summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsNordsieckTransformer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsNordsieckTransformer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsNordsieckTransformer.java361
1 files changed, 361 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsNordsieckTransformer.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsNordsieckTransformer.java
new file mode 100644
index 0000000..1c54b17
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsNordsieckTransformer.java
@@ -0,0 +1,361 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import java.util.Arrays;
+import java.util.HashMap;
+import java.util.Map;
+
+import org.apache.commons.math3.fraction.BigFraction;
+import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.linear.ArrayFieldVector;
+import org.apache.commons.math3.linear.FieldDecompositionSolver;
+import org.apache.commons.math3.linear.FieldLUDecomposition;
+import org.apache.commons.math3.linear.FieldMatrix;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.QRDecomposition;
+import org.apache.commons.math3.linear.RealMatrix;
+
+/** Transformer to Nordsieck vectors for Adams integrators.
+ * <p>This class is used by {@link AdamsBashforthIntegrator Adams-Bashforth} and
+ * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between
+ * classical representation with several previous first derivatives and Nordsieck
+ * representation with higher order scaled derivatives.</p>
+ *
+ * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
+ * <pre>
+ * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
+ * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
+ * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
+ * ...
+ * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
+ * </pre></p>
+ *
+ * <p>With the previous definition, the classical representation of multistep methods
+ * uses first derivatives only, i.e. it handles y<sub>n</sub>, s<sub>1</sub>(n) and
+ * q<sub>n</sub> where q<sub>n</sub> is defined as:
+ * <pre>
+ * q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
+ * </pre>
+ * (we omit the k index in the notation for clarity).</p>
+ *
+ * <p>Another possible representation uses the Nordsieck vector with
+ * higher degrees scaled derivatives all taken at the same step, i.e it handles y<sub>n</sub>,
+ * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
+ * <pre>
+ * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
+ * </pre>
+ * (here again we omit the k index in the notation for clarity)
+ * </p>
+ *
+ * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
+ * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
+ * for degree k polynomials.
+ * <pre>
+ * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
+ * </pre>
+ * The previous formula can be used with several values for i to compute the transform between
+ * classical representation and Nordsieck vector at step end. The transform between r<sub>n</sub>
+ * and q<sub>n</sub> resulting from the Taylor series formulas above is:
+ * <pre>
+ * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
+ * </pre>
+ * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
+ * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
+ * the column number starting from 1:
+ * <pre>
+ * [ -2 3 -4 5 ... ]
+ * [ -4 12 -32 80 ... ]
+ * P = [ -6 27 -108 405 ... ]
+ * [ -8 48 -256 1280 ... ]
+ * [ ... ]
+ * </pre></p>
+ *
+ * <p>Changing -i into +i in the formula above can be used to compute a similar transform between
+ * classical representation and Nordsieck vector at step start. The resulting matrix is simply
+ * the absolute value of matrix P.</p>
+ *
+ * <p>For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector
+ * at step n+1 is computed from the Nordsieck vector at step n as follows:
+ * <ul>
+ * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
+ * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
+ * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
+ * </ul>
+ * where A is a rows shifting matrix (the lower left part is an identity matrix):
+ * <pre>
+ * [ 0 0 ... 0 0 | 0 ]
+ * [ ---------------+---]
+ * [ 1 0 ... 0 0 | 0 ]
+ * A = [ 0 1 ... 0 0 | 0 ]
+ * [ ... | 0 ]
+ * [ 0 0 ... 1 0 | 0 ]
+ * [ 0 0 ... 0 1 | 0 ]
+ * </pre></p>
+ *
+ * <p>For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector
+ * at step n+1 is computed from the Nordsieck vector at step n as follows:
+ * <ul>
+ * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
+ * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
+ * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
+ * </ul>
+ * From this predicted vector, the corrected vector is computed as follows:
+ * <ul>
+ * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
+ * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
+ * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
+ * </ul>
+ * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
+ * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
+ * represent the corrected states.</p>
+ *
+ * <p>We observe that both methods use similar update formulas. In both cases a P<sup>-1</sup>u
+ * vector and a P<sup>-1</sup> A P matrix are used that do not depend on the state,
+ * they only depend on k. This class handles these transformations.</p>
+ *
+ * @since 2.0
+ */
+public class AdamsNordsieckTransformer {
+
+ /** Cache for already computed coefficients. */
+ private static final Map<Integer, AdamsNordsieckTransformer> CACHE =
+ new HashMap<Integer, AdamsNordsieckTransformer>();
+
+ /** Update matrix for the higher order derivatives h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ... */
+ private final Array2DRowRealMatrix update;
+
+ /** Update coefficients of the higher order derivatives wrt y'. */
+ private final double[] c1;
+
+ /** Simple constructor.
+ * @param n number of steps of the multistep method
+ * (excluding the one being computed)
+ */
+ private AdamsNordsieckTransformer(final int n) {
+
+ final int rows = n - 1;
+
+ // compute exact coefficients
+ FieldMatrix<BigFraction> bigP = buildP(rows);
+ FieldDecompositionSolver<BigFraction> pSolver =
+ new FieldLUDecomposition<BigFraction>(bigP).getSolver();
+
+ BigFraction[] u = new BigFraction[rows];
+ Arrays.fill(u, BigFraction.ONE);
+ BigFraction[] bigC1 = pSolver.solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();
+
+ // update coefficients are computed by combining transform from
+ // Nordsieck to multistep, then shifting rows to represent step advance
+ // then applying inverse transform
+ BigFraction[][] shiftedP = bigP.getData();
+ for (int i = shiftedP.length - 1; i > 0; --i) {
+ // shift rows
+ shiftedP[i] = shiftedP[i - 1];
+ }
+ shiftedP[0] = new BigFraction[rows];
+ Arrays.fill(shiftedP[0], BigFraction.ZERO);
+ FieldMatrix<BigFraction> bigMSupdate =
+ pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));
+
+ // convert coefficients to double
+ update = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
+ c1 = new double[rows];
+ for (int i = 0; i < rows; ++i) {
+ c1[i] = bigC1[i].doubleValue();
+ }
+
+ }
+
+ /** Get the Nordsieck transformer for a given number of steps.
+ * @param nSteps number of steps of the multistep method
+ * (excluding the one being computed)
+ * @return Nordsieck transformer for the specified number of steps
+ */
+ public static AdamsNordsieckTransformer getInstance(final int nSteps) {
+ synchronized(CACHE) {
+ AdamsNordsieckTransformer t = CACHE.get(nSteps);
+ if (t == null) {
+ t = new AdamsNordsieckTransformer(nSteps);
+ CACHE.put(nSteps, t);
+ }
+ return t;
+ }
+ }
+
+ /** Get the number of steps of the method
+ * (excluding the one being computed).
+ * @return number of steps of the method
+ * (excluding the one being computed)
+ * @deprecated as of 3.6, this method is not used anymore
+ */
+ @Deprecated
+ public int getNSteps() {
+ return c1.length;
+ }
+
+ /** Build the P matrix.
+ * <p>The P matrix general terms are shifted (j+1) (-i)<sup>j</sup> terms
+ * with i being the row number starting from 1 and j being the column
+ * number starting from 1:
+ * <pre>
+ * [ -2 3 -4 5 ... ]
+ * [ -4 12 -32 80 ... ]
+ * P = [ -6 27 -108 405 ... ]
+ * [ -8 48 -256 1280 ... ]
+ * [ ... ]
+ * </pre></p>
+ * @param rows number of rows of the matrix
+ * @return P matrix
+ */
+ private FieldMatrix<BigFraction> buildP(final int rows) {
+
+ final BigFraction[][] pData = new BigFraction[rows][rows];
+
+ for (int i = 1; i <= pData.length; ++i) {
+ // build the P matrix elements from Taylor series formulas
+ final BigFraction[] pI = pData[i - 1];
+ final int factor = -i;
+ int aj = factor;
+ for (int j = 1; j <= pI.length; ++j) {
+ pI[j - 1] = new BigFraction(aj * (j + 1));
+ aj *= factor;
+ }
+ }
+
+ return new Array2DRowFieldMatrix<BigFraction>(pData, false);
+
+ }
+
+ /** Initialize the high order scaled derivatives at step start.
+ * @param h step size to use for scaling
+ * @param t first steps times
+ * @param y first steps states
+ * @param yDot first steps derivatives
+ * @return Nordieck vector at start of first step (h<sup>2</sup>/2 y''<sub>n</sub>,
+ * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
+ */
+
+ public Array2DRowRealMatrix initializeHighOrderDerivatives(final double h, final double[] t,
+ final double[][] y,
+ final double[][] yDot) {
+
+ // using Taylor series with di = ti - t0, we get:
+ // y(ti) - y(t0) - di y'(t0) = di^2 / h^2 s2 + ... + di^k / h^k sk + O(h^k)
+ // y'(ti) - y'(t0) = 2 di / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1))
+ // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear
+ // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond
+ // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder.
+ // The goal is to have s2 to sk as accurate as possible considering the fact the sum is
+ // truncated and we don't want the error terms to be included in s2 ... sk, so we need
+ // to solve also for the remainder
+ final double[][] a = new double[c1.length + 1][c1.length + 1];
+ final double[][] b = new double[c1.length + 1][y[0].length];
+ final double[] y0 = y[0];
+ final double[] yDot0 = yDot[0];
+ for (int i = 1; i < y.length; ++i) {
+
+ final double di = t[i] - t[0];
+ final double ratio = di / h;
+ double dikM1Ohk = 1 / h;
+
+ // linear coefficients of equations
+ // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0)
+ final double[] aI = a[2 * i - 2];
+ final double[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null;
+ for (int j = 0; j < aI.length; ++j) {
+ dikM1Ohk *= ratio;
+ aI[j] = di * dikM1Ohk;
+ if (aDotI != null) {
+ aDotI[j] = (j + 2) * dikM1Ohk;
+ }
+ }
+
+ // expected value of the previous equations
+ final double[] yI = y[i];
+ final double[] yDotI = yDot[i];
+ final double[] bI = b[2 * i - 2];
+ final double[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null;
+ for (int j = 0; j < yI.length; ++j) {
+ bI[j] = yI[j] - y0[j] - di * yDot0[j];
+ if (bDotI != null) {
+ bDotI[j] = yDotI[j] - yDot0[j];
+ }
+ }
+
+ }
+
+ // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk],
+ // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion
+ final QRDecomposition decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
+ final RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
+
+ // extract just the Nordsieck vector [s2 ... sk]
+ final Array2DRowRealMatrix truncatedX = new Array2DRowRealMatrix(x.getRowDimension() - 1, x.getColumnDimension());
+ for (int i = 0; i < truncatedX.getRowDimension(); ++i) {
+ for (int j = 0; j < truncatedX.getColumnDimension(); ++j) {
+ truncatedX.setEntry(i, j, x.getEntry(i, j));
+ }
+ }
+ return truncatedX;
+
+ }
+
+ /** Update the high order scaled derivatives for Adams integrators (phase 1).
+ * <p>The complete update of high order derivatives has a form similar to:
+ * <pre>
+ * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
+ * </pre>
+ * this method computes the P<sup>-1</sup> A P r<sub>n</sub> part.</p>
+ * @param highOrder high order scaled derivatives
+ * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
+ * @return updated high order derivatives
+ * @see #updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix)
+ */
+ public Array2DRowRealMatrix updateHighOrderDerivativesPhase1(final Array2DRowRealMatrix highOrder) {
+ return update.multiply(highOrder);
+ }
+
+ /** Update the high order scaled derivatives Adams integrators (phase 2).
+ * <p>The complete update of high order derivatives has a form similar to:
+ * <pre>
+ * r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
+ * </pre>
+ * this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.</p>
+ * <p>Phase 1 of the update must already have been performed.</p>
+ * @param start first order scaled derivatives at step start
+ * @param end first order scaled derivatives at step end
+ * @param highOrder high order scaled derivatives, will be modified
+ * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
+ * @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix)
+ */
+ public void updateHighOrderDerivativesPhase2(final double[] start,
+ final double[] end,
+ final Array2DRowRealMatrix highOrder) {
+ final double[][] data = highOrder.getDataRef();
+ for (int i = 0; i < data.length; ++i) {
+ final double[] dataI = data[i];
+ final double c1I = c1[i];
+ for (int j = 0; j < dataI.length; ++j) {
+ dataI[j] += c1I * (start[j] - end[j]);
+ }
+ }
+ }
+
+}