @param parentTree parent tree to connect to (may be null)
+ * @param isPlusChild if true and if parentTree is not null, the
+ * resulting tree should be the plus child of its parent, ignored if
+ * parentTree is null
+ * @see LeafMerger
+ * @deprecated as of 3.4, replaced with {@link #insertInTree(BSPTree, boolean, VanishingCutHandler)}
+ */
+ @Deprecated
+ public void insertInTree(final BSPTree<S> parentTree, final boolean isPlusChild) {
+ insertInTree(parentTree, isPlusChild, new VanishingCutHandler<S>() {
+ /** {@inheritDoc} */
+ public BSPTree<S> fixNode(BSPTree<S> node) {
+ // the cut should not be null
+ throw new MathIllegalStateException(LocalizedFormats.NULL_NOT_ALLOWED);
+ }
+ });
+ }
+
+ /** Insert the instance into another tree.
+ * <p>The instance itself is modified so its former parent should
+ * not be used anymore.</p>
+ * @param parentTree parent tree to connect to (may be null)
+ * @param isPlusChild if true and if parentTree is not null, the
+ * resulting tree should be the plus child of its parent, ignored if
+ * parentTree is null
+ * @param vanishingHandler handler to use for handling very rare corner
+ * cases of vanishing cut sub-hyperplanes in internal nodes during merging
+ * @see LeafMerger
+ * @since 3.4
+ */
+ public void insertInTree(final BSPTree<S> parentTree, final boolean isPlusChild,
+ final VanishingCutHandler<S> vanishingHandler) {
+
+ // set up parent/child links
+ parent = parentTree;
+ if (parentTree != null) {
+ if (isPlusChild) {
+ parentTree.plus = this;
+ } else {
+ parentTree.minus = this;
+ }
+ }
+
+ // make sure the inserted tree lies in the cell defined by its parent nodes
+ if (cut != null) {
+
+ // explore the parent nodes from here towards tree root
+ for (BSPTree<S> tree = this; tree.parent != null; tree = tree.parent) {
+
+ // this is an hyperplane of some parent node
+ final Hyperplane<S> hyperplane = tree.parent.cut.getHyperplane();
+
+ // chop off the parts of the inserted tree that extend
+ // on the wrong side of this parent hyperplane
+ if (tree == tree.parent.plus) {
+ cut = cut.split(hyperplane).getPlus();
+ plus.chopOffMinus(hyperplane, vanishingHandler);
+ minus.chopOffMinus(hyperplane, vanishingHandler);
+ } else {
+ cut = cut.split(hyperplane).getMinus();
+ plus.chopOffPlus(hyperplane, vanishingHandler);
+ minus.chopOffPlus(hyperplane, vanishingHandler);
+ }
+
+ if (cut == null) {
+ // the cut sub-hyperplane has vanished
+ final BSPTree<S> fixed = vanishingHandler.fixNode(this);
+ cut = fixed.cut;
+ plus = fixed.plus;
+ minus = fixed.minus;
+ attribute = fixed.attribute;
+ if (cut == null) {
+ break;
+ }
+ }
+
+ }
+
+ // since we may have drop some parts of the inserted tree,
+ // perform a condensation pass to keep the tree structure simple
+ condense();
+
+ }
+
+ }
+
+ /** Prune a tree around a cell.
+ * <p>
+ * This method can be used to extract a convex cell from a tree.
+ * The original cell may either be a leaf node or an internal node.
+ * If it is an internal node, it's subtree will be ignored (i.e. the
+ * extracted cell will be a leaf node in all cases). The original
+ * tree to which the original cell belongs is not touched at all,
+ * a new independent tree will be built.
+ * </p>
+ * @param cellAttribute attribute to set for the leaf node
+ * corresponding to the initial instance cell
+ * @param otherLeafsAttributes attribute to set for the other leaf
+ * nodes
+ * @param internalAttributes attribute to set for the internal nodes
+ * @return a new tree (the original tree is left untouched) containing
+ * a single branch with the cell as a leaf node, and other leaf nodes
+ * as the remnants of the pruned branches
+ * @since 3.3
+ */
+ public BSPTree<S> pruneAroundConvexCell(final Object cellAttribute,
+ final Object otherLeafsAttributes,
+ final Object internalAttributes) {
+
+ // build the current cell leaf
+ BSPTree<S> tree = new BSPTree<S>(cellAttribute);
+
+ // build the pruned tree bottom-up
+ for (BSPTree<S> current = this; current.parent != null; current = current.parent) {
+ final SubHyperplane<S> parentCut = current.parent.cut.copySelf();
+ final BSPTree<S> sibling = new BSPTree<S>(otherLeafsAttributes);
+ if (current == current.parent.plus) {
+ tree = new BSPTree<S>(parentCut, tree, sibling, internalAttributes);
+ } else {
+ tree = new BSPTree<S>(parentCut, sibling, tree, internalAttributes);
+ }
+ }
+
+ return tree;
+
+ }
+
+ /** Chop off parts of the tree.
+ * <p>The instance is modified in place, all the parts that are on
+ * the minus side of the chopping hyperplane are discarded, only the
+ * parts on the plus side remain.</p>
+ * @param hyperplane chopping hyperplane
+ * @param vanishingHandler handler to use for handling very rare corner
+ * cases of vanishing cut sub-hyperplanes in internal nodes during merging
+ */
+ private void chopOffMinus(final Hyperplane<S> hyperplane, final VanishingCutHandler<S> vanishingHandler) {
+ if (cut != null) {
+
+ cut = cut.split(hyperplane).getPlus();
+ plus.chopOffMinus(hyperplane, vanishingHandler);
+ minus.chopOffMinus(hyperplane, vanishingHandler);
+
+ if (cut == null) {
+ // the cut sub-hyperplane has vanished
+ final BSPTree<S> fixed = vanishingHandler.fixNode(this);
+ cut = fixed.cut;
+ plus = fixed.plus;
+ minus = fixed.minus;
+ attribute = fixed.attribute;
+ }
+
+ }
+ }
+
+ /** Chop off parts of the tree.
+ * <p>The instance is modified in place, all the parts that are on
+ * the plus side of the chopping hyperplane are discarded, only the
+ * parts on the minus side remain.</p>
+ * @param hyperplane chopping hyperplane
+ * @param vanishingHandler handler to use for handling very rare corner
+ * cases of vanishing cut sub-hyperplanes in internal nodes during merging
+ */
+ private void chopOffPlus(final Hyperplane<S> hyperplane, final VanishingCutHandler<S> vanishingHandler) {
+ if (cut != null) {
+
+ cut = cut.split(hyperplane).getMinus();
+ plus.chopOffPlus(hyperplane, vanishingHandler);
+ minus.chopOffPlus(hyperplane, vanishingHandler);
+
+ if (cut == null) {
+ // the cut sub-hyperplane has vanished
+ final BSPTree<S> fixed = vanishingHandler.fixNode(this);
+ cut = fixed.cut;
+ plus = fixed.plus;
+ minus = fixed.minus;
+ attribute = fixed.attribute;
+ }
+
+ }
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTreeVisitor.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTreeVisitor.java
new file mode 100644
index 0000000..3d09939
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/BSPTreeVisitor.java
@@ -0,0 +1,114 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** This interface is used to visit {@link BSPTree BSP tree} nodes.
+
+ * <p>Navigation through {@link BSPTree BSP trees} can be done using
+ * two different point of views:</p>
+ * <ul>
+ * <li>
+ * the first one is in a node-oriented way using the {@link
+ * BSPTree#getPlus}, {@link BSPTree#getMinus} and {@link
+ * BSPTree#getParent} methods. Terminal nodes without associated
+ * {@link SubHyperplane sub-hyperplanes} can be visited this way,
+ * there is no constraint in the visit order, and it is possible
+ * to visit either all nodes or only a subset of the nodes
+ * </li>
+ * <li>
+ * the second one is in a sub-hyperplane-oriented way using
+ * classes implementing this interface which obeys the visitor
+ * design pattern. The visit order is provided by the visitor as
+ * each node is first encountered. Each node is visited exactly
+ * once.
+ * </li>
+ * </ul>
+
+ * @param <S> Type of the space.
+
+ * @see BSPTree
+ * @see SubHyperplane
+
+ * @since 3.0
+ */
+public interface BSPTreeVisitor<S extends Space> {
+
+ /** Enumerate for visit order with respect to plus sub-tree, minus sub-tree and cut sub-hyperplane. */
+ enum Order {
+ /** Indicator for visit order plus sub-tree, then minus sub-tree,
+ * and last cut sub-hyperplane.
+ */
+ PLUS_MINUS_SUB,
+
+ /** Indicator for visit order plus sub-tree, then cut sub-hyperplane,
+ * and last minus sub-tree.
+ */
+ PLUS_SUB_MINUS,
+
+ /** Indicator for visit order minus sub-tree, then plus sub-tree,
+ * and last cut sub-hyperplane.
+ */
+ MINUS_PLUS_SUB,
+
+ /** Indicator for visit order minus sub-tree, then cut sub-hyperplane,
+ * and last plus sub-tree.
+ */
+ MINUS_SUB_PLUS,
+
+ /** Indicator for visit order cut sub-hyperplane, then plus sub-tree,
+ * and last minus sub-tree.
+ */
+ SUB_PLUS_MINUS,
+
+ /** Indicator for visit order cut sub-hyperplane, then minus sub-tree,
+ * and last plus sub-tree.
+ */
+ SUB_MINUS_PLUS;
+ }
+
+ /** Determine the visit order for this node.
+ * <p>Before attempting to visit an internal node, this method is
+ * called to determine the desired ordering of the visit. It is
+ * guaranteed that this method will be called before {@link
+ * #visitInternalNode visitInternalNode} for a given node, it will be
+ * called exactly once for each internal node.</p>
+ * @param node BSP node guaranteed to have a non null cut sub-hyperplane
+ * @return desired visit order, must be one of
+ * {@link Order#PLUS_MINUS_SUB}, {@link Order#PLUS_SUB_MINUS},
+ * {@link Order#MINUS_PLUS_SUB}, {@link Order#MINUS_SUB_PLUS},
+ * {@link Order#SUB_PLUS_MINUS}, {@link Order#SUB_MINUS_PLUS}
+ */
+ Order visitOrder(BSPTree<S> node);
+
+ /** Visit a BSP tree node node having a non-null sub-hyperplane.
+ * <p>It is guaranteed that this method will be called after {@link
+ * #visitOrder visitOrder} has been called for a given node,
+ * it wil be called exactly once for each internal node.</p>
+ * @param node BSP node guaranteed to have a non null cut sub-hyperplane
+ * @see #visitLeafNode
+ */
+ void visitInternalNode(BSPTree<S> node);
+
+ /** Visit a leaf BSP tree node node having a null sub-hyperplane.
+ * @param node leaf BSP node having a null sub-hyperplane
+ * @see #visitInternalNode
+ */
+ void visitLeafNode(BSPTree<S> node);
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryAttribute.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryAttribute.java
new file mode 100644
index 0000000..dad884c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryAttribute.java
@@ -0,0 +1,116 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** Class holding boundary attributes.
+ * <p>This class is used for the attributes associated with the
+ * nodes of region boundary shell trees returned by the {@link
+ * Region#getTree(boolean) Region.getTree(includeBoundaryAttributes)}
+ * when the boolean {@code includeBoundaryAttributes} parameter is
+ * set to {@code true}. It contains the parts of the node cut
+ * sub-hyperplane that belong to the boundary.</p>
+ * <p>This class is a simple placeholder, it does not provide any
+ * processing methods.</p>
+ * @param <S> Type of the space.
+ * @see Region#getTree
+ * @since 3.0
+ */
+public class BoundaryAttribute<S extends Space> {
+
+ /** Part of the node cut sub-hyperplane that belongs to the
+ * boundary and has the outside of the region on the plus side of
+ * its underlying hyperplane (may be null).
+ */
+ private final SubHyperplane<S> plusOutside;
+
+ /** Part of the node cut sub-hyperplane that belongs to the
+ * boundary and has the inside of the region on the plus side of
+ * its underlying hyperplane (may be null).
+ */
+ private final SubHyperplane<S> plusInside;
+
+ /** Sub-hyperplanes that were used to split the boundary part. */
+ private final NodesSet<S> splitters;
+
+ /** Simple constructor.
+ * @param plusOutside part of the node cut sub-hyperplane that
+ * belongs to the boundary and has the outside of the region on
+ * the plus side of its underlying hyperplane (may be null)
+ * @param plusInside part of the node cut sub-hyperplane that
+ * belongs to the boundary and has the inside of the region on the
+ * plus side of its underlying hyperplane (may be null)
+ * @deprecated as of 3.4, the constructor has been replaced by a new one
+ * which is not public anymore, as it is intended to be used only by
+ * {@link BoundaryBuilder}
+ */
+ @Deprecated
+ public BoundaryAttribute(final SubHyperplane<S> plusOutside,
+ final SubHyperplane<S> plusInside) {
+ this(plusOutside, plusInside, null);
+ }
+
+ /** Simple constructor.
+ * @param plusOutside part of the node cut sub-hyperplane that
+ * belongs to the boundary and has the outside of the region on
+ * the plus side of its underlying hyperplane (may be null)
+ * @param plusInside part of the node cut sub-hyperplane that
+ * belongs to the boundary and has the inside of the region on the
+ * plus side of its underlying hyperplane (may be null)
+ * @param splitters sub-hyperplanes that were used to
+ * split the boundary part (may be null)
+ * @since 3.4
+ */
+ BoundaryAttribute(final SubHyperplane<S> plusOutside,
+ final SubHyperplane<S> plusInside,
+ final NodesSet<S> splitters) {
+ this.plusOutside = plusOutside;
+ this.plusInside = plusInside;
+ this.splitters = splitters;
+ }
+
+ /** Get the part of the node cut sub-hyperplane that belongs to the
+ * boundary and has the outside of the region on the plus side of
+ * its underlying hyperplane.
+ * @return part of the node cut sub-hyperplane that belongs to the
+ * boundary and has the outside of the region on the plus side of
+ * its underlying hyperplane
+ */
+ public SubHyperplane<S> getPlusOutside() {
+ return plusOutside;
+ }
+
+ /** Get the part of the node cut sub-hyperplane that belongs to the
+ * boundary and has the inside of the region on the plus side of
+ * its underlying hyperplane.
+ * @return part of the node cut sub-hyperplane that belongs to the
+ * boundary and has the inside of the region on the plus side of
+ * its underlying hyperplane
+ */
+ public SubHyperplane<S> getPlusInside() {
+ return plusInside;
+ }
+
+ /** Get the sub-hyperplanes that were used to split the boundary part.
+ * @return sub-hyperplanes that were used to split the boundary part
+ */
+ public NodesSet<S> getSplitters() {
+ return splitters;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryBuilder.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryBuilder.java
new file mode 100644
index 0000000..cea4de3
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryBuilder.java
@@ -0,0 +1,95 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** Visitor building boundary shell tree.
+ * <p>
+ * The boundary shell is represented as {@link BoundaryAttribute boundary attributes}
+ * at each internal node.
+ * </p>
+ * @param <S> Type of the space.
+ * @since 3.4
+ */
+class BoundaryBuilder<S extends Space> implements BSPTreeVisitor<S> {
+
+ /** {@inheritDoc} */
+ public Order visitOrder(BSPTree<S> node) {
+ return Order.PLUS_MINUS_SUB;
+ }
+
+ /** {@inheritDoc} */
+ public void visitInternalNode(BSPTree<S> node) {
+
+ SubHyperplane<S> plusOutside = null;
+ SubHyperplane<S> plusInside = null;
+ NodesSet<S> splitters = null;
+
+ // characterize the cut sub-hyperplane,
+ // first with respect to the plus sub-tree
+ final Characterization<S> plusChar = new Characterization<S>(node.getPlus(), node.getCut().copySelf());
+
+ if (plusChar.touchOutside()) {
+ // plusChar.outsideTouching() corresponds to a subset of the cut sub-hyperplane
+ // known to have outside cells on its plus side, we want to check if parts
+ // of this subset do have inside cells on their minus side
+ final Characterization<S> minusChar = new Characterization<S>(node.getMinus(), plusChar.outsideTouching());
+ if (minusChar.touchInside()) {
+ // this part belongs to the boundary,
+ // it has the outside on its plus side and the inside on its minus side
+ plusOutside = minusChar.insideTouching();
+ splitters = new NodesSet<S>();
+ splitters.addAll(minusChar.getInsideSplitters());
+ splitters.addAll(plusChar.getOutsideSplitters());
+ }
+ }
+
+ if (plusChar.touchInside()) {
+ // plusChar.insideTouching() corresponds to a subset of the cut sub-hyperplane
+ // known to have inside cells on its plus side, we want to check if parts
+ // of this subset do have outside cells on their minus side
+ final Characterization<S> minusChar = new Characterization<S>(node.getMinus(), plusChar.insideTouching());
+ if (minusChar.touchOutside()) {
+ // this part belongs to the boundary,
+ // it has the inside on its plus side and the outside on its minus side
+ plusInside = minusChar.outsideTouching();
+ if (splitters == null) {
+ splitters = new NodesSet<S>();
+ }
+ splitters.addAll(minusChar.getOutsideSplitters());
+ splitters.addAll(plusChar.getInsideSplitters());
+ }
+ }
+
+ if (splitters != null) {
+ // the parent nodes are natural splitters for boundary sub-hyperplanes
+ for (BSPTree<S> up = node.getParent(); up != null; up = up.getParent()) {
+ splitters.add(up);
+ }
+ }
+
+ // set the boundary attribute at non-leaf nodes
+ node.setAttribute(new BoundaryAttribute<S>(plusOutside, plusInside, splitters));
+
+ }
+
+ /** {@inheritDoc} */
+ public void visitLeafNode(BSPTree<S> node) {
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjection.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjection.java
new file mode 100644
index 0000000..03526e4
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjection.java
@@ -0,0 +1,83 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+
+/** Class holding the result of point projection on region boundary.
+ * <p>This class is a simple placeholder, it does not provide any
+ * processing methods.</p>
+ * <p>Instances of this class are guaranteed to be immutable</p>
+ * @param <S> Type of the space.
+ * @since 3.3
+ * @see AbstractRegion#projectToBoundary(Point)
+ */
+public class BoundaryProjection<S extends Space> {
+
+ /** Original point. */
+ private final Point<S> original;
+
+ /** Projected point. */
+ private final Point<S> projected;
+
+ /** Offset of the point with respect to the boundary it is projected on. */
+ private final double offset;
+
+ /** Constructor from raw elements.
+ * @param original original point
+ * @param projected projected point
+ * @param offset offset of the point with respect to the boundary it is projected on
+ */
+ public BoundaryProjection(final Point<S> original, final Point<S> projected, final double offset) {
+ this.original = original;
+ this.projected = projected;
+ this.offset = offset;
+ }
+
+ /** Get the original point.
+ * @return original point
+ */
+ public Point<S> getOriginal() {
+ return original;
+ }
+
+ /** Projected point.
+ * @return projected point, or null if there are no boundary
+ */
+ public Point<S> getProjected() {
+ return projected;
+ }
+
+ /** Offset of the point with respect to the boundary it is projected on.
+ * <p>
+ * The offset with respect to the boundary is negative if the {@link
+ * #getOriginal() original point} is inside the region, and positive otherwise.
+ * </p>
+ * <p>
+ * If there are no boundary, the value is set to either {@code
+ * Double.POSITIVE_INFINITY} if the region is empty (i.e. all points are
+ * outside of the region) or {@code Double.NEGATIVE_INFINITY} if the region
+ * covers the whole space (i.e. all points are inside of the region).
+ * </p>
+ * @return offset of the point with respect to the boundary it is projected on
+ */
+ public double getOffset() {
+ return offset;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjector.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjector.java
new file mode 100644
index 0000000..486bbf1
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundaryProjector.java
@@ -0,0 +1,200 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+import org.apache.commons.math3.geometry.partitioning.Region.Location;
+import org.apache.commons.math3.util.FastMath;
+
+/** Local tree visitor to compute projection on boundary.
+ * @param <S> Type of the space.
+ * @param <T> Type of the sub-space.
+ * @since 3.3
+ */
+class BoundaryProjector<S extends Space, T extends Space> implements BSPTreeVisitor<S> {
+
+ /** Original point. */
+ private final Point<S> original;
+
+ /** Current best projected point. */
+ private Point<S> projected;
+
+ /** Leaf node closest to the test point. */
+ private BSPTree<S> leaf;
+
+ /** Current offset. */
+ private double offset;
+
+ /** Simple constructor.
+ * @param original original point
+ */
+ BoundaryProjector(final Point<S> original) {
+ this.original = original;
+ this.projected = null;
+ this.leaf = null;
+ this.offset = Double.POSITIVE_INFINITY;
+ }
+
+ /** {@inheritDoc} */
+ public Order visitOrder(final BSPTree<S> node) {
+ // we want to visit the tree so that the first encountered
+ // leaf is the one closest to the test point
+ if (node.getCut().getHyperplane().getOffset(original) <= 0) {
+ return Order.MINUS_SUB_PLUS;
+ } else {
+ return Order.PLUS_SUB_MINUS;
+ }
+ }
+
+ /** {@inheritDoc} */
+ public void visitInternalNode(final BSPTree<S> node) {
+
+ // project the point on the cut sub-hyperplane
+ final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
+ final double signedOffset = hyperplane.getOffset(original);
+ if (FastMath.abs(signedOffset) < offset) {
+
+ // project point
+ final Point<S> regular = hyperplane.project(original);
+
+ // get boundary parts
+ final List<Region<T>> boundaryParts = boundaryRegions(node);
+
+ // check if regular projection really belongs to the boundary
+ boolean regularFound = false;
+ for (final Region<T> part : boundaryParts) {
+ if (!regularFound && belongsToPart(regular, hyperplane, part)) {
+ // the projected point lies in the boundary
+ projected = regular;
+ offset = FastMath.abs(signedOffset);
+ regularFound = true;
+ }
+ }
+
+ if (!regularFound) {
+ // the regular projected point is not on boundary,
+ // so we have to check further if a singular point
+ // (i.e. a vertex in 2D case) is a possible projection
+ for (final Region<T> part : boundaryParts) {
+ final Point<S> spI = singularProjection(regular, hyperplane, part);
+ if (spI != null) {
+ final double distance = original.distance(spI);
+ if (distance < offset) {
+ projected = spI;
+ offset = distance;
+ }
+ }
+ }
+
+ }
+
+ }
+
+ }
+
+ /** {@inheritDoc} */
+ public void visitLeafNode(final BSPTree<S> node) {
+ if (leaf == null) {
+ // this is the first leaf we visit,
+ // it is the closest one to the original point
+ leaf = node;
+ }
+ }
+
+ /** Get the projection.
+ * @return projection
+ */
+ public BoundaryProjection<S> getProjection() {
+
+ // fix offset sign
+ offset = FastMath.copySign(offset, (Boolean) leaf.getAttribute() ? -1 : +1);
+
+ return new BoundaryProjection<S>(original, projected, offset);
+
+ }
+
+ /** Extract the regions of the boundary on an internal node.
+ * @param node internal node
+ * @return regions in the node sub-hyperplane
+ */
+ private List<Region<T>> boundaryRegions(final BSPTree<S> node) {
+
+ final List<Region<T>> regions = new ArrayList<Region<T>>(2);
+
+ @SuppressWarnings("unchecked")
+ final BoundaryAttribute<S> ba = (BoundaryAttribute<S>) node.getAttribute();
+ addRegion(ba.getPlusInside(), regions);
+ addRegion(ba.getPlusOutside(), regions);
+
+ return regions;
+
+ }
+
+ /** Add a boundary region to a list.
+ * @param sub sub-hyperplane defining the region
+ * @param list to fill up
+ */
+ private void addRegion(final SubHyperplane<S> sub, final List<Region<T>> list) {
+ if (sub != null) {
+ @SuppressWarnings("unchecked")
+ final Region<T> region = ((AbstractSubHyperplane<S, T>) sub).getRemainingRegion();
+ if (region != null) {
+ list.add(region);
+ }
+ }
+ }
+
+ /** Check if a projected point lies on a boundary part.
+ * @param point projected point to check
+ * @param hyperplane hyperplane into which the point was projected
+ * @param part boundary part
+ * @return true if point lies on the boundary part
+ */
+ private boolean belongsToPart(final Point<S> point, final Hyperplane<S> hyperplane,
+ final Region<T> part) {
+
+ // there is a non-null sub-space, we can dive into smaller dimensions
+ @SuppressWarnings("unchecked")
+ final Embedding<S, T> embedding = (Embedding<S, T>) hyperplane;
+ return part.checkPoint(embedding.toSubSpace(point)) != Location.OUTSIDE;
+
+ }
+
+ /** Get the projection to the closest boundary singular point.
+ * @param point projected point to check
+ * @param hyperplane hyperplane into which the point was projected
+ * @param part boundary part
+ * @return projection to a singular point of boundary part (may be null)
+ */
+ private Point<S> singularProjection(final Point<S> point, final Hyperplane<S> hyperplane,
+ final Region<T> part) {
+
+ // there is a non-null sub-space, we can dive into smaller dimensions
+ @SuppressWarnings("unchecked")
+ final Embedding<S, T> embedding = (Embedding<S, T>) hyperplane;
+ final BoundaryProjection<T> bp = part.projectToBoundary(embedding.toSubSpace(point));
+
+ // back to initial dimension
+ return (bp.getProjected() == null) ? null : embedding.toSpace(bp.getProjected());
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundarySizeVisitor.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundarySizeVisitor.java
new file mode 100644
index 0000000..054838b
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/BoundarySizeVisitor.java
@@ -0,0 +1,65 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** Visitor computing the boundary size.
+ * @param <S> Type of the space.
+ * @since 3.0
+ */
+class BoundarySizeVisitor<S extends Space> implements BSPTreeVisitor<S> {
+
+ /** Size of the boundary. */
+ private double boundarySize;
+
+ /** Simple constructor.
+ */
+ BoundarySizeVisitor() {
+ boundarySize = 0;
+ }
+
+ /** {@inheritDoc}*/
+ public Order visitOrder(final BSPTree<S> node) {
+ return Order.MINUS_SUB_PLUS;
+ }
+
+ /** {@inheritDoc}*/
+ public void visitInternalNode(final BSPTree<S> node) {
+ @SuppressWarnings("unchecked")
+ final BoundaryAttribute<S> attribute =
+ (BoundaryAttribute<S>) node.getAttribute();
+ if (attribute.getPlusOutside() != null) {
+ boundarySize += attribute.getPlusOutside().getSize();
+ }
+ if (attribute.getPlusInside() != null) {
+ boundarySize += attribute.getPlusInside().getSize();
+ }
+ }
+
+ /** {@inheritDoc}*/
+ public void visitLeafNode(final BSPTree<S> node) {
+ }
+
+ /** Get the size of the boundary.
+ * @return size of the boundary
+ */
+ public double getSize() {
+ return boundarySize;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/Characterization.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/Characterization.java
new file mode 100644
index 0000000..f8ec2f9
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/Characterization.java
@@ -0,0 +1,190 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.geometry.Space;
+
+/** Cut sub-hyperplanes characterization with respect to inside/outside cells.
+ * @see BoundaryBuilder
+ * @param <S> Type of the space.
+ * @since 3.4
+ */
+class Characterization<S extends Space> {
+
+ /** Part of the cut sub-hyperplane that touch outside cells. */
+ private SubHyperplane<S> outsideTouching;
+
+ /** Part of the cut sub-hyperplane that touch inside cells. */
+ private SubHyperplane<S> insideTouching;
+
+ /** Nodes that were used to split the outside touching part. */
+ private final NodesSet<S> outsideSplitters;
+
+ /** Nodes that were used to split the outside touching part. */
+ private final NodesSet<S> insideSplitters;
+
+ /** Simple constructor.
+ * <p>Characterization consists in splitting the specified
+ * sub-hyperplane into several parts lying in inside and outside
+ * cells of the tree. The principle is to compute characterization
+ * twice for each cut sub-hyperplane in the tree, once on the plus
+ * node and once on the minus node. The parts that have the same flag
+ * (inside/inside or outside/outside) do not belong to the boundary
+ * while parts that have different flags (inside/outside or
+ * outside/inside) do belong to the boundary.</p>
+ * @param node current BSP tree node
+ * @param sub sub-hyperplane to characterize
+ */
+ Characterization(final BSPTree<S> node, final SubHyperplane<S> sub) {
+ outsideTouching = null;
+ insideTouching = null;
+ outsideSplitters = new NodesSet<S>();
+ insideSplitters = new NodesSet<S>();
+ characterize(node, sub, new ArrayList<BSPTree<S>>());
+ }
+
+ /** Filter the parts of an hyperplane belonging to the boundary.
+ * <p>The filtering consist in splitting the specified
+ * sub-hyperplane into several parts lying in inside and outside
+ * cells of the tree. The principle is to call this method twice for
+ * each cut sub-hyperplane in the tree, once on the plus node and
+ * once on the minus node. The parts that have the same flag
+ * (inside/inside or outside/outside) do not belong to the boundary
+ * while parts that have different flags (inside/outside or
+ * outside/inside) do belong to the boundary.</p>
+ * @param node current BSP tree node
+ * @param sub sub-hyperplane to characterize
+ * @param splitters nodes that did split the current one
+ */
+ private void characterize(final BSPTree<S> node, final SubHyperplane<S> sub,
+ final List<BSPTree<S>> splitters) {
+ if (node.getCut() == null) {
+ // we have reached a leaf node
+ final boolean inside = (Boolean) node.getAttribute();
+ if (inside) {
+ addInsideTouching(sub, splitters);
+ } else {
+ addOutsideTouching(sub, splitters);
+ }
+ } else {
+ final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
+ final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
+ switch (split.getSide()) {
+ case PLUS:
+ characterize(node.getPlus(), sub, splitters);
+ break;
+ case MINUS:
+ characterize(node.getMinus(), sub, splitters);
+ break;
+ case BOTH:
+ splitters.add(node);
+ characterize(node.getPlus(), split.getPlus(), splitters);
+ characterize(node.getMinus(), split.getMinus(), splitters);
+ splitters.remove(splitters.size() - 1);
+ break;
+ default:
+ // this should not happen
+ throw new MathInternalError();
+ }
+ }
+ }
+
+ /** Add a part of the cut sub-hyperplane known to touch an outside cell.
+ * @param sub part of the cut sub-hyperplane known to touch an outside cell
+ * @param splitters sub-hyperplanes that did split the current one
+ */
+ private void addOutsideTouching(final SubHyperplane<S> sub,
+ final List<BSPTree<S>> splitters) {
+ if (outsideTouching == null) {
+ outsideTouching = sub;
+ } else {
+ outsideTouching = outsideTouching.reunite(sub);
+ }
+ outsideSplitters.addAll(splitters);
+ }
+
+ /** Add a part of the cut sub-hyperplane known to touch an inside cell.
+ * @param sub part of the cut sub-hyperplane known to touch an inside cell
+ * @param splitters sub-hyperplanes that did split the current one
+ */
+ private void addInsideTouching(final SubHyperplane<S> sub,
+ final List<BSPTree<S>> splitters) {
+ if (insideTouching == null) {
+ insideTouching = sub;
+ } else {
+ insideTouching = insideTouching.reunite(sub);
+ }
+ insideSplitters.addAll(splitters);
+ }
+
+ /** Check if the cut sub-hyperplane touches outside cells.
+ * @return true if the cut sub-hyperplane touches outside cells
+ */
+ public boolean touchOutside() {
+ return outsideTouching != null && !outsideTouching.isEmpty();
+ }
+
+ /** Get all the parts of the cut sub-hyperplane known to touch outside cells.
+ * @return parts of the cut sub-hyperplane known to touch outside cells
+ * (may be null or empty)
+ */
+ public SubHyperplane<S> outsideTouching() {
+ return outsideTouching;
+ }
+
+ /** Get the nodes that were used to split the outside touching part.
+ * <p>
+ * Splitting nodes are internal nodes (i.e. they have a non-null
+ * cut sub-hyperplane).
+ * </p>
+ * @return nodes that were used to split the outside touching part
+ */
+ public NodesSet<S> getOutsideSplitters() {
+ return outsideSplitters;
+ }
+
+ /** Check if the cut sub-hyperplane touches inside cells.
+ * @return true if the cut sub-hyperplane touches inside cells
+ */
+ public boolean touchInside() {
+ return insideTouching != null && !insideTouching.isEmpty();
+ }
+
+ /** Get all the parts of the cut sub-hyperplane known to touch inside cells.
+ * @return parts of the cut sub-hyperplane known to touch inside cells
+ * (may be null or empty)
+ */
+ public SubHyperplane<S> insideTouching() {
+ return insideTouching;
+ }
+
+ /** Get the nodes that were used to split the inside touching part.
+ * <p>
+ * Splitting nodes are internal nodes (i.e. they have a non-null
+ * cut sub-hyperplane).
+ * </p>
+ * @return nodes that were used to split the inside touching part
+ */
+ public NodesSet<S> getInsideSplitters() {
+ return insideSplitters;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/Embedding.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/Embedding.java
new file mode 100644
index 0000000..74e2c00
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/Embedding.java
@@ -0,0 +1,68 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+
+/** This interface defines mappers between a space and one of its sub-spaces.
+
+ * <p>Sub-spaces are the lower dimensions subsets of a n-dimensions
+ * space. The (n-1)-dimension sub-spaces are specific sub-spaces known
+ * as {@link Hyperplane hyperplanes}. This interface can be used regardless
+ * of the dimensions differences. As an example, {@link
+ * org.apache.commons.math3.geometry.euclidean.threed.Line Line} in 3D
+ * implements Embedding<{@link
+ * org.apache.commons.math3.geometry.euclidean.threed.Vector3D Vector3D}, {link
+ * org.apache.commons.math3.geometry.euclidean.oned.Vector1D Vector1D>, i.e. it
+ * maps directly dimensions 3 and 1.</p>
+
+ * <p>In the 3D euclidean space, hyperplanes are 2D planes, and the 1D
+ * sub-spaces are lines.</p>
+
+ * <p>
+ * Note that this interface is <em>not</em> intended to be implemented
+ * by Apache Commons Math users, it is only intended to be implemented
+ * within the library itself. New methods may be added even for minor
+ * versions, which breaks compatibility for external implementations.
+ * </p>
+
+ * @param <S> Type of the embedding space.
+ * @param <T> Type of the embedded sub-space.
+
+ * @see Hyperplane
+ * @since 3.0
+ */
+public interface Embedding<S extends Space, T extends Space> {
+
+ /** Transform a space point into a sub-space point.
+ * @param point n-dimension point of the space
+ * @return (n-1)-dimension point of the sub-space corresponding to
+ * the specified space point
+ * @see #toSpace
+ */
+ Point<T> toSubSpace(Point<S> point);
+
+ /** Transform a sub-space point into a space point.
+ * @param point (n-1)-dimension point of the sub-space
+ * @return n-dimension point of the space corresponding to the
+ * specified sub-space point
+ * @see #toSubSpace
+ */
+ Point<S> toSpace(Point<T> point);
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/Hyperplane.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/Hyperplane.java
new file mode 100644
index 0000000..f90c3bc
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/Hyperplane.java
@@ -0,0 +1,98 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+
+/** This interface represents an hyperplane of a space.
+
+ * <p>The most prominent place where hyperplane appears in space
+ * partitioning is as cutters. Each partitioning node in a {@link
+ * BSPTree BSP tree} has a cut {@link SubHyperplane sub-hyperplane}
+ * which is either an hyperplane or a part of an hyperplane. In an
+ * n-dimensions euclidean space, an hyperplane is an (n-1)-dimensions
+ * hyperplane (for example a traditional plane in the 3D euclidean
+ * space). They can be more exotic objects in specific fields, for
+ * example a circle on the surface of the unit sphere.</p>
+
+ * <p>
+ * Note that this interface is <em>not</em> intended to be implemented
+ * by Apache Commons Math users, it is only intended to be implemented
+ * within the library itself. New methods may be added even for minor
+ * versions, which breaks compatibility for external implementations.
+ * </p>
+
+ * @param <S> Type of the space.
+
+ * @since 3.0
+ */
+public interface Hyperplane<S extends Space> {
+
+ /** Copy the instance.
+ * <p>The instance created is completely independant of the original
+ * one. A deep copy is used, none of the underlying objects are
+ * shared (except for immutable objects).</p>
+ * @return a new hyperplane, copy of the instance
+ */
+ Hyperplane<S> copySelf();
+
+ /** Get the offset (oriented distance) of a point.
+ * <p>The offset is 0 if the point is on the underlying hyperplane,
+ * it is positive if the point is on one particular side of the
+ * hyperplane, and it is negative if the point is on the other side,
+ * according to the hyperplane natural orientation.</p>
+ * @param point point to check
+ * @return offset of the point
+ */
+ double getOffset(Point<S> point);
+
+ /** Project a point to the hyperplane.
+ * @param point point to project
+ * @return projected point
+ * @since 3.3
+ */
+ Point<S> project(Point<S> point);
+
+ /** Get the tolerance below which points are considered to belong to the hyperplane.
+ * @return tolerance below which points are considered to belong to the hyperplane
+ * @since 3.3
+ */
+ double getTolerance();
+
+ /** Check if the instance has the same orientation as another hyperplane.
+ * <p>This method is expected to be called on parallel hyperplanes. The
+ * method should <em>not</em> re-check for parallelism, only for
+ * orientation, typically by testing something like the sign of the
+ * dot-products of normals.</p>
+ * @param other other hyperplane to check against the instance
+ * @return true if the instance and the other hyperplane have
+ * the same orientation
+ */
+ boolean sameOrientationAs(Hyperplane<S> other);
+
+ /** Build a sub-hyperplane covering the whole hyperplane.
+ * @return a sub-hyperplane covering the whole hyperplane
+ */
+ SubHyperplane<S> wholeHyperplane();
+
+ /** Build a region covering the whole space.
+ * @return a region containing the instance
+ */
+ Region<S> wholeSpace();
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/InsideFinder.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/InsideFinder.java
new file mode 100644
index 0000000..b1db90a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/InsideFinder.java
@@ -0,0 +1,150 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** Utility class checking if inside nodes can be found
+ * on the plus and minus sides of an hyperplane.
+ * @param <S> Type of the space.
+ * @since 3.4
+ */
+class InsideFinder<S extends Space> {
+
+ /** Region on which to operate. */
+ private final Region<S> region;
+
+ /** Indicator of inside leaf nodes found on the plus side. */
+ private boolean plusFound;
+
+ /** Indicator of inside leaf nodes found on the plus side. */
+ private boolean minusFound;
+
+ /** Simple constructor.
+ * @param region region on which to operate
+ */
+ InsideFinder(final Region<S> region) {
+ this.region = region;
+ plusFound = false;
+ minusFound = false;
+ }
+
+ /** Search recursively for inside leaf nodes on each side of the given hyperplane.
+
+ * <p>The algorithm used here is directly derived from the one
+ * described in section III (<i>Binary Partitioning of a BSP
+ * Tree</i>) of the Bruce Naylor, John Amanatides and William
+ * Thibault paper <a
+ * href="http://www.cs.yorku.ca/~amana/research/bsptSetOp.pdf">Merging
+ * BSP Trees Yields Polyhedral Set Operations</a> Proc. Siggraph
+ * '90, Computer Graphics 24(4), August 1990, pp 115-124, published
+ * by the Association for Computing Machinery (ACM)..</p>
+
+ * @param node current BSP tree node
+ * @param sub sub-hyperplane
+ */
+ public void recurseSides(final BSPTree<S> node, final SubHyperplane<S> sub) {
+
+ if (node.getCut() == null) {
+ if ((Boolean) node.getAttribute()) {
+ // this is an inside cell expanding across the hyperplane
+ plusFound = true;
+ minusFound = true;
+ }
+ return;
+ }
+
+ final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
+ final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
+ switch (split.getSide()) {
+ case PLUS :
+ // the sub-hyperplane is entirely in the plus sub-tree
+ if (node.getCut().split(sub.getHyperplane()).getSide() == Side.PLUS) {
+ if (!region.isEmpty(node.getMinus())) {
+ plusFound = true;
+ }
+ } else {
+ if (!region.isEmpty(node.getMinus())) {
+ minusFound = true;
+ }
+ }
+ if (!(plusFound && minusFound)) {
+ recurseSides(node.getPlus(), sub);
+ }
+ break;
+ case MINUS :
+ // the sub-hyperplane is entirely in the minus sub-tree
+ if (node.getCut().split(sub.getHyperplane()).getSide() == Side.PLUS) {
+ if (!region.isEmpty(node.getPlus())) {
+ plusFound = true;
+ }
+ } else {
+ if (!region.isEmpty(node.getPlus())) {
+ minusFound = true;
+ }
+ }
+ if (!(plusFound && minusFound)) {
+ recurseSides(node.getMinus(), sub);
+ }
+ break;
+ case BOTH :
+ // the sub-hyperplane extends in both sub-trees
+
+ // explore first the plus sub-tree
+ recurseSides(node.getPlus(), split.getPlus());
+
+ // if needed, explore the minus sub-tree
+ if (!(plusFound && minusFound)) {
+ recurseSides(node.getMinus(), split.getMinus());
+ }
+ break;
+ default :
+ // the sub-hyperplane and the cut sub-hyperplane share the same hyperplane
+ if (node.getCut().getHyperplane().sameOrientationAs(sub.getHyperplane())) {
+ if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) {
+ plusFound = true;
+ }
+ if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) {
+ minusFound = true;
+ }
+ } else {
+ if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) {
+ minusFound = true;
+ }
+ if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) {
+ plusFound = true;
+ }
+ }
+ }
+
+ }
+
+ /** Check if inside leaf nodes have been found on the plus side.
+ * @return true if inside leaf nodes have been found on the plus side
+ */
+ public boolean plusFound() {
+ return plusFound;
+ }
+
+ /** Check if inside leaf nodes have been found on the minus side.
+ * @return true if inside leaf nodes have been found on the minus side
+ */
+ public boolean minusFound() {
+ return minusFound;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/NodesSet.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/NodesSet.java
new file mode 100644
index 0000000..688279a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/NodesSet.java
@@ -0,0 +1,72 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import java.util.ArrayList;
+import java.util.Iterator;
+import java.util.List;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** Set of {@link BSPTree BSP tree} nodes.
+ * @see BoundaryAttribute
+ * @param <S> Type of the space.
+ * @since 3.4
+ */
+public class NodesSet<S extends Space> implements Iterable<BSPTree<S>> {
+
+ /** List of sub-hyperplanes. */
+ private List<BSPTree<S>> list;
+
+ /** Simple constructor.
+ */
+ public NodesSet() {
+ list = new ArrayList<BSPTree<S>>();
+ }
+
+ /** Add a node if not already known.
+ * @param node node to add
+ */
+ public void add(final BSPTree<S> node) {
+
+ for (final BSPTree<S> existing : list) {
+ if (node == existing) {
+ // the node is already known, don't add it
+ return;
+ }
+ }
+
+ // the node was not known, add it
+ list.add(node);
+
+ }
+
+ /** Add nodes if they are not already known.
+ * @param iterator nodes iterator
+ */
+ public void addAll(final Iterable<BSPTree<S>> iterator) {
+ for (final BSPTree<S> node : iterator) {
+ add(node);
+ }
+ }
+
+ /** {@inheritDoc} */
+ public Iterator<BSPTree<S>> iterator() {
+ return list.iterator();
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/Region.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/Region.java
new file mode 100644
index 0000000..9ff3946
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/Region.java
@@ -0,0 +1,221 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Space;
+import org.apache.commons.math3.geometry.Point;
+
+/** This interface represents a region of a space as a partition.
+
+ * <p>Region are subsets of a space, they can be infinite (whole
+ * space, half space, infinite stripe ...) or finite (polygons in 2D,
+ * polyhedrons in 3D ...). Their main characteristic is to separate
+ * points that are considered to be <em>inside</em> the region from
+ * points considered to be <em>outside</em> of it. In between, there
+ * may be points on the <em>boundary</em> of the region.</p>
+
+ * <p>This implementation is limited to regions for which the boundary
+ * is composed of several {@link SubHyperplane sub-hyperplanes},
+ * including regions with no boundary at all: the whole space and the
+ * empty region. They are not necessarily finite and not necessarily
+ * path-connected. They can contain holes.</p>
+
+ * <p>Regions can be combined using the traditional sets operations :
+ * union, intersection, difference and symetric difference (exclusive
+ * or) for the binary operations, complement for the unary
+ * operation.</p>
+
+ * <p>
+ * Note that this interface is <em>not</em> intended to be implemented
+ * by Apache Commons Math users, it is only intended to be implemented
+ * within the library itself. New methods may be added even for minor
+ * versions, which breaks compatibility for external implementations.
+ * </p>
+
+ * @param <S> Type of the space.
+
+ * @since 3.0
+ */
+public interface Region<S extends Space> {
+
+ /** Enumerate for the location of a point with respect to the region. */
+ enum Location {
+ /** Code for points inside the partition. */
+ INSIDE,
+
+ /** Code for points outside of the partition. */
+ OUTSIDE,
+
+ /** Code for points on the partition boundary. */
+ BOUNDARY;
+ }
+
+ /** Build a region using the instance as a prototype.
+ * <p>This method allow to create new instances without knowing
+ * exactly the type of the region. It is an application of the
+ * prototype design pattern.</p>
+ * <p>The leaf nodes of the BSP tree <em>must</em> have a
+ * {@code Boolean} attribute representing the inside status of
+ * the corresponding cell (true for inside cells, false for outside
+ * cells). In order to avoid building too many small objects, it is
+ * recommended to use the predefined constants
+ * {@code Boolean.TRUE} and {@code Boolean.FALSE}. The
+ * tree also <em>must</em> have either null internal nodes or
+ * internal nodes representing the boundary as specified in the
+ * {@link #getTree getTree} method).</p>
+ * @param newTree inside/outside BSP tree representing the new region
+ * @return the built region
+ */
+ Region<S> buildNew(BSPTree<S> newTree);
+
+ /** Copy the instance.
+ * <p>The instance created is completely independant of the original
+ * one. A deep copy is used, none of the underlying objects are
+ * shared (except for the underlying tree {@code Boolean}
+ * attributes and immutable objects).</p>
+ * @return a new region, copy of the instance
+ */
+ Region<S> copySelf();
+
+ /** Check if the instance is empty.
+ * @return true if the instance is empty
+ */
+ boolean isEmpty();
+
+ /** Check if the sub-tree starting at a given node is empty.
+ * @param node root node of the sub-tree (<em>must</em> have {@link
+ * Region Region} tree semantics, i.e. the leaf nodes must have
+ * {@code Boolean} attributes representing an inside/outside
+ * property)
+ * @return true if the sub-tree starting at the given node is empty
+ */
+ boolean isEmpty(final BSPTree<S> node);
+
+ /** Check if the instance covers the full space.
+ * @return true if the instance covers the full space
+ */
+ boolean isFull();
+
+ /** Check if the sub-tree starting at a given node covers the full space.
+ * @param node root node of the sub-tree (<em>must</em> have {@link
+ * Region Region} tree semantics, i.e. the leaf nodes must have
+ * {@code Boolean} attributes representing an inside/outside
+ * property)
+ * @return true if the sub-tree starting at the given node covers the full space
+ */
+ boolean isFull(final BSPTree<S> node);
+
+ /** Check if the instance entirely contains another region.
+ * @param region region to check against the instance
+ * @return true if the instance contains the specified tree
+ */
+ boolean contains(final Region<S> region);
+
+ /** Check a point with respect to the region.
+ * @param point point to check
+ * @return a code representing the point status: either {@link
+ * Location#INSIDE}, {@link Location#OUTSIDE} or {@link Location#BOUNDARY}
+ */
+ Location checkPoint(final Point<S> point);
+
+ /** Project a point on the boundary of the region.
+ * @param point point to check
+ * @return projection of the point on the boundary
+ * @since 3.3
+ */
+ BoundaryProjection<S> projectToBoundary(final Point<S> point);
+
+ /** Get the underlying BSP tree.
+
+ * <p>Regions are represented by an underlying inside/outside BSP
+ * tree whose leaf attributes are {@code Boolean} instances
+ * representing inside leaf cells if the attribute value is
+ * {@code true} and outside leaf cells if the attribute is
+ * {@code false}. These leaf attributes are always present and
+ * guaranteed to be non null.</p>
+
+ * <p>In addition to the leaf attributes, the internal nodes which
+ * correspond to cells split by cut sub-hyperplanes may contain
+ * {@link BoundaryAttribute BoundaryAttribute} objects representing
+ * the parts of the corresponding cut sub-hyperplane that belong to
+ * the boundary. When the boundary attributes have been computed,
+ * all internal nodes are guaranteed to have non-null
+ * attributes, however some {@link BoundaryAttribute
+ * BoundaryAttribute} instances may have their {@link
+ * BoundaryAttribute#getPlusInside() getPlusInside} and {@link
+ * BoundaryAttribute#getPlusOutside() getPlusOutside} methods both
+ * returning null if the corresponding cut sub-hyperplane does not
+ * have any parts belonging to the boundary.</p>
+
+ * <p>Since computing the boundary is not always required and can be
+ * time-consuming for large trees, these internal nodes attributes
+ * are computed using lazy evaluation only when required by setting
+ * the {@code includeBoundaryAttributes} argument to
+ * {@code true}. Once computed, these attributes remain in the
+ * tree, which implies that in this case, further calls to the
+ * method for the same region will always include these attributes
+ * regardless of the value of the
+ * {@code includeBoundaryAttributes} argument.</p>
+
+ * @param includeBoundaryAttributes if true, the boundary attributes
+ * at internal nodes are guaranteed to be included (they may be
+ * included even if the argument is false, if they have already been
+ * computed due to a previous call)
+ * @return underlying BSP tree
+ * @see BoundaryAttribute
+ */
+ BSPTree<S> getTree(final boolean includeBoundaryAttributes);
+
+ /** Get the size of the boundary.
+ * @return the size of the boundary (this is 0 in 1D, a length in
+ * 2D, an area in 3D ...)
+ */
+ double getBoundarySize();
+
+ /** Get the size of the instance.
+ * @return the size of the instance (this is a length in 1D, an area
+ * in 2D, a volume in 3D ...)
+ */
+ double getSize();
+
+ /** Get the barycenter of the instance.
+ * @return an object representing the barycenter
+ */
+ Point<S> getBarycenter();
+
+ /** Compute the relative position of the instance with respect to an
+ * hyperplane.
+ * @param hyperplane reference hyperplane
+ * @return one of {@link Side#PLUS Side.PLUS}, {@link Side#MINUS
+ * Side.MINUS}, {@link Side#BOTH Side.BOTH} or {@link Side#HYPER
+ * Side.HYPER} (the latter result can occur only if the tree
+ * contains only one cut hyperplane)
+ * @deprecated as of 3.6, this method which was only intended for
+ * internal use is not used anymore
+ */
+ @Deprecated
+ Side side(final Hyperplane<S> hyperplane);
+
+ /** Get the parts of a sub-hyperplane that are contained in the region.
+ * <p>The parts of the sub-hyperplane that belong to the boundary are
+ * <em>not</em> included in the resulting parts.</p>
+ * @param sub sub-hyperplane traversing the region
+ * @return filtered sub-hyperplane
+ */
+ SubHyperplane<S> intersection(final SubHyperplane<S> sub);
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/RegionFactory.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/RegionFactory.java
new file mode 100644
index 0000000..688ffde
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/RegionFactory.java
@@ -0,0 +1,378 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import java.util.HashMap;
+import java.util.Map;
+
+import org.apache.commons.math3.exception.MathIllegalArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+import org.apache.commons.math3.geometry.partitioning.BSPTree.VanishingCutHandler;
+import org.apache.commons.math3.geometry.partitioning.Region.Location;
+import org.apache.commons.math3.geometry.partitioning.SubHyperplane.SplitSubHyperplane;
+
+/** This class is a factory for {@link Region}.
+
+ * @param <S> Type of the space.
+
+ * @since 3.0
+ */
+public class RegionFactory<S extends Space> {
+
+ /** Visitor removing internal nodes attributes. */
+ private final NodesCleaner nodeCleaner;
+
+ /** Simple constructor.
+ */
+ public RegionFactory() {
+ nodeCleaner = new NodesCleaner();
+ }
+
+ /** Build a convex region from a collection of bounding hyperplanes.
+ * @param hyperplanes collection of bounding hyperplanes
+ * @return a new convex region, or null if the collection is empty
+ */
+ public Region<S> buildConvex(final Hyperplane<S> ... hyperplanes) {
+ if ((hyperplanes == null) || (hyperplanes.length == 0)) {
+ return null;
+ }
+
+ // use the first hyperplane to build the right class
+ final Region<S> region = hyperplanes[0].wholeSpace();
+
+ // chop off parts of the space
+ BSPTree<S> node = region.getTree(false);
+ node.setAttribute(Boolean.TRUE);
+ for (final Hyperplane<S> hyperplane : hyperplanes) {
+ if (node.insertCut(hyperplane)) {
+ node.setAttribute(null);
+ node.getPlus().setAttribute(Boolean.FALSE);
+ node = node.getMinus();
+ node.setAttribute(Boolean.TRUE);
+ } else {
+ // the hyperplane could not be inserted in the current leaf node
+ // either it is completely outside (which means the input hyperplanes
+ // are wrong), or it is parallel to a previous hyperplane
+ SubHyperplane<S> s = hyperplane.wholeHyperplane();
+ for (BSPTree<S> tree = node; tree.getParent() != null && s != null; tree = tree.getParent()) {
+ final Hyperplane<S> other = tree.getParent().getCut().getHyperplane();
+ final SplitSubHyperplane<S> split = s.split(other);
+ switch (split.getSide()) {
+ case HYPER :
+ // the hyperplane is parallel to a previous hyperplane
+ if (!hyperplane.sameOrientationAs(other)) {
+ // this hyperplane is opposite to the other one,
+ // the region is thinner than the tolerance, we consider it empty
+ return getComplement(hyperplanes[0].wholeSpace());
+ }
+ // the hyperplane is an extension of an already known hyperplane, we just ignore it
+ break;
+ case PLUS :
+ // the hyperplane is outside of the current convex zone,
+ // the input hyperplanes are inconsistent
+ throw new MathIllegalArgumentException(LocalizedFormats.NOT_CONVEX_HYPERPLANES);
+ default :
+ s = split.getMinus();
+ }
+ }
+ }
+ }
+
+ return region;
+
+ }
+
+ /** Compute the union of two regions.
+ * @param region1 first region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @param region2 second region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @return a new region, result of {@code region1 union region2}
+ */
+ public Region<S> union(final Region<S> region1, final Region<S> region2) {
+ final BSPTree<S> tree =
+ region1.getTree(false).merge(region2.getTree(false), new UnionMerger());
+ tree.visit(nodeCleaner);
+ return region1.buildNew(tree);
+ }
+
+ /** Compute the intersection of two regions.
+ * @param region1 first region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @param region2 second region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @return a new region, result of {@code region1 intersection region2}
+ */
+ public Region<S> intersection(final Region<S> region1, final Region<S> region2) {
+ final BSPTree<S> tree =
+ region1.getTree(false).merge(region2.getTree(false), new IntersectionMerger());
+ tree.visit(nodeCleaner);
+ return region1.buildNew(tree);
+ }
+
+ /** Compute the symmetric difference (exclusive or) of two regions.
+ * @param region1 first region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @param region2 second region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @return a new region, result of {@code region1 xor region2}
+ */
+ public Region<S> xor(final Region<S> region1, final Region<S> region2) {
+ final BSPTree<S> tree =
+ region1.getTree(false).merge(region2.getTree(false), new XorMerger());
+ tree.visit(nodeCleaner);
+ return region1.buildNew(tree);
+ }
+
+ /** Compute the difference of two regions.
+ * @param region1 first region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @param region2 second region (will be unusable after the operation as
+ * parts of it will be reused in the new region)
+ * @return a new region, result of {@code region1 minus region2}
+ */
+ public Region<S> difference(final Region<S> region1, final Region<S> region2) {
+ final BSPTree<S> tree =
+ region1.getTree(false).merge(region2.getTree(false), new DifferenceMerger(region1, region2));
+ tree.visit(nodeCleaner);
+ return region1.buildNew(tree);
+ }
+
+ /** Get the complement of the region (exchanged interior/exterior).
+ * @param region region to complement, it will not modified, a new
+ * region independent region will be built
+ * @return a new region, complement of the specified one
+ */
+ /** Get the complement of the region (exchanged interior/exterior).
+ * @param region region to complement, it will not modified, a new
+ * region independent region will be built
+ * @return a new region, complement of the specified one
+ */
+ public Region<S> getComplement(final Region<S> region) {
+ return region.buildNew(recurseComplement(region.getTree(false)));
+ }
+
+ /** Recursively build the complement of a BSP tree.
+ * @param node current node of the original tree
+ * @return new tree, complement of the node
+ */
+ private BSPTree<S> recurseComplement(final BSPTree<S> node) {
+
+ // transform the tree, except for boundary attribute splitters
+ final Map<BSPTree<S>, BSPTree<S>> map = new HashMap<BSPTree<S>, BSPTree<S>>();
+ final BSPTree<S> transformedTree = recurseComplement(node, map);
+
+ // set up the boundary attributes splitters
+ for (final Map.Entry<BSPTree<S>, BSPTree<S>> entry : map.entrySet()) {
+ if (entry.getKey().getCut() != null) {
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<S> original = (BoundaryAttribute<S>) entry.getKey().getAttribute();
+ if (original != null) {
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<S> transformed = (BoundaryAttribute<S>) entry.getValue().getAttribute();
+ for (final BSPTree<S> splitter : original.getSplitters()) {
+ transformed.getSplitters().add(map.get(splitter));
+ }
+ }
+ }
+ }
+
+ return transformedTree;
+
+ }
+
+ /** Recursively build the complement of a BSP tree.
+ * @param node current node of the original tree
+ * @param map transformed nodes map
+ * @return new tree, complement of the node
+ */
+ private BSPTree<S> recurseComplement(final BSPTree<S> node,
+ final Map<BSPTree<S>, BSPTree<S>> map) {
+
+ final BSPTree<S> transformedNode;
+ if (node.getCut() == null) {
+ transformedNode = new BSPTree<S>(((Boolean) node.getAttribute()) ? Boolean.FALSE : Boolean.TRUE);
+ } else {
+
+ @SuppressWarnings("unchecked")
+ BoundaryAttribute<S> attribute = (BoundaryAttribute<S>) node.getAttribute();
+ if (attribute != null) {
+ final SubHyperplane<S> plusOutside =
+ (attribute.getPlusInside() == null) ? null : attribute.getPlusInside().copySelf();
+ final SubHyperplane<S> plusInside =
+ (attribute.getPlusOutside() == null) ? null : attribute.getPlusOutside().copySelf();
+ // we start with an empty list of splitters, it will be filled in out of recursion
+ attribute = new BoundaryAttribute<S>(plusOutside, plusInside, new NodesSet<S>());
+ }
+
+ transformedNode = new BSPTree<S>(node.getCut().copySelf(),
+ recurseComplement(node.getPlus(), map),
+ recurseComplement(node.getMinus(), map),
+ attribute);
+ }
+
+ map.put(node, transformedNode);
+ return transformedNode;
+
+ }
+
+ /** BSP tree leaf merger computing union of two regions. */
+ private class UnionMerger implements BSPTree.LeafMerger<S> {
+ /** {@inheritDoc} */
+ public BSPTree<S> merge(final BSPTree<S> leaf, final BSPTree<S> tree,
+ final BSPTree<S> parentTree,
+ final boolean isPlusChild, final boolean leafFromInstance) {
+ if ((Boolean) leaf.getAttribute()) {
+ // the leaf node represents an inside cell
+ leaf.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(true));
+ return leaf;
+ }
+ // the leaf node represents an outside cell
+ tree.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(false));
+ return tree;
+ }
+ }
+
+ /** BSP tree leaf merger computing intersection of two regions. */
+ private class IntersectionMerger implements BSPTree.LeafMerger<S> {
+ /** {@inheritDoc} */
+ public BSPTree<S> merge(final BSPTree<S> leaf, final BSPTree<S> tree,
+ final BSPTree<S> parentTree,
+ final boolean isPlusChild, final boolean leafFromInstance) {
+ if ((Boolean) leaf.getAttribute()) {
+ // the leaf node represents an inside cell
+ tree.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(true));
+ return tree;
+ }
+ // the leaf node represents an outside cell
+ leaf.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(false));
+ return leaf;
+ }
+ }
+
+ /** BSP tree leaf merger computing symmetric difference (exclusive or) of two regions. */
+ private class XorMerger implements BSPTree.LeafMerger<S> {
+ /** {@inheritDoc} */
+ public BSPTree<S> merge(final BSPTree<S> leaf, final BSPTree<S> tree,
+ final BSPTree<S> parentTree, final boolean isPlusChild,
+ final boolean leafFromInstance) {
+ BSPTree<S> t = tree;
+ if ((Boolean) leaf.getAttribute()) {
+ // the leaf node represents an inside cell
+ t = recurseComplement(t);
+ }
+ t.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(true));
+ return t;
+ }
+ }
+
+ /** BSP tree leaf merger computing difference of two regions. */
+ private class DifferenceMerger implements BSPTree.LeafMerger<S>, VanishingCutHandler<S> {
+
+ /** Region to subtract from. */
+ private final Region<S> region1;
+
+ /** Region to subtract. */
+ private final Region<S> region2;
+
+ /** Simple constructor.
+ * @param region1 region to subtract from
+ * @param region2 region to subtract
+ */
+ DifferenceMerger(final Region<S> region1, final Region<S> region2) {
+ this.region1 = region1.copySelf();
+ this.region2 = region2.copySelf();
+ }
+
+ /** {@inheritDoc} */
+ public BSPTree<S> merge(final BSPTree<S> leaf, final BSPTree<S> tree,
+ final BSPTree<S> parentTree, final boolean isPlusChild,
+ final boolean leafFromInstance) {
+ if ((Boolean) leaf.getAttribute()) {
+ // the leaf node represents an inside cell
+ final BSPTree<S> argTree =
+ recurseComplement(leafFromInstance ? tree : leaf);
+ argTree.insertInTree(parentTree, isPlusChild, this);
+ return argTree;
+ }
+ // the leaf node represents an outside cell
+ final BSPTree<S> instanceTree =
+ leafFromInstance ? leaf : tree;
+ instanceTree.insertInTree(parentTree, isPlusChild, this);
+ return instanceTree;
+ }
+
+ /** {@inheritDoc} */
+ public BSPTree<S> fixNode(final BSPTree<S> node) {
+ // get a representative point in the degenerate cell
+ final BSPTree<S> cell = node.pruneAroundConvexCell(Boolean.TRUE, Boolean.FALSE, null);
+ final Region<S> r = region1.buildNew(cell);
+ final Point<S> p = r.getBarycenter();
+ return new BSPTree<S>(region1.checkPoint(p) == Location.INSIDE &&
+ region2.checkPoint(p) == Location.OUTSIDE);
+ }
+
+ }
+
+ /** Visitor removing internal nodes attributes. */
+ private class NodesCleaner implements BSPTreeVisitor<S> {
+
+ /** {@inheritDoc} */
+ public Order visitOrder(final BSPTree<S> node) {
+ return Order.PLUS_SUB_MINUS;
+ }
+
+ /** {@inheritDoc} */
+ public void visitInternalNode(final BSPTree<S> node) {
+ node.setAttribute(null);
+ }
+
+ /** {@inheritDoc} */
+ public void visitLeafNode(final BSPTree<S> node) {
+ }
+
+ }
+
+ /** Handler replacing nodes with vanishing cuts with leaf nodes. */
+ private class VanishingToLeaf implements VanishingCutHandler<S> {
+
+ /** Inside/outside indocator to use for ambiguous nodes. */
+ private final boolean inside;
+
+ /** Simple constructor.
+ * @param inside inside/outside indicator to use for ambiguous nodes
+ */
+ VanishingToLeaf(final boolean inside) {
+ this.inside = inside;
+ }
+
+ /** {@inheritDoc} */
+ public BSPTree<S> fixNode(final BSPTree<S> node) {
+ if (node.getPlus().getAttribute().equals(node.getMinus().getAttribute())) {
+ // no ambiguity
+ return new BSPTree<S>(node.getPlus().getAttribute());
+ } else {
+ // ambiguous node
+ return new BSPTree<S>(inside);
+ }
+ }
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/Side.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/Side.java
new file mode 100644
index 0000000..c9a1357
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/Side.java
@@ -0,0 +1,37 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+/** Enumerate representing the location of an element with respect to an
+ * {@link Hyperplane hyperplane} of a space.
+ * @since 3.0
+ */
+public enum Side {
+
+ /** Code for the plus side of the hyperplane. */
+ PLUS,
+
+ /** Code for the minus side of the hyperplane. */
+ MINUS,
+
+ /** Code for elements crossing the hyperplane from plus to minus side. */
+ BOTH,
+
+ /** Code for the hyperplane itself. */
+ HYPER;
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/SubHyperplane.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/SubHyperplane.java
new file mode 100644
index 0000000..2069f6f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/SubHyperplane.java
@@ -0,0 +1,155 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Space;
+
+/** This interface represents the remaining parts of an hyperplane after
+ * other parts have been chopped off.
+
+ * <p>sub-hyperplanes are obtained when parts of an {@link
+ * Hyperplane hyperplane} are chopped off by other hyperplanes that
+ * intersect it. The remaining part is a convex region. Such objects
+ * appear in {@link BSPTree BSP trees} as the intersection of a cut
+ * hyperplane with the convex region which it splits, the chopping
+ * hyperplanes are the cut hyperplanes closer to the tree root.</p>
+
+ * <p>
+ * Note that this interface is <em>not</em> intended to be implemented
+ * by Apache Commons Math users, it is only intended to be implemented
+ * within the library itself. New methods may be added even for minor
+ * versions, which breaks compatibility for external implementations.
+ * </p>
+
+ * @param <S> Type of the embedding space.
+
+ * @since 3.0
+ */
+public interface SubHyperplane<S extends Space> {
+
+ /** Copy the instance.
+ * <p>The instance created is completely independent of the original
+ * one. A deep copy is used, none of the underlying objects are
+ * shared (except for the nodes attributes and immutable
+ * objects).</p>
+ * @return a new sub-hyperplane, copy of the instance
+ */
+ SubHyperplane<S> copySelf();
+
+ /** Get the underlying hyperplane.
+ * @return underlying hyperplane
+ */
+ Hyperplane<S> getHyperplane();
+
+ /** Check if the instance is empty.
+ * @return true if the instance is empty
+ */
+ boolean isEmpty();
+
+ /** Get the size of the instance.
+ * @return the size of the instance (this is a length in 1D, an area
+ * in 2D, a volume in 3D ...)
+ */
+ double getSize();
+
+ /** Compute the relative position of the instance with respect
+ * to an hyperplane.
+ * @param hyperplane hyperplane to check instance against
+ * @return one of {@link Side#PLUS}, {@link Side#MINUS}, {@link Side#BOTH},
+ * {@link Side#HYPER}
+ * @deprecated as of 3.6, replaced with {@link #split(Hyperplane)}.{@link SplitSubHyperplane#getSide()}
+ */
+ @Deprecated
+ Side side(Hyperplane<S> hyperplane);
+
+ /** Split the instance in two parts by an hyperplane.
+ * @param hyperplane splitting hyperplane
+ * @return an object containing both the part of the instance
+ * on the plus side of the hyperplane and the part of the
+ * instance on the minus side of the hyperplane
+ */
+ SplitSubHyperplane<S> split(Hyperplane<S> hyperplane);
+
+ /** Compute the union of the instance and another sub-hyperplane.
+ * @param other other sub-hyperplane to union (<em>must</em> be in the
+ * same hyperplane as the instance)
+ * @return a new sub-hyperplane, union of the instance and other
+ */
+ SubHyperplane<S> reunite(SubHyperplane<S> other);
+
+ /** Class holding the results of the {@link #split split} method.
+ * @param <U> Type of the embedding space.
+ */
+ class SplitSubHyperplane<U extends Space> {
+
+ /** Part of the sub-hyperplane on the plus side of the splitting hyperplane. */
+ private final SubHyperplane<U> plus;
+
+ /** Part of the sub-hyperplane on the minus side of the splitting hyperplane. */
+ private final SubHyperplane<U> minus;
+
+ /** Build a SplitSubHyperplane from its parts.
+ * @param plus part of the sub-hyperplane on the plus side of the
+ * splitting hyperplane
+ * @param minus part of the sub-hyperplane on the minus side of the
+ * splitting hyperplane
+ */
+ public SplitSubHyperplane(final SubHyperplane<U> plus,
+ final SubHyperplane<U> minus) {
+ this.plus = plus;
+ this.minus = minus;
+ }
+
+ /** Get the part of the sub-hyperplane on the plus side of the splitting hyperplane.
+ * @return part of the sub-hyperplane on the plus side of the splitting hyperplane
+ */
+ public SubHyperplane<U> getPlus() {
+ return plus;
+ }
+
+ /** Get the part of the sub-hyperplane on the minus side of the splitting hyperplane.
+ * @return part of the sub-hyperplane on the minus side of the splitting hyperplane
+ */
+ public SubHyperplane<U> getMinus() {
+ return minus;
+ }
+
+ /** Get the side of the split sub-hyperplane with respect to its splitter.
+ * @return {@link Side#PLUS} if only {@link #getPlus()} is neither null nor empty,
+ * {@link Side#MINUS} if only {@link #getMinus()} is neither null nor empty,
+ * {@link Side#BOTH} if both {@link #getPlus()} and {@link #getMinus()}
+ * are neither null nor empty or {@link Side#HYPER} if both {@link #getPlus()} and
+ * {@link #getMinus()} are either null or empty
+ * @since 3.6
+ */
+ public Side getSide() {
+ if (plus != null && !plus.isEmpty()) {
+ if (minus != null && !minus.isEmpty()) {
+ return Side.BOTH;
+ } else {
+ return Side.PLUS;
+ }
+ } else if (minus != null && !minus.isEmpty()) {
+ return Side.MINUS;
+ } else {
+ return Side.HYPER;
+ }
+ }
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/Transform.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/Transform.java
new file mode 100644
index 0000000..ba0c1dd
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/Transform.java
@@ -0,0 +1,80 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning;
+
+import org.apache.commons.math3.geometry.Point;
+import org.apache.commons.math3.geometry.Space;
+
+
+/** This interface represents an inversible affine transform in a space.
+ * <p>Inversible affine transform include for example scalings,
+ * translations, rotations.</p>
+
+ * <p>Transforms are dimension-specific. The consistency rules between
+ * the three {@code apply} methods are the following ones for a
+ * transformed defined for dimension D:</p>
+ * <ul>
+ * <li>
+ * the transform can be applied to a point in the
+ * D-dimension space using its {@link #apply(Point)}
+ * method
+ * </li>
+ * <li>
+ * the transform can be applied to a (D-1)-dimension
+ * hyperplane in the D-dimension space using its
+ * {@link #apply(Hyperplane)} method
+ * </li>
+ * <li>
+ * the transform can be applied to a (D-2)-dimension
+ * sub-hyperplane in a (D-1)-dimension hyperplane using
+ * its {@link #apply(SubHyperplane, Hyperplane, Hyperplane)}
+ * method
+ * </li>
+ * </ul>
+
+ * @param <S> Type of the embedding space.
+ * @param <T> Type of the embedded sub-space.
+
+ * @since 3.0
+ */
+public interface Transform<S extends Space, T extends Space> {
+
+ /** Transform a point of a space.
+ * @param point point to transform
+ * @return a new object representing the transformed point
+ */
+ Point<S> apply(Point<S> point);
+
+ /** Transform an hyperplane of a space.
+ * @param hyperplane hyperplane to transform
+ * @return a new object representing the transformed hyperplane
+ */
+ Hyperplane<S> apply(Hyperplane<S> hyperplane);
+
+ /** Transform a sub-hyperplane embedded in an hyperplane.
+ * @param sub sub-hyperplane to transform
+ * @param original hyperplane in which the sub-hyperplane is
+ * defined (this is the original hyperplane, the transform has
+ * <em>not</em> been applied to it)
+ * @param transformed hyperplane in which the sub-hyperplane is
+ * defined (this is the transformed hyperplane, the transform
+ * <em>has</em> been applied to it)
+ * @return a new object representing the transformed sub-hyperplane
+ */
+ SubHyperplane<T> apply(SubHyperplane<T> sub, Hyperplane<S> original, Hyperplane<S> transformed);
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/package-info.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/package-info.java
new file mode 100644
index 0000000..6e63c73
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/package-info.java
@@ -0,0 +1,114 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * This package provides classes to implement Binary Space Partition trees.
+ *
+ * <p>
+ * {@link org.apache.commons.math3.geometry.partitioning.BSPTree BSP trees}
+ * are an efficient way to represent parts of space and in particular
+ * polytopes (line segments in 1D, polygons in 2D and polyhedrons in 3D)
+ * and to operate on them. The main principle is to recursively subdivide
+ * the space using simple hyperplanes (points in 1D, lines in 2D, planes
+ * in 3D).
+ * </p>
+ *
+ * <p>
+ * We start with a tree composed of a single node without any cut
+ * hyperplane: it represents the complete space, which is a convex
+ * part. If we add a cut hyperplane to this node, this represents a
+ * partition with the hyperplane at the node level and two half spaces at
+ * each side of the cut hyperplane. These half-spaces are represented by
+ * two child nodes without any cut hyperplanes associated, the plus child
+ * which represents the half space on the plus side of the cut hyperplane
+ * and the minus child on the other side. Continuing the subdivisions, we
+ * end up with a tree having internal nodes that are associated with a
+ * cut hyperplane and leaf nodes without any hyperplane which correspond
+ * to convex parts.
+ * </p>
+ *
+ * <p>
+ * When BSP trees are used to represent polytopes, the convex parts are
+ * known to be completely inside or outside the polytope as long as there
+ * is no facet in the part (which is obviously the case if the cut
+ * hyperplanes have been chosen as the underlying hyperplanes of the
+ * facets (this is called an autopartition) and if the subdivision
+ * process has been continued until all facets have been processed. It is
+ * important to note that the polytope is <em>not</em> defined by a
+ * single part, but by several convex ones. This is the property that
+ * allows BSP-trees to represent non-convex polytopes despites all parts
+ * are convex. The {@link
+ * org.apache.commons.math3.geometry.partitioning.Region Region} class is
+ * devoted to this representation, it is build on top of the {@link
+ * org.apache.commons.math3.geometry.partitioning.BSPTree BSPTree} class using
+ * boolean objects as the leaf nodes attributes to represent the
+ * inside/outside property of each leaf part, and also adds various
+ * methods dealing with boundaries (i.e. the separation between the
+ * inside and the outside parts).
+ * </p>
+ *
+ * <p>
+ * Rather than simply associating the internal nodes with an hyperplane,
+ * we consider <em>sub-hyperplanes</em> which correspond to the part of
+ * the hyperplane that is inside the convex part defined by all the
+ * parent nodes (this implies that the sub-hyperplane at root node is in
+ * fact a complete hyperplane, because there is no parent to bound
+ * it). Since the parts are convex, the sub-hyperplanes are convex, in
+ * 3D the convex parts are convex polyhedrons, and the sub-hyperplanes
+ * are convex polygons that cut these polyhedrons in two
+ * sub-polyhedrons. Using this definition, a BSP tree completely
+ * partitions the space. Each point either belongs to one of the
+ * sub-hyperplanes in an internal node or belongs to one of the leaf
+ * convex parts.
+ * </p>
+ *
+ * <p>
+ * In order to determine where a point is, it is sufficient to check its
+ * position with respect to the root cut hyperplane, to select the
+ * corresponding child tree and to repeat the procedure recursively,
+ * until either the point appears to be exactly on one of the hyperplanes
+ * in the middle of the tree or to be in one of the leaf parts. For
+ * this operation, it is sufficient to consider the complete hyperplanes,
+ * there is no need to check the points with the boundary of the
+ * sub-hyperplanes, because this check has in fact already been realized
+ * by the recursive descent in the tree. This is very easy to do and very
+ * efficient, especially if the tree is well balanced (the cost is
+ * <code>O(log(n))</code> where <code>n</code> is the number of facets)
+ * or if the first tree levels close to the root discriminate large parts
+ * of the total space.
+ * </p>
+ *
+ * <p>
+ * One of the main sources for the development of this package was Bruce
+ * Naylor, John Amanatides and William Thibault paper <a
+ * href="http://www.cs.yorku.ca/~amana/research/bsptSetOp.pdf">Merging
+ * BSP Trees Yields Polyhedral Set Operations</a> Proc. Siggraph '90,
+ * Computer Graphics 24(4), August 1990, pp 115-124, published by the
+ * Association for Computing Machinery (ACM). The same paper can also be
+ * found <a
+ * href="http://www.cs.utexas.edu/users/fussell/courses/cs384g/bsp_treemerge.pdf">here</a>.
+ * </p>
+ *
+ * <p>
+ * Note that the interfaces defined in this package are <em>not</em> intended to
+ * be implemented by Apache Commons Math users, they are only intended to be
+ * implemented within the library itself. New methods may be added even for
+ * minor versions, which breaks compatibility for external implementations.
+ * </p>
+ *
+ */
+package org.apache.commons.math3.geometry.partitioning;
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java
new file mode 100644
index 0000000..00c9d3e
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java
@@ -0,0 +1,634 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning.utilities;
+
+/** This class implements AVL trees.
+ *
+ * <p>The purpose of this class is to sort elements while allowing
+ * duplicate elements (i.e. such that {@code a.equals(b)} is
+ * true). The {@code SortedSet} interface does not allow this, so
+ * a specific class is needed. Null elements are not allowed.</p>
+ *
+ * <p>Since the {@code equals} method is not sufficient to
+ * differentiate elements, the {@link #delete delete} method is
+ * implemented using the equality operator.</p>
+ *
+ * <p>In order to clearly mark the methods provided here do not have
+ * the same semantics as the ones specified in the
+ * {@code SortedSet} interface, different names are used
+ * ({@code add} has been replaced by {@link #insert insert} and
+ * {@code remove} has been replaced by {@link #delete
+ * delete}).</p>
+ *
+ * <p>This class is based on the C implementation Georg Kraml has put
+ * in the public domain. Unfortunately, his <a
+ * href="www.purists.org/georg/avltree/index.html">page</a> seems not
+ * to exist any more.</p>
+ *
+ * @param <T> the type of the elements
+ *
+ * @since 3.0
+ * @deprecated as of 3.4, this class is not used anymore and considered
+ * to be out of scope of Apache Commons Math
+ */
+@Deprecated
+public class AVLTree<T extends Comparable<T>> {
+
+ /** Top level node. */
+ private Node top;
+
+ /** Build an empty tree.
+ */
+ public AVLTree() {
+ top = null;
+ }
+
+ /** Insert an element in the tree.
+ * @param element element to insert (silently ignored if null)
+ */
+ public void insert(final T element) {
+ if (element != null) {
+ if (top == null) {
+ top = new Node(element, null);
+ } else {
+ top.insert(element);
+ }
+ }
+ }
+
+ /** Delete an element from the tree.
+ * <p>The element is deleted only if there is a node {@code n}
+ * containing exactly the element instance specified, i.e. for which
+ * {@code n.getElement() == element}. This is purposely
+ * <em>different</em> from the specification of the
+ * {@code java.util.Set} {@code remove} method (in fact,
+ * this is the reason why a specific class has been developed).</p>
+ * @param element element to delete (silently ignored if null)
+ * @return true if the element was deleted from the tree
+ */
+ public boolean delete(final T element) {
+ if (element != null) {
+ for (Node node = getNotSmaller(element); node != null; node = node.getNext()) {
+ // loop over all elements neither smaller nor larger
+ // than the specified one
+ if (node.element == element) {
+ node.delete();
+ return true;
+ } else if (node.element.compareTo(element) > 0) {
+ // all the remaining elements are known to be larger,
+ // the element is not in the tree
+ return false;
+ }
+ }
+ }
+ return false;
+ }
+
+ /** Check if the tree is empty.
+ * @return true if the tree is empty
+ */
+ public boolean isEmpty() {
+ return top == null;
+ }
+
+
+ /** Get the number of elements of the tree.
+ * @return number of elements contained in the tree
+ */
+ public int size() {
+ return (top == null) ? 0 : top.size();
+ }
+
+ /** Get the node whose element is the smallest one in the tree.
+ * @return the tree node containing the smallest element in the tree
+ * or null if the tree is empty
+ * @see #getLargest
+ * @see #getNotSmaller
+ * @see #getNotLarger
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getSmallest() {
+ return (top == null) ? null : top.getSmallest();
+ }
+
+ /** Get the node whose element is the largest one in the tree.
+ * @return the tree node containing the largest element in the tree
+ * or null if the tree is empty
+ * @see #getSmallest
+ * @see #getNotSmaller
+ * @see #getNotLarger
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getLargest() {
+ return (top == null) ? null : top.getLargest();
+ }
+
+ /** Get the node whose element is not smaller than the reference object.
+ * @param reference reference object (may not be in the tree)
+ * @return the tree node containing the smallest element not smaller
+ * than the reference object or null if either the tree is empty or
+ * all its elements are smaller than the reference object
+ * @see #getSmallest
+ * @see #getLargest
+ * @see #getNotLarger
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getNotSmaller(final T reference) {
+ Node candidate = null;
+ for (Node node = top; node != null;) {
+ if (node.element.compareTo(reference) < 0) {
+ if (node.right == null) {
+ return candidate;
+ }
+ node = node.right;
+ } else {
+ candidate = node;
+ if (node.left == null) {
+ return candidate;
+ }
+ node = node.left;
+ }
+ }
+ return null;
+ }
+
+ /** Get the node whose element is not larger than the reference object.
+ * @param reference reference object (may not be in the tree)
+ * @return the tree node containing the largest element not larger
+ * than the reference object (in which case the node is guaranteed
+ * not to be empty) or null if either the tree is empty or all its
+ * elements are larger than the reference object
+ * @see #getSmallest
+ * @see #getLargest
+ * @see #getNotSmaller
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getNotLarger(final T reference) {
+ Node candidate = null;
+ for (Node node = top; node != null;) {
+ if (node.element.compareTo(reference) > 0) {
+ if (node.left == null) {
+ return candidate;
+ }
+ node = node.left;
+ } else {
+ candidate = node;
+ if (node.right == null) {
+ return candidate;
+ }
+ node = node.right;
+ }
+ }
+ return null;
+ }
+
+ /** Enum for tree skew factor. */
+ private enum Skew {
+ /** Code for left high trees. */
+ LEFT_HIGH,
+
+ /** Code for right high trees. */
+ RIGHT_HIGH,
+
+ /** Code for Skew.BALANCED trees. */
+ BALANCED;
+ }
+
+ /** This class implements AVL trees nodes.
+ * <p>AVL tree nodes implement all the logical structure of the
+ * tree. Nodes are created by the {@link AVLTree AVLTree} class.</p>
+ * <p>The nodes are not independant from each other but must obey
+ * specific balancing constraints and the tree structure is
+ * rearranged as elements are inserted or deleted from the tree. The
+ * creation, modification and tree-related navigation methods have
+ * therefore restricted access. Only the order-related navigation,
+ * reading and delete methods are public.</p>
+ * @see AVLTree
+ */
+ public class Node {
+
+ /** Element contained in the current node. */
+ private T element;
+
+ /** Left sub-tree. */
+ private Node left;
+
+ /** Right sub-tree. */
+ private Node right;
+
+ /** Parent tree. */
+ private Node parent;
+
+ /** Skew factor. */
+ private Skew skew;
+
+ /** Build a node for a specified element.
+ * @param element element
+ * @param parent parent node
+ */
+ Node(final T element, final Node parent) {
+ this.element = element;
+ left = null;
+ right = null;
+ this.parent = parent;
+ skew = Skew.BALANCED;
+ }
+
+ /** Get the contained element.
+ * @return element contained in the node
+ */
+ public T getElement() {
+ return element;
+ }
+
+ /** Get the number of elements of the tree rooted at this node.
+ * @return number of elements contained in the tree rooted at this node
+ */
+ int size() {
+ return 1 + ((left == null) ? 0 : left.size()) + ((right == null) ? 0 : right.size());
+ }
+
+ /** Get the node whose element is the smallest one in the tree
+ * rooted at this node.
+ * @return the tree node containing the smallest element in the
+ * tree rooted at this node or null if the tree is empty
+ * @see #getLargest
+ */
+ Node getSmallest() {
+ Node node = this;
+ while (node.left != null) {
+ node = node.left;
+ }
+ return node;
+ }
+
+ /** Get the node whose element is the largest one in the tree
+ * rooted at this node.
+ * @return the tree node containing the largest element in the
+ * tree rooted at this node or null if the tree is empty
+ * @see #getSmallest
+ */
+ Node getLargest() {
+ Node node = this;
+ while (node.right != null) {
+ node = node.right;
+ }
+ return node;
+ }
+
+ /** Get the node containing the next smaller or equal element.
+ * @return node containing the next smaller or equal element or
+ * null if there is no smaller or equal element in the tree
+ * @see #getNext
+ */
+ public Node getPrevious() {
+
+ if (left != null) {
+ final Node node = left.getLargest();
+ if (node != null) {
+ return node;
+ }
+ }
+
+ for (Node node = this; node.parent != null; node = node.parent) {
+ if (node != node.parent.left) {
+ return node.parent;
+ }
+ }
+
+ return null;
+
+ }
+
+ /** Get the node containing the next larger or equal element.
+ * @return node containing the next larger or equal element (in
+ * which case the node is guaranteed not to be empty) or null if
+ * there is no larger or equal element in the tree
+ * @see #getPrevious
+ */
+ public Node getNext() {
+
+ if (right != null) {
+ final Node node = right.getSmallest();
+ if (node != null) {
+ return node;
+ }
+ }
+
+ for (Node node = this; node.parent != null; node = node.parent) {
+ if (node != node.parent.right) {
+ return node.parent;
+ }
+ }
+
+ return null;
+
+ }
+
+ /** Insert an element in a sub-tree.
+ * @param newElement element to insert
+ * @return true if the parent tree should be re-Skew.BALANCED
+ */
+ boolean insert(final T newElement) {
+ if (newElement.compareTo(this.element) < 0) {
+ // the inserted element is smaller than the node
+ if (left == null) {
+ left = new Node(newElement, this);
+ return rebalanceLeftGrown();
+ }
+ return left.insert(newElement) ? rebalanceLeftGrown() : false;
+ }
+
+ // the inserted element is equal to or greater than the node
+ if (right == null) {
+ right = new Node(newElement, this);
+ return rebalanceRightGrown();
+ }
+ return right.insert(newElement) ? rebalanceRightGrown() : false;
+
+ }
+
+ /** Delete the node from the tree.
+ */
+ public void delete() {
+ if ((parent == null) && (left == null) && (right == null)) {
+ // this was the last node, the tree is now empty
+ element = null;
+ top = null;
+ } else {
+
+ Node node;
+ Node child;
+ boolean leftShrunk;
+ if ((left == null) && (right == null)) {
+ node = this;
+ element = null;
+ leftShrunk = node == node.parent.left;
+ child = null;
+ } else {
+ node = (left != null) ? left.getLargest() : right.getSmallest();
+ element = node.element;
+ leftShrunk = node == node.parent.left;
+ child = (node.left != null) ? node.left : node.right;
+ }
+
+ node = node.parent;
+ if (leftShrunk) {
+ node.left = child;
+ } else {
+ node.right = child;
+ }
+ if (child != null) {
+ child.parent = node;
+ }
+
+ while (leftShrunk ? node.rebalanceLeftShrunk() : node.rebalanceRightShrunk()) {
+ if (node.parent == null) {
+ return;
+ }
+ leftShrunk = node == node.parent.left;
+ node = node.parent;
+ }
+
+ }
+ }
+
+ /** Re-balance the instance as left sub-tree has grown.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceLeftGrown() {
+ switch (skew) {
+ case LEFT_HIGH:
+ if (left.skew == Skew.LEFT_HIGH) {
+ rotateCW();
+ skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ } else {
+ final Skew s = left.right.skew;
+ left.rotateCCW();
+ rotateCW();
+ switch(s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ }
+ return false;
+ case RIGHT_HIGH:
+ skew = Skew.BALANCED;
+ return false;
+ default:
+ skew = Skew.LEFT_HIGH;
+ return true;
+ }
+ }
+
+ /** Re-balance the instance as right sub-tree has grown.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceRightGrown() {
+ switch (skew) {
+ case LEFT_HIGH:
+ skew = Skew.BALANCED;
+ return false;
+ case RIGHT_HIGH:
+ if (right.skew == Skew.RIGHT_HIGH) {
+ rotateCCW();
+ skew = Skew.BALANCED;
+ left.skew = Skew.BALANCED;
+ } else {
+ final Skew s = right.left.skew;
+ right.rotateCW();
+ rotateCCW();
+ switch (s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ }
+ return false;
+ default:
+ skew = Skew.RIGHT_HIGH;
+ return true;
+ }
+ }
+
+ /** Re-balance the instance as left sub-tree has shrunk.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceLeftShrunk() {
+ switch (skew) {
+ case LEFT_HIGH:
+ skew = Skew.BALANCED;
+ return true;
+ case RIGHT_HIGH:
+ if (right.skew == Skew.RIGHT_HIGH) {
+ rotateCCW();
+ skew = Skew.BALANCED;
+ left.skew = Skew.BALANCED;
+ return true;
+ } else if (right.skew == Skew.BALANCED) {
+ rotateCCW();
+ skew = Skew.LEFT_HIGH;
+ left.skew = Skew.RIGHT_HIGH;
+ return false;
+ } else {
+ final Skew s = right.left.skew;
+ right.rotateCW();
+ rotateCCW();
+ switch (s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ return true;
+ }
+ default:
+ skew = Skew.RIGHT_HIGH;
+ return false;
+ }
+ }
+
+ /** Re-balance the instance as right sub-tree has shrunk.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceRightShrunk() {
+ switch (skew) {
+ case RIGHT_HIGH:
+ skew = Skew.BALANCED;
+ return true;
+ case LEFT_HIGH:
+ if (left.skew == Skew.LEFT_HIGH) {
+ rotateCW();
+ skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ return true;
+ } else if (left.skew == Skew.BALANCED) {
+ rotateCW();
+ skew = Skew.RIGHT_HIGH;
+ right.skew = Skew.LEFT_HIGH;
+ return false;
+ } else {
+ final Skew s = left.right.skew;
+ left.rotateCCW();
+ rotateCW();
+ switch (s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ return true;
+ }
+ default:
+ skew = Skew.LEFT_HIGH;
+ return false;
+ }
+ }
+
+ /** Perform a clockwise rotation rooted at the instance.
+ * <p>The skew factor are not updated by this method, they
+ * <em>must</em> be updated by the caller</p>
+ */
+ private void rotateCW() {
+
+ final T tmpElt = element;
+ element = left.element;
+ left.element = tmpElt;
+
+ final Node tmpNode = left;
+ left = tmpNode.left;
+ tmpNode.left = tmpNode.right;
+ tmpNode.right = right;
+ right = tmpNode;
+
+ if (left != null) {
+ left.parent = this;
+ }
+ if (right.right != null) {
+ right.right.parent = right;
+ }
+
+ }
+
+ /** Perform a counter-clockwise rotation rooted at the instance.
+ * <p>The skew factor are not updated by this method, they
+ * <em>must</em> be updated by the caller</p>
+ */
+ private void rotateCCW() {
+
+ final T tmpElt = element;
+ element = right.element;
+ right.element = tmpElt;
+
+ final Node tmpNode = right;
+ right = tmpNode.right;
+ tmpNode.right = tmpNode.left;
+ tmpNode.left = left;
+ left = tmpNode;
+
+ if (right != null) {
+ right.parent = this;
+ }
+ if (left.left != null) {
+ left.left.parent = left;
+ }
+
+ }
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java
new file mode 100644
index 0000000..2dad2d7
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java
@@ -0,0 +1,431 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning.utilities;
+
+import java.util.Arrays;
+
+import org.apache.commons.math3.util.FastMath;
+
+/** This class implements an ordering operation for T-uples.
+ *
+ * <p>Ordering is done by encoding all components of the T-uple into a
+ * single scalar value and using this value as the sorting
+ * key. Encoding is performed using the method invented by Georg
+ * Cantor in 1877 when he proved it was possible to establish a
+ * bijection between a line and a plane. The binary representations of
+ * the components of the T-uple are mixed together to form a single
+ * scalar. This means that the 2<sup>k</sup> bit of component 0 is
+ * followed by the 2<sup>k</sup> bit of component 1, then by the
+ * 2<sup>k</sup> bit of component 2 up to the 2<sup>k</sup> bit of
+ * component {@code t}, which is followed by the 2<sup>k-1</sup>
+ * bit of component 0, followed by the 2<sup>k-1</sup> bit of
+ * component 1 ... The binary representations are extended as needed
+ * to handle numbers with different scales and a suitable
+ * 2<sup>p</sup> offset is added to the components in order to avoid
+ * negative numbers (this offset is adjusted as needed during the
+ * comparison operations).</p>
+ *
+ * <p>The more interesting property of the encoding method for our
+ * purpose is that it allows to select all the points that are in a
+ * given range. This is depicted in dimension 2 by the following
+ * picture:</p>
+ *
+ * <img src="doc-files/OrderedTuple.png" />
+ *
+ * <p>This picture shows a set of 100000 random 2-D pairs having their
+ * first component between -50 and +150 and their second component
+ * between -350 and +50. We wanted to extract all pairs having their
+ * first component between +30 and +70 and their second component
+ * between -120 and -30. We built the lower left point at coordinates
+ * (30, -120) and the upper right point at coordinates (70, -30). All
+ * points smaller than the lower left point are drawn in red and all
+ * points larger than the upper right point are drawn in blue. The
+ * green points are between the two limits. This picture shows that
+ * all the desired points are selected, along with spurious points. In
+ * this case, we get 15790 points, 4420 of which really belonging to
+ * the desired rectangle. It is possible to extract very small
+ * subsets. As an example extracting from the same 100000 points set
+ * the points having their first component between +30 and +31 and
+ * their second component between -91 and -90, we get a subset of 11
+ * points, 2 of which really belonging to the desired rectangle.</p>
+ *
+ * <p>the previous selection technique can be applied in all
+ * dimensions, still using two points to define the interval. The
+ * first point will have all its components set to their lower bounds
+ * while the second point will have all its components set to their
+ * upper bounds.</p>
+ *
+ * <p>T-uples with negative infinite or positive infinite components
+ * are sorted logically.</p>
+ *
+ * <p>Since the specification of the {@code Comparator} interface
+ * allows only {@code ClassCastException} errors, some arbitrary
+ * choices have been made to handle specific cases. The rationale for
+ * these choices is to keep <em>regular</em> and consistent T-uples
+ * together.</p>
+ * <ul>
+ * <li>instances with different dimensions are sorted according to
+ * their dimension regardless of their components values</li>
+ * <li>instances with {@code Double.NaN} components are sorted
+ * after all other ones (even after instances with positive infinite
+ * components</li>
+ * <li>instances with both positive and negative infinite components
+ * are considered as if they had {@code Double.NaN}
+ * components</li>
+ * </ul>
+ *
+ * @since 3.0
+ * @deprecated as of 3.4, this class is not used anymore and considered
+ * to be out of scope of Apache Commons Math
+ */
+@Deprecated
+public class OrderedTuple implements Comparable<OrderedTuple> {
+
+ /** Sign bit mask. */
+ private static final long SIGN_MASK = 0x8000000000000000L;
+
+ /** Exponent bits mask. */
+ private static final long EXPONENT_MASK = 0x7ff0000000000000L;
+
+ /** Mantissa bits mask. */
+ private static final long MANTISSA_MASK = 0x000fffffffffffffL;
+
+ /** Implicit MSB for normalized numbers. */
+ private static final long IMPLICIT_ONE = 0x0010000000000000L;
+
+ /** Double components of the T-uple. */
+ private double[] components;
+
+ /** Offset scale. */
+ private int offset;
+
+ /** Least Significant Bit scale. */
+ private int lsb;
+
+ /** Ordering encoding of the double components. */
+ private long[] encoding;
+
+ /** Positive infinity marker. */
+ private boolean posInf;
+
+ /** Negative infinity marker. */
+ private boolean negInf;
+
+ /** Not A Number marker. */
+ private boolean nan;
+
+ /** Build an ordered T-uple from its components.
+ * @param components double components of the T-uple
+ */
+ public OrderedTuple(final double ... components) {
+ this.components = components.clone();
+ int msb = Integer.MIN_VALUE;
+ lsb = Integer.MAX_VALUE;
+ posInf = false;
+ negInf = false;
+ nan = false;
+ for (int i = 0; i < components.length; ++i) {
+ if (Double.isInfinite(components[i])) {
+ if (components[i] < 0) {
+ negInf = true;
+ } else {
+ posInf = true;
+ }
+ } else if (Double.isNaN(components[i])) {
+ nan = true;
+ } else {
+ final long b = Double.doubleToLongBits(components[i]);
+ final long m = mantissa(b);
+ if (m != 0) {
+ final int e = exponent(b);
+ msb = FastMath.max(msb, e + computeMSB(m));
+ lsb = FastMath.min(lsb, e + computeLSB(m));
+ }
+ }
+ }
+
+ if (posInf && negInf) {
+ // instance cannot be sorted logically
+ posInf = false;
+ negInf = false;
+ nan = true;
+ }
+
+ if (lsb <= msb) {
+ // encode the T-upple with the specified offset
+ encode(msb + 16);
+ } else {
+ encoding = new long[] {
+ 0x0L
+ };
+ }
+
+ }
+
+ /** Encode the T-uple with a given offset.
+ * @param minOffset minimal scale of the offset to add to all
+ * components (must be greater than the MSBs of all components)
+ */
+ private void encode(final int minOffset) {
+
+ // choose an offset with some margins
+ offset = minOffset + 31;
+ offset -= offset % 32;
+
+ if ((encoding != null) && (encoding.length == 1) && (encoding[0] == 0x0L)) {
+ // the components are all zeroes
+ return;
+ }
+
+ // allocate an integer array to encode the components (we use only
+ // 63 bits per element because there is no unsigned long in Java)
+ final int neededBits = offset + 1 - lsb;
+ final int neededLongs = (neededBits + 62) / 63;
+ encoding = new long[components.length * neededLongs];
+
+ // mix the bits from all components
+ int eIndex = 0;
+ int shift = 62;
+ long word = 0x0L;
+ for (int k = offset; eIndex < encoding.length; --k) {
+ for (int vIndex = 0; vIndex < components.length; ++vIndex) {
+ if (getBit(vIndex, k) != 0) {
+ word |= 0x1L << shift;
+ }
+ if (shift-- == 0) {
+ encoding[eIndex++] = word;
+ word = 0x0L;
+ shift = 62;
+ }
+ }
+ }
+
+ }
+
+ /** Compares this ordered T-uple with the specified object.
+
+ * <p>The ordering method is detailed in the general description of
+ * the class. Its main property is to be consistent with distance:
+ * geometrically close T-uples stay close to each other when stored
+ * in a sorted collection using this comparison method.</p>
+
+ * <p>T-uples with negative infinite, positive infinite are sorted
+ * logically.</p>
+
+ * <p>Some arbitrary choices have been made to handle specific
+ * cases. The rationale for these choices is to keep
+ * <em>normal</em> and consistent T-uples together.</p>
+ * <ul>
+ * <li>instances with different dimensions are sorted according to
+ * their dimension regardless of their components values</li>
+ * <li>instances with {@code Double.NaN} components are sorted
+ * after all other ones (evan after instances with positive infinite
+ * components</li>
+ * <li>instances with both positive and negative infinite components
+ * are considered as if they had {@code Double.NaN}
+ * components</li>
+ * </ul>
+
+ * @param ot T-uple to compare instance with
+ * @return a negative integer if the instance is less than the
+ * object, zero if they are equal, or a positive integer if the
+ * instance is greater than the object
+
+ */
+ public int compareTo(final OrderedTuple ot) {
+ if (components.length == ot.components.length) {
+ if (nan) {
+ return +1;
+ } else if (ot.nan) {
+ return -1;
+ } else if (negInf || ot.posInf) {
+ return -1;
+ } else if (posInf || ot.negInf) {
+ return +1;
+ } else {
+
+ if (offset < ot.offset) {
+ encode(ot.offset);
+ } else if (offset > ot.offset) {
+ ot.encode(offset);
+ }
+
+ final int limit = FastMath.min(encoding.length, ot.encoding.length);
+ for (int i = 0; i < limit; ++i) {
+ if (encoding[i] < ot.encoding[i]) {
+ return -1;
+ } else if (encoding[i] > ot.encoding[i]) {
+ return +1;
+ }
+ }
+
+ if (encoding.length < ot.encoding.length) {
+ return -1;
+ } else if (encoding.length > ot.encoding.length) {
+ return +1;
+ } else {
+ return 0;
+ }
+
+ }
+ }
+
+ return components.length - ot.components.length;
+
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean equals(final Object other) {
+ if (this == other) {
+ return true;
+ } else if (other instanceof OrderedTuple) {
+ return compareTo((OrderedTuple) other) == 0;
+ } else {
+ return false;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public int hashCode() {
+ // the following constants are arbitrary small primes
+ final int multiplier = 37;
+ final int trueHash = 97;
+ final int falseHash = 71;
+
+ // hash fields and combine them
+ // (we rely on the multiplier to have different combined weights
+ // for all int fields and all boolean fields)
+ int hash = Arrays.hashCode(components);
+ hash = hash * multiplier + offset;
+ hash = hash * multiplier + lsb;
+ hash = hash * multiplier + (posInf ? trueHash : falseHash);
+ hash = hash * multiplier + (negInf ? trueHash : falseHash);
+ hash = hash * multiplier + (nan ? trueHash : falseHash);
+
+ return hash;
+
+ }
+
+ /** Get the components array.
+ * @return array containing the T-uple components
+ */
+ public double[] getComponents() {
+ return components.clone();
+ }
+
+ /** Extract the sign from the bits of a double.
+ * @param bits binary representation of the double
+ * @return sign bit (zero if positive, non zero if negative)
+ */
+ private static long sign(final long bits) {
+ return bits & SIGN_MASK;
+ }
+
+ /** Extract the exponent from the bits of a double.
+ * @param bits binary representation of the double
+ * @return exponent
+ */
+ private static int exponent(final long bits) {
+ return ((int) ((bits & EXPONENT_MASK) >> 52)) - 1075;
+ }
+
+ /** Extract the mantissa from the bits of a double.
+ * @param bits binary representation of the double
+ * @return mantissa
+ */
+ private static long mantissa(final long bits) {
+ return ((bits & EXPONENT_MASK) == 0) ?
+ ((bits & MANTISSA_MASK) << 1) : // subnormal number
+ (IMPLICIT_ONE | (bits & MANTISSA_MASK)); // normal number
+ }
+
+ /** Compute the most significant bit of a long.
+ * @param l long from which the most significant bit is requested
+ * @return scale of the most significant bit of {@code l},
+ * or 0 if {@code l} is zero
+ * @see #computeLSB
+ */
+ private static int computeMSB(final long l) {
+
+ long ll = l;
+ long mask = 0xffffffffL;
+ int scale = 32;
+ int msb = 0;
+
+ while (scale != 0) {
+ if ((ll & mask) != ll) {
+ msb |= scale;
+ ll >>= scale;
+ }
+ scale >>= 1;
+ mask >>= scale;
+ }
+
+ return msb;
+
+ }
+
+ /** Compute the least significant bit of a long.
+ * @param l long from which the least significant bit is requested
+ * @return scale of the least significant bit of {@code l},
+ * or 63 if {@code l} is zero
+ * @see #computeMSB
+ */
+ private static int computeLSB(final long l) {
+
+ long ll = l;
+ long mask = 0xffffffff00000000L;
+ int scale = 32;
+ int lsb = 0;
+
+ while (scale != 0) {
+ if ((ll & mask) == ll) {
+ lsb |= scale;
+ ll >>= scale;
+ }
+ scale >>= 1;
+ mask >>= scale;
+ }
+
+ return lsb;
+
+ }
+
+ /** Get a bit from the mantissa of a double.
+ * @param i index of the component
+ * @param k scale of the requested bit
+ * @return the specified bit (either 0 or 1), after the offset has
+ * been added to the double
+ */
+ private int getBit(final int i, final int k) {
+ final long bits = Double.doubleToLongBits(components[i]);
+ final int e = exponent(bits);
+ if ((k < e) || (k > offset)) {
+ return 0;
+ } else if (k == offset) {
+ return (sign(bits) == 0L) ? 1 : 0;
+ } else if (k > (e + 52)) {
+ return (sign(bits) == 0L) ? 0 : 1;
+ } else {
+ final long m = (sign(bits) == 0L) ? mantissa(bits) : -mantissa(bits);
+ return (int) ((m >> (k - e)) & 0x1L);
+ }
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.png b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.png
new file mode 100644
index 0000000..4eca233
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.png
Binary files differ
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java
new file mode 100644
index 0000000..31f57f1
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java
@@ -0,0 +1,24 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * <p>
+ * This package provides multidimensional ordering features for partitioning.
+ * </p>
+ *
+ */
+package org.apache.commons.math3.geometry.partitioning.utilities;