summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java360
1 files changed, 360 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java b/src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java
new file mode 100644
index 0000000..e6950d2
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/ContinuousOutputFieldModel.java
@@ -0,0 +1,360 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode;
+
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MathIllegalArgumentException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.ode.sampling.FieldStepHandler;
+import org.apache.commons.math3.ode.sampling.FieldStepInterpolator;
+import org.apache.commons.math3.util.FastMath;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * This class stores all information provided by an ODE integrator during the integration process
+ * and build a continuous model of the solution from this.
+ *
+ * <p>This class act as a step handler from the integrator point of view. It is called iteratively
+ * during the integration process and stores a copy of all steps information in a sorted collection
+ * for later use. Once the integration process is over, the user can use the {@link
+ * #getInterpolatedState(RealFieldElement) getInterpolatedState} method to retrieve this information
+ * at any time. It is important to wait for the integration to be over before attempting to call
+ * {@link #getInterpolatedState(RealFieldElement)} because some internal variables are set only once
+ * the last step has been handled.
+ *
+ * <p>This is useful for example if the main loop of the user application should remain independent
+ * from the integration process or if one needs to mimic the behaviour of an analytical model
+ * despite a numerical model is used (i.e. one needs the ability to get the model value at any time
+ * or to navigate through the data).
+ *
+ * <p>If problem modeling is done with several separate integration phases for contiguous intervals,
+ * the same ContinuousOutputModel can be used as step handler for all integration phases as long as
+ * they are performed in order and in the same direction. As an example, one can extrapolate the
+ * trajectory of a satellite with one model (i.e. one set of differential equations) up to the
+ * beginning of a maneuver, use another more complex model including thrusters modeling and accurate
+ * attitude control during the maneuver, and revert to the first model after the end of the
+ * maneuver. If the same continuous output model handles the steps of all integration phases, the
+ * user do not need to bother when the maneuver begins or ends, he has all the data available in a
+ * transparent manner.
+ *
+ * <p>One should be aware that the amount of data stored in a ContinuousOutputFieldModel instance
+ * can be important if the state vector is large, if the integration interval is long or if the
+ * steps are small (which can result from small tolerance settings in {@link
+ * org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeFieldIntegrator adaptive step size
+ * integrators}).
+ *
+ * @see FieldStepHandler
+ * @see FieldStepInterpolator
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+public class ContinuousOutputFieldModel<T extends RealFieldElement<T>>
+ implements FieldStepHandler<T> {
+
+ /** Initial integration time. */
+ private T initialTime;
+
+ /** Final integration time. */
+ private T finalTime;
+
+ /** Integration direction indicator. */
+ private boolean forward;
+
+ /** Current interpolator index. */
+ private int index;
+
+ /** Steps table. */
+ private List<FieldStepInterpolator<T>> steps;
+
+ /** Simple constructor. Build an empty continuous output model. */
+ public ContinuousOutputFieldModel() {
+ steps = new ArrayList<FieldStepInterpolator<T>>();
+ initialTime = null;
+ finalTime = null;
+ forward = true;
+ index = 0;
+ }
+
+ /**
+ * Append another model at the end of the instance.
+ *
+ * @param model model to add at the end of the instance
+ * @exception MathIllegalArgumentException if the model to append is not compatible with the
+ * instance (dimension of the state vector, propagation direction, hole between the dates)
+ * @exception DimensionMismatchException if the dimensions of the states or the number of
+ * secondary states do not match
+ * @exception MaxCountExceededException if the number of functions evaluations is exceeded
+ * during step finalization
+ */
+ public void append(final ContinuousOutputFieldModel<T> model)
+ throws MathIllegalArgumentException, MaxCountExceededException {
+
+ if (model.steps.size() == 0) {
+ return;
+ }
+
+ if (steps.size() == 0) {
+ initialTime = model.initialTime;
+ forward = model.forward;
+ } else {
+
+ // safety checks
+ final FieldODEStateAndDerivative<T> s1 = steps.get(0).getPreviousState();
+ final FieldODEStateAndDerivative<T> s2 = model.steps.get(0).getPreviousState();
+ checkDimensionsEquality(s1.getStateDimension(), s2.getStateDimension());
+ checkDimensionsEquality(
+ s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates());
+ for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) {
+ checkDimensionsEquality(
+ s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i));
+ }
+
+ if (forward ^ model.forward) {
+ throw new MathIllegalArgumentException(
+ LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
+ }
+
+ final FieldStepInterpolator<T> lastInterpolator = steps.get(index);
+ final T current = lastInterpolator.getCurrentState().getTime();
+ final T previous = lastInterpolator.getPreviousState().getTime();
+ final T step = current.subtract(previous);
+ final T gap = model.getInitialTime().subtract(current);
+ if (gap.abs().subtract(step.abs().multiply(1.0e-3)).getReal() > 0) {
+ throw new MathIllegalArgumentException(
+ LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES, gap.abs().getReal());
+ }
+ }
+
+ for (FieldStepInterpolator<T> interpolator : model.steps) {
+ steps.add(interpolator);
+ }
+
+ index = steps.size() - 1;
+ finalTime = (steps.get(index)).getCurrentState().getTime();
+ }
+
+ /**
+ * Check dimensions equality.
+ *
+ * @param d1 first dimension
+ * @param d2 second dimansion
+ * @exception DimensionMismatchException if dimensions do not match
+ */
+ private void checkDimensionsEquality(final int d1, final int d2)
+ throws DimensionMismatchException {
+ if (d1 != d2) {
+ throw new DimensionMismatchException(d2, d1);
+ }
+ }
+
+ /** {@inheritDoc} */
+ public void init(final FieldODEStateAndDerivative<T> initialState, final T t) {
+ initialTime = initialState.getTime();
+ finalTime = t;
+ forward = true;
+ index = 0;
+ steps.clear();
+ }
+
+ /**
+ * Handle the last accepted step. A copy of the information provided by the last step is stored
+ * in the instance for later use.
+ *
+ * @param interpolator interpolator for the last accepted step.
+ * @param isLast true if the step is the last one
+ * @exception MaxCountExceededException if the number of functions evaluations is exceeded
+ * during step finalization
+ */
+ public void handleStep(final FieldStepInterpolator<T> interpolator, final boolean isLast)
+ throws MaxCountExceededException {
+
+ if (steps.size() == 0) {
+ initialTime = interpolator.getPreviousState().getTime();
+ forward = interpolator.isForward();
+ }
+
+ steps.add(interpolator);
+
+ if (isLast) {
+ finalTime = interpolator.getCurrentState().getTime();
+ index = steps.size() - 1;
+ }
+ }
+
+ /**
+ * Get the initial integration time.
+ *
+ * @return initial integration time
+ */
+ public T getInitialTime() {
+ return initialTime;
+ }
+
+ /**
+ * Get the final integration time.
+ *
+ * @return final integration time
+ */
+ public T getFinalTime() {
+ return finalTime;
+ }
+
+ /**
+ * Get the state at interpolated time.
+ *
+ * @param time time of the interpolated point
+ * @return state at interpolated time
+ */
+ public FieldODEStateAndDerivative<T> getInterpolatedState(final T time) {
+
+ // initialize the search with the complete steps table
+ int iMin = 0;
+ final FieldStepInterpolator<T> sMin = steps.get(iMin);
+ T tMin =
+ sMin.getPreviousState()
+ .getTime()
+ .add(sMin.getCurrentState().getTime())
+ .multiply(0.5);
+
+ int iMax = steps.size() - 1;
+ final FieldStepInterpolator<T> sMax = steps.get(iMax);
+ T tMax =
+ sMax.getPreviousState()
+ .getTime()
+ .add(sMax.getCurrentState().getTime())
+ .multiply(0.5);
+
+ // handle points outside of the integration interval
+ // or in the first and last step
+ if (locatePoint(time, sMin) <= 0) {
+ index = iMin;
+ return sMin.getInterpolatedState(time);
+ }
+ if (locatePoint(time, sMax) >= 0) {
+ index = iMax;
+ return sMax.getInterpolatedState(time);
+ }
+
+ // reduction of the table slice size
+ while (iMax - iMin > 5) {
+
+ // use the last estimated index as the splitting index
+ final FieldStepInterpolator<T> si = steps.get(index);
+ final int location = locatePoint(time, si);
+ if (location < 0) {
+ iMax = index;
+ tMax =
+ si.getPreviousState()
+ .getTime()
+ .add(si.getCurrentState().getTime())
+ .multiply(0.5);
+ } else if (location > 0) {
+ iMin = index;
+ tMin =
+ si.getPreviousState()
+ .getTime()
+ .add(si.getCurrentState().getTime())
+ .multiply(0.5);
+ } else {
+ // we have found the target step, no need to continue searching
+ return si.getInterpolatedState(time);
+ }
+
+ // compute a new estimate of the index in the reduced table slice
+ final int iMed = (iMin + iMax) / 2;
+ final FieldStepInterpolator<T> sMed = steps.get(iMed);
+ final T tMed =
+ sMed.getPreviousState()
+ .getTime()
+ .add(sMed.getCurrentState().getTime())
+ .multiply(0.5);
+
+ if (tMed.subtract(tMin).abs().subtract(1.0e-6).getReal() < 0
+ || tMax.subtract(tMed).abs().subtract(1.0e-6).getReal() < 0) {
+ // too close to the bounds, we estimate using a simple dichotomy
+ index = iMed;
+ } else {
+ // estimate the index using a reverse quadratic polynomial
+ // (reverse means we have i = P(t), thus allowing to simply
+ // compute index = P(time) rather than solving a quadratic equation)
+ final T d12 = tMax.subtract(tMed);
+ final T d23 = tMed.subtract(tMin);
+ final T d13 = tMax.subtract(tMin);
+ final T dt1 = time.subtract(tMax);
+ final T dt2 = time.subtract(tMed);
+ final T dt3 = time.subtract(tMin);
+ final T iLagrange =
+ dt2.multiply(dt3)
+ .multiply(d23)
+ .multiply(iMax)
+ .subtract(dt1.multiply(dt3).multiply(d13).multiply(iMed))
+ .add(dt1.multiply(dt2).multiply(d12).multiply(iMin))
+ .divide(d12.multiply(d23).multiply(d13));
+ index = (int) FastMath.rint(iLagrange.getReal());
+ }
+
+ // force the next size reduction to be at least one tenth
+ final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
+ final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
+ if (index < low) {
+ index = low;
+ } else if (index > high) {
+ index = high;
+ }
+ }
+
+ // now the table slice is very small, we perform an iterative search
+ index = iMin;
+ while (index <= iMax && locatePoint(time, steps.get(index)) > 0) {
+ ++index;
+ }
+
+ return steps.get(index).getInterpolatedState(time);
+ }
+
+ /**
+ * Compare a step interval and a double.
+ *
+ * @param time point to locate
+ * @param interval step interval
+ * @return -1 if the double is before the interval, 0 if it is in the interval, and +1 if it is
+ * after the interval, according to the interval direction
+ */
+ private int locatePoint(final T time, final FieldStepInterpolator<T> interval) {
+ if (forward) {
+ if (time.subtract(interval.getPreviousState().getTime()).getReal() < 0) {
+ return -1;
+ } else if (time.subtract(interval.getCurrentState().getTime()).getReal() > 0) {
+ return +1;
+ } else {
+ return 0;
+ }
+ }
+ if (time.subtract(interval.getPreviousState().getTime()).getReal() > 0) {
+ return -1;
+ } else if (time.subtract(interval.getCurrentState().getTime()).getReal() < 0) {
+ return +1;
+ } else {
+ return 0;
+ }
+ }
+}