summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsMoultonFieldIntegrator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsMoultonFieldIntegrator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsMoultonFieldIntegrator.java416
1 files changed, 416 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsMoultonFieldIntegrator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsMoultonFieldIntegrator.java
new file mode 100644
index 0000000..2594321
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsMoultonFieldIntegrator.java
@@ -0,0 +1,416 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import java.util.Arrays;
+
+import org.apache.commons.math3.Field;
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.NoBracketingException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
+import org.apache.commons.math3.linear.FieldMatrixPreservingVisitor;
+import org.apache.commons.math3.ode.FieldExpandableODE;
+import org.apache.commons.math3.ode.FieldODEState;
+import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.util.MathUtils;
+
+
+/**
+ * This class implements implicit Adams-Moulton integrators for Ordinary
+ * Differential Equations.
+ *
+ * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
+ * multistep ODE solvers. This implementation is a variation of the classical
+ * one: it uses adaptive stepsize to implement error control, whereas
+ * classical implementations are fixed step size. The value of state vector
+ * at step n+1 is a simple combination of the value at step n and of the
+ * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
+ * compute y<sub>n+1</sub>, another method must be used to compute a first
+ * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
+ * a final estimate of y<sub>n+1</sub> using the following formulas. Depending
+ * on the number k of previous steps one wants to use for computing the next
+ * value, different formulas are available for the final estimate:</p>
+ * <ul>
+ * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
+ * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
+ * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
+ * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
+ * <li>...</li>
+ * </ul>
+ *
+ * <p>A k-steps Adams-Moulton method is of order k+1.</p>
+ *
+ * <h3>Implementation details</h3>
+ *
+ * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
+ * <pre>
+ * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
+ * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
+ * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
+ * ...
+ * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
+ * </pre></p>
+ *
+ * <p>The definitions above use the classical representation with several previous first
+ * derivatives. Lets define
+ * <pre>
+ * q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
+ * </pre>
+ * (we omit the k index in the notation for clarity). With these definitions,
+ * Adams-Moulton methods can be written:
+ * <ul>
+ * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
+ * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
+ * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
+ * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
+ * <li>...</li>
+ * </ul></p>
+ *
+ * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
+ * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
+ * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
+ * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
+ * <pre>
+ * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
+ * </pre>
+ * (here again we omit the k index in the notation for clarity)
+ * </p>
+ *
+ * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
+ * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
+ * for degree k polynomials.
+ * <pre>
+ * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
+ * </pre>
+ * The previous formula can be used with several values for i to compute the transform between
+ * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
+ * and q<sub>n</sub> resulting from the Taylor series formulas above is:
+ * <pre>
+ * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
+ * </pre>
+ * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
+ * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
+ * the column number starting from 1:
+ * <pre>
+ * [ -2 3 -4 5 ... ]
+ * [ -4 12 -32 80 ... ]
+ * P = [ -6 27 -108 405 ... ]
+ * [ -8 48 -256 1280 ... ]
+ * [ ... ]
+ * </pre></p>
+ *
+ * <p>Using the Nordsieck vector has several advantages:
+ * <ul>
+ * <li>it greatly simplifies step interpolation as the interpolator mainly applies
+ * Taylor series formulas,</li>
+ * <li>it simplifies step changes that occur when discrete events that truncate
+ * the step are triggered,</li>
+ * <li>it allows to extend the methods in order to support adaptive stepsize.</li>
+ * </ul></p>
+ *
+ * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
+ * n as follows:
+ * <ul>
+ * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
+ * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
+ * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
+ * </ul>
+ * where A is a rows shifting matrix (the lower left part is an identity matrix):
+ * <pre>
+ * [ 0 0 ... 0 0 | 0 ]
+ * [ ---------------+---]
+ * [ 1 0 ... 0 0 | 0 ]
+ * A = [ 0 1 ... 0 0 | 0 ]
+ * [ ... | 0 ]
+ * [ 0 0 ... 1 0 | 0 ]
+ * [ 0 0 ... 0 1 | 0 ]
+ * </pre>
+ * From this predicted vector, the corrected vector is computed as follows:
+ * <ul>
+ * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
+ * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
+ * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
+ * </ul>
+ * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
+ * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
+ * represent the corrected states.</p>
+ *
+ * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
+ * they only depend on k and therefore are precomputed once for all.</p>
+ *
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+public class AdamsMoultonFieldIntegrator<T extends RealFieldElement<T>> extends AdamsFieldIntegrator<T> {
+
+ /** Integrator method name. */
+ private static final String METHOD_NAME = "Adams-Moulton";
+
+ /**
+ * Build an Adams-Moulton integrator with the given order and error control parameters.
+ * @param field field to which the time and state vector elements belong
+ * @param nSteps number of steps of the method excluding the one being computed
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ * @exception NumberIsTooSmallException if order is 1 or less
+ */
+ public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance)
+ throws NumberIsTooSmallException {
+ super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
+ scalAbsoluteTolerance, scalRelativeTolerance);
+ }
+
+ /**
+ * Build an Adams-Moulton integrator with the given order and error control parameters.
+ * @param field field to which the time and state vector elements belong
+ * @param nSteps number of steps of the method excluding the one being computed
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ * @exception IllegalArgumentException if order is 1 or less
+ */
+ public AdamsMoultonFieldIntegrator(final Field<T> field, final int nSteps,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance)
+ throws IllegalArgumentException {
+ super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
+ vecAbsoluteTolerance, vecRelativeTolerance);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
+ final FieldODEState<T> initialState,
+ final T finalTime)
+ throws NumberIsTooSmallException, DimensionMismatchException,
+ MaxCountExceededException, NoBracketingException {
+
+ sanityChecks(initialState, finalTime);
+ final T t0 = initialState.getTime();
+ final T[] y = equations.getMapper().mapState(initialState);
+ setStepStart(initIntegration(equations, t0, y, finalTime));
+ final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
+
+ // compute the initial Nordsieck vector using the configured starter integrator
+ start(equations, getStepStart(), finalTime);
+
+ // reuse the step that was chosen by the starter integrator
+ FieldODEStateAndDerivative<T> stepStart = getStepStart();
+ FieldODEStateAndDerivative<T> stepEnd =
+ AdamsFieldStepInterpolator.taylor(stepStart,
+ stepStart.getTime().add(getStepSize()),
+ getStepSize(), scaled, nordsieck);
+
+ // main integration loop
+ setIsLastStep(false);
+ do {
+
+ T[] predictedY = null;
+ final T[] predictedScaled = MathArrays.buildArray(getField(), y.length);
+ Array2DRowFieldMatrix<T> predictedNordsieck = null;
+ T error = getField().getZero().add(10);
+ while (error.subtract(1.0).getReal() >= 0.0) {
+
+ // predict a first estimate of the state at step end (P in the PECE sequence)
+ predictedY = stepEnd.getState();
+
+ // evaluate a first estimate of the derivative (first E in the PECE sequence)
+ final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY);
+
+ // update Nordsieck vector
+ for (int j = 0; j < predictedScaled.length; ++j) {
+ predictedScaled[j] = getStepSize().multiply(yDot[j]);
+ }
+ predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
+ updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);
+
+ // apply correction (C in the PECE sequence)
+ error = predictedNordsieck.walkInOptimizedOrder(new Corrector(y, predictedScaled, predictedY));
+
+ if (error.subtract(1.0).getReal() >= 0.0) {
+ // reject the step and attempt to reduce error by stepsize control
+ final T factor = computeStepGrowShrinkFactor(error);
+ rescale(filterStep(getStepSize().multiply(factor), forward, false));
+ stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(),
+ getStepStart().getTime().add(getStepSize()),
+ getStepSize(),
+ scaled,
+ nordsieck);
+ }
+ }
+
+ // evaluate a final estimate of the derivative (second E in the PECE sequence)
+ final T[] correctedYDot = computeDerivatives(stepEnd.getTime(), predictedY);
+
+ // update Nordsieck vector
+ final T[] correctedScaled = MathArrays.buildArray(getField(), y.length);
+ for (int j = 0; j < correctedScaled.length; ++j) {
+ correctedScaled[j] = getStepSize().multiply(correctedYDot[j]);
+ }
+ updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, predictedNordsieck);
+
+ // discrete events handling
+ stepEnd = new FieldODEStateAndDerivative<T>(stepEnd.getTime(), predictedY, correctedYDot);
+ setStepStart(acceptStep(new AdamsFieldStepInterpolator<T>(getStepSize(), stepEnd,
+ correctedScaled, predictedNordsieck, forward,
+ getStepStart(), stepEnd,
+ equations.getMapper()),
+ finalTime));
+ scaled = correctedScaled;
+ nordsieck = predictedNordsieck;
+
+ if (!isLastStep()) {
+
+ System.arraycopy(predictedY, 0, y, 0, y.length);
+
+ if (resetOccurred()) {
+ // some events handler has triggered changes that
+ // invalidate the derivatives, we need to restart from scratch
+ start(equations, getStepStart(), finalTime);
+ }
+
+ // stepsize control for next step
+ final T factor = computeStepGrowShrinkFactor(error);
+ final T scaledH = getStepSize().multiply(factor);
+ final T nextT = getStepStart().getTime().add(scaledH);
+ final boolean nextIsLast = forward ?
+ nextT.subtract(finalTime).getReal() >= 0 :
+ nextT.subtract(finalTime).getReal() <= 0;
+ T hNew = filterStep(scaledH, forward, nextIsLast);
+
+ final T filteredNextT = getStepStart().getTime().add(hNew);
+ final boolean filteredNextIsLast = forward ?
+ filteredNextT.subtract(finalTime).getReal() >= 0 :
+ filteredNextT.subtract(finalTime).getReal() <= 0;
+ if (filteredNextIsLast) {
+ hNew = finalTime.subtract(getStepStart().getTime());
+ }
+
+ rescale(hNew);
+ stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()),
+ getStepSize(), scaled, nordsieck);
+
+ }
+
+ } while (!isLastStep());
+
+ final FieldODEStateAndDerivative<T> finalState = getStepStart();
+ setStepStart(null);
+ setStepSize(null);
+ return finalState;
+
+ }
+
+ /** Corrector for current state in Adams-Moulton method.
+ * <p>
+ * This visitor implements the Taylor series formula:
+ * <pre>
+ * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub>
+ * </pre>
+ * </p>
+ */
+ private class Corrector implements FieldMatrixPreservingVisitor<T> {
+
+ /** Previous state. */
+ private final T[] previous;
+
+ /** Current scaled first derivative. */
+ private final T[] scaled;
+
+ /** Current state before correction. */
+ private final T[] before;
+
+ /** Current state after correction. */
+ private final T[] after;
+
+ /** Simple constructor.
+ * @param previous previous state
+ * @param scaled current scaled first derivative
+ * @param state state to correct (will be overwritten after visit)
+ */
+ Corrector(final T[] previous, final T[] scaled, final T[] state) {
+ this.previous = previous;
+ this.scaled = scaled;
+ this.after = state;
+ this.before = state.clone();
+ }
+
+ /** {@inheritDoc} */
+ public void start(int rows, int columns,
+ int startRow, int endRow, int startColumn, int endColumn) {
+ Arrays.fill(after, getField().getZero());
+ }
+
+ /** {@inheritDoc} */
+ public void visit(int row, int column, T value) {
+ if ((row & 0x1) == 0) {
+ after[column] = after[column].subtract(value);
+ } else {
+ after[column] = after[column].add(value);
+ }
+ }
+
+ /**
+ * End visiting the Nordsieck vector.
+ * <p>The correction is used to control stepsize. So its amplitude is
+ * considered to be an error, which must be normalized according to
+ * error control settings. If the normalized value is greater than 1,
+ * the correction was too large and the step must be rejected.</p>
+ * @return the normalized correction, if greater than 1, the step
+ * must be rejected
+ */
+ public T end() {
+
+ T error = getField().getZero();
+ for (int i = 0; i < after.length; ++i) {
+ after[i] = after[i].add(previous[i].add(scaled[i]));
+ if (i < mainSetDimension) {
+ final T yScale = MathUtils.max(previous[i].abs(), after[i].abs());
+ final T tol = (vecAbsoluteTolerance == null) ?
+ yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
+ yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
+ final T ratio = after[i].subtract(before[i]).divide(tol); // (corrected-predicted)/tol
+ error = error.add(ratio.multiply(ratio));
+ }
+ }
+
+ return error.divide(mainSetDimension).sqrt();
+
+ }
+ }
+
+}