summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/MultistepIntegrator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/MultistepIntegrator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/MultistepIntegrator.java496
1 files changed, 496 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/MultistepIntegrator.java b/src/main/java/org/apache/commons/math3/ode/MultistepIntegrator.java
new file mode 100644
index 0000000..fd76124
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/MultistepIntegrator.java
@@ -0,0 +1,496 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode;
+
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.NoBracketingException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeIntegrator;
+import org.apache.commons.math3.ode.nonstiff.DormandPrince853Integrator;
+import org.apache.commons.math3.ode.sampling.StepHandler;
+import org.apache.commons.math3.ode.sampling.StepInterpolator;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * This class is the base class for multistep integrators for Ordinary Differential Equations.
+ *
+ * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
+ *
+ * <pre>
+ * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
+ * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
+ * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
+ * ...
+ * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
+ * </pre>
+ *
+ * <p>Rather than storing several previous steps separately, this implementation uses the Nordsieck
+ * vector with higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>,
+ * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
+ *
+ * <pre>
+ * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
+ * </pre>
+ *
+ * (we omit the k index in the notation for clarity)
+ *
+ * <p>Multistep integrators with Nordsieck representation are highly sensitive to large step changes
+ * because when the step is multiplied by factor a, the k<sup>th</sup> component of the Nordsieck
+ * vector is multiplied by a<sup>k</sup> and the last components are the least accurate ones. The
+ * default max growth factor is therefore set to a quite low value: 2<sup>1/order</sup>.
+ *
+ * @see org.apache.commons.math3.ode.nonstiff.AdamsBashforthIntegrator
+ * @see org.apache.commons.math3.ode.nonstiff.AdamsMoultonIntegrator
+ * @since 2.0
+ */
+public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator {
+
+ /** First scaled derivative (h y'). */
+ protected double[] scaled;
+
+ /**
+ * Nordsieck matrix of the higher scaled derivatives.
+ *
+ * <p>(h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ..., h<sup>k</sup>/k! y<sup>(k)</sup>)
+ */
+ protected Array2DRowRealMatrix nordsieck;
+
+ /** Starter integrator. */
+ private FirstOrderIntegrator starter;
+
+ /** Number of steps of the multistep method (excluding the one being computed). */
+ private final int nSteps;
+
+ /** Stepsize control exponent. */
+ private double exp;
+
+ /** Safety factor for stepsize control. */
+ private double safety;
+
+ /** Minimal reduction factor for stepsize control. */
+ private double minReduction;
+
+ /** Maximal growth factor for stepsize control. */
+ private double maxGrowth;
+
+ /**
+ * Build a multistep integrator with the given stepsize bounds.
+ *
+ * <p>The default starter integrator is set to the {@link DormandPrince853Integrator
+ * Dormand-Prince 8(5,3)} integrator with some defaults settings.
+ *
+ * <p>The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
+ *
+ * @param name name of the method
+ * @param nSteps number of steps of the multistep method (excluding the one being computed)
+ * @param order order of the method
+ * @param minStep minimal step (must be positive even for backward integration), the last step
+ * can be smaller than this
+ * @param maxStep maximal step (must be positive even for backward integration)
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ * @exception NumberIsTooSmallException if number of steps is smaller than 2
+ */
+ protected MultistepIntegrator(
+ final String name,
+ final int nSteps,
+ final int order,
+ final double minStep,
+ final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance)
+ throws NumberIsTooSmallException {
+
+ super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+
+ if (nSteps < 2) {
+ throw new NumberIsTooSmallException(
+ LocalizedFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
+ nSteps,
+ 2,
+ true);
+ }
+
+ starter =
+ new DormandPrince853Integrator(
+ minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+ this.nSteps = nSteps;
+
+ exp = -1.0 / order;
+
+ // set the default values of the algorithm control parameters
+ setSafety(0.9);
+ setMinReduction(0.2);
+ setMaxGrowth(FastMath.pow(2.0, -exp));
+ }
+
+ /**
+ * Build a multistep integrator with the given stepsize bounds.
+ *
+ * <p>The default starter integrator is set to the {@link DormandPrince853Integrator
+ * Dormand-Prince 8(5,3)} integrator with some defaults settings.
+ *
+ * <p>The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
+ *
+ * @param name name of the method
+ * @param nSteps number of steps of the multistep method (excluding the one being computed)
+ * @param order order of the method
+ * @param minStep minimal step (must be positive even for backward integration), the last step
+ * can be smaller than this
+ * @param maxStep maximal step (must be positive even for backward integration)
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ */
+ protected MultistepIntegrator(
+ final String name,
+ final int nSteps,
+ final int order,
+ final double minStep,
+ final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance) {
+ super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+ starter =
+ new DormandPrince853Integrator(
+ minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+ this.nSteps = nSteps;
+
+ exp = -1.0 / order;
+
+ // set the default values of the algorithm control parameters
+ setSafety(0.9);
+ setMinReduction(0.2);
+ setMaxGrowth(FastMath.pow(2.0, -exp));
+ }
+
+ /**
+ * Get the starter integrator.
+ *
+ * @return starter integrator
+ */
+ public ODEIntegrator getStarterIntegrator() {
+ return starter;
+ }
+
+ /**
+ * Set the starter integrator.
+ *
+ * <p>The various step and event handlers for this starter integrator will be managed
+ * automatically by the multi-step integrator. Any user configuration for these elements will be
+ * cleared before use.
+ *
+ * @param starterIntegrator starter integrator
+ */
+ public void setStarterIntegrator(FirstOrderIntegrator starterIntegrator) {
+ this.starter = starterIntegrator;
+ }
+
+ /**
+ * Start the integration.
+ *
+ * <p>This method computes one step using the underlying starter integrator, and initializes the
+ * Nordsieck vector at step start. The starter integrator purpose is only to establish initial
+ * conditions, it does not really change time by itself. The top level multistep integrator
+ * remains in charge of handling time propagation and events handling as it will starts its own
+ * computation right from the beginning. In a sense, the starter integrator can be seen as a
+ * dummy one and so it will never trigger any user event nor call any user step handler.
+ *
+ * @param t0 initial time
+ * @param y0 initial value of the state vector at t0
+ * @param t target time for the integration (can be set to a value smaller than <code>t0</code>
+ * for backward integration)
+ * @exception DimensionMismatchException if arrays dimension do not match equations settings
+ * @exception NumberIsTooSmallException if integration step is too small
+ * @exception MaxCountExceededException if the number of functions evaluations is exceeded
+ * @exception NoBracketingException if the location of an event cannot be bracketed
+ */
+ protected void start(final double t0, final double[] y0, final double t)
+ throws DimensionMismatchException,
+ NumberIsTooSmallException,
+ MaxCountExceededException,
+ NoBracketingException {
+
+ // make sure NO user event nor user step handler is triggered,
+ // this is the task of the top level integrator, not the task
+ // of the starter integrator
+ starter.clearEventHandlers();
+ starter.clearStepHandlers();
+
+ // set up one specific step handler to extract initial Nordsieck vector
+ starter.addStepHandler(new NordsieckInitializer((nSteps + 3) / 2, y0.length));
+
+ // start integration, expecting a InitializationCompletedMarkerException
+ try {
+
+ if (starter instanceof AbstractIntegrator) {
+ ((AbstractIntegrator) starter).integrate(getExpandable(), t);
+ } else {
+ starter.integrate(
+ new FirstOrderDifferentialEquations() {
+
+ /** {@inheritDoc} */
+ public int getDimension() {
+ return getExpandable().getTotalDimension();
+ }
+
+ /** {@inheritDoc} */
+ public void computeDerivatives(double t, double[] y, double[] yDot) {
+ getExpandable().computeDerivatives(t, y, yDot);
+ }
+ },
+ t0,
+ y0,
+ t,
+ new double[y0.length]);
+ }
+
+ // we should not reach this step
+ throw new MathIllegalStateException(LocalizedFormats.MULTISTEP_STARTER_STOPPED_EARLY);
+
+ } catch (InitializationCompletedMarkerException icme) { // NOPMD
+ // this is the expected nominal interruption of the start integrator
+
+ // count the evaluations used by the starter
+ getCounter().increment(starter.getEvaluations());
+ }
+
+ // remove the specific step handler
+ starter.clearStepHandlers();
+ }
+
+ /**
+ * Initialize the high order scaled derivatives at step start.
+ *
+ * @param h step size to use for scaling
+ * @param t first steps times
+ * @param y first steps states
+ * @param yDot first steps derivatives
+ * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>, h<sup>3</sup>/6
+ * y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
+ */
+ protected abstract Array2DRowRealMatrix initializeHighOrderDerivatives(
+ final double h, final double[] t, final double[][] y, final double[][] yDot);
+
+ /**
+ * Get the minimal reduction factor for stepsize control.
+ *
+ * @return minimal reduction factor
+ */
+ public double getMinReduction() {
+ return minReduction;
+ }
+
+ /**
+ * Set the minimal reduction factor for stepsize control.
+ *
+ * @param minReduction minimal reduction factor
+ */
+ public void setMinReduction(final double minReduction) {
+ this.minReduction = minReduction;
+ }
+
+ /**
+ * Get the maximal growth factor for stepsize control.
+ *
+ * @return maximal growth factor
+ */
+ public double getMaxGrowth() {
+ return maxGrowth;
+ }
+
+ /**
+ * Set the maximal growth factor for stepsize control.
+ *
+ * @param maxGrowth maximal growth factor
+ */
+ public void setMaxGrowth(final double maxGrowth) {
+ this.maxGrowth = maxGrowth;
+ }
+
+ /**
+ * Get the safety factor for stepsize control.
+ *
+ * @return safety factor
+ */
+ public double getSafety() {
+ return safety;
+ }
+
+ /**
+ * Set the safety factor for stepsize control.
+ *
+ * @param safety safety factor
+ */
+ public void setSafety(final double safety) {
+ this.safety = safety;
+ }
+
+ /**
+ * Get the number of steps of the multistep method (excluding the one being computed).
+ *
+ * @return number of steps of the multistep method (excluding the one being computed)
+ */
+ public int getNSteps() {
+ return nSteps;
+ }
+
+ /**
+ * Compute step grow/shrink factor according to normalized error.
+ *
+ * @param error normalized error of the current step
+ * @return grow/shrink factor for next step
+ */
+ protected double computeStepGrowShrinkFactor(final double error) {
+ return FastMath.min(
+ maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
+ }
+
+ /**
+ * Transformer used to convert the first step to Nordsieck representation.
+ *
+ * @deprecated as of 3.6 this unused interface is deprecated
+ */
+ @Deprecated
+ public interface NordsieckTransformer {
+ /**
+ * Initialize the high order scaled derivatives at step start.
+ *
+ * @param h step size to use for scaling
+ * @param t first steps times
+ * @param y first steps states
+ * @param yDot first steps derivatives
+ * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>, h<sup>3</sup>/6
+ * y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
+ */
+ Array2DRowRealMatrix initializeHighOrderDerivatives(
+ final double h, final double[] t, final double[][] y, final double[][] yDot);
+ }
+
+ /** Specialized step handler storing the first step. */
+ private class NordsieckInitializer implements StepHandler {
+
+ /** Steps counter. */
+ private int count;
+
+ /** First steps times. */
+ private final double[] t;
+
+ /** First steps states. */
+ private final double[][] y;
+
+ /** First steps derivatives. */
+ private final double[][] yDot;
+
+ /**
+ * Simple constructor.
+ *
+ * @param nbStartPoints number of start points (including the initial point)
+ * @param n problem dimension
+ */
+ NordsieckInitializer(final int nbStartPoints, final int n) {
+ this.count = 0;
+ this.t = new double[nbStartPoints];
+ this.y = new double[nbStartPoints][n];
+ this.yDot = new double[nbStartPoints][n];
+ }
+
+ /** {@inheritDoc} */
+ public void handleStep(StepInterpolator interpolator, boolean isLast)
+ throws MaxCountExceededException {
+
+ final double prev = interpolator.getPreviousTime();
+ final double curr = interpolator.getCurrentTime();
+
+ if (count == 0) {
+ // first step, we need to store also the point at the beginning of the step
+ interpolator.setInterpolatedTime(prev);
+ t[0] = prev;
+ final ExpandableStatefulODE expandable = getExpandable();
+ final EquationsMapper primary = expandable.getPrimaryMapper();
+ primary.insertEquationData(interpolator.getInterpolatedState(), y[count]);
+ primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]);
+ int index = 0;
+ for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
+ secondary.insertEquationData(
+ interpolator.getInterpolatedSecondaryState(index), y[count]);
+ secondary.insertEquationData(
+ interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]);
+ ++index;
+ }
+ }
+
+ // store the point at the end of the step
+ ++count;
+ interpolator.setInterpolatedTime(curr);
+ t[count] = curr;
+
+ final ExpandableStatefulODE expandable = getExpandable();
+ final EquationsMapper primary = expandable.getPrimaryMapper();
+ primary.insertEquationData(interpolator.getInterpolatedState(), y[count]);
+ primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]);
+ int index = 0;
+ for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
+ secondary.insertEquationData(
+ interpolator.getInterpolatedSecondaryState(index), y[count]);
+ secondary.insertEquationData(
+ interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]);
+ ++index;
+ }
+
+ if (count == t.length - 1) {
+
+ // this was the last point we needed, we can compute the derivatives
+ stepStart = t[0];
+ stepSize = (t[t.length - 1] - t[0]) / (t.length - 1);
+
+ // first scaled derivative
+ scaled = yDot[0].clone();
+ for (int j = 0; j < scaled.length; ++j) {
+ scaled[j] *= stepSize;
+ }
+
+ // higher order derivatives
+ nordsieck = initializeHighOrderDerivatives(stepSize, t, y, yDot);
+
+ // stop the integrator now that all needed steps have been handled
+ throw new InitializationCompletedMarkerException();
+ }
+ }
+
+ /** {@inheritDoc} */
+ public void init(double t0, double[] y0, double time) {
+ // nothing to do
+ }
+ }
+
+ /** Marker exception used ONLY to stop the starter integrator after first step. */
+ private static class InitializationCompletedMarkerException extends RuntimeException {
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -1914085471038046418L;
+
+ /** Simple constructor. */
+ InitializationCompletedMarkerException() {
+ super((Throwable) null);
+ }
+ }
+}