summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java366
1 files changed, 366 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
new file mode 100644
index 0000000..c8e592b
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
@@ -0,0 +1,366 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.Field;
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.ode.AbstractFieldIntegrator;
+import org.apache.commons.math3.ode.FieldEquationsMapper;
+import org.apache.commons.math3.ode.FieldODEState;
+import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * This abstract class holds the common part of all adaptive
+ * stepsize integrators for Ordinary Differential Equations.
+ *
+ * <p>These algorithms perform integration with stepsize control, which
+ * means the user does not specify the integration step but rather a
+ * tolerance on error. The error threshold is computed as
+ * <pre>
+ * threshold_i = absTol_i + relTol_i * max (abs (ym), abs (ym+1))
+ * </pre>
+ * where absTol_i is the absolute tolerance for component i of the
+ * state vector and relTol_i is the relative tolerance for the same
+ * component. The user can also use only two scalar values absTol and
+ * relTol which will be used for all components.
+ * </p>
+ * <p>
+ * Note that <em>only</em> the {@link FieldODEState#getState() main part}
+ * of the state vector is used for stepsize control. The {@link
+ * FieldODEState#getSecondaryState(int) secondary parts} of the state
+ * vector are explicitly ignored for stepsize control.
+ * </p>
+ *
+ * <p>If the estimated error for ym+1 is such that
+ * <pre>
+ * sqrt((sum (errEst_i / threshold_i)^2 ) / n) < 1
+ * </pre>
+ *
+ * (where n is the main set dimension) then the step is accepted,
+ * otherwise the step is rejected and a new attempt is made with a new
+ * stepsize.</p>
+ *
+ * @param <T> the type of the field elements
+ * @since 3.6
+ *
+ */
+
+public abstract class AdaptiveStepsizeFieldIntegrator<T extends RealFieldElement<T>>
+ extends AbstractFieldIntegrator<T> {
+
+ /** Allowed absolute scalar error. */
+ protected double scalAbsoluteTolerance;
+
+ /** Allowed relative scalar error. */
+ protected double scalRelativeTolerance;
+
+ /** Allowed absolute vectorial error. */
+ protected double[] vecAbsoluteTolerance;
+
+ /** Allowed relative vectorial error. */
+ protected double[] vecRelativeTolerance;
+
+ /** Main set dimension. */
+ protected int mainSetDimension;
+
+ /** User supplied initial step. */
+ private T initialStep;
+
+ /** Minimal step. */
+ private T minStep;
+
+ /** Maximal step. */
+ private T maxStep;
+
+ /** Build an integrator with the given stepsize bounds.
+ * The default step handler does nothing.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ */
+ public AdaptiveStepsizeFieldIntegrator(final Field<T> field, final String name,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance) {
+
+ super(field, name);
+ setStepSizeControl(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+ resetInternalState();
+
+ }
+
+ /** Build an integrator with the given stepsize bounds.
+ * The default step handler does nothing.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ */
+ public AdaptiveStepsizeFieldIntegrator(final Field<T> field, final String name,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance) {
+
+ super(field, name);
+ setStepSizeControl(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+ resetInternalState();
+
+ }
+
+ /** Set the adaptive step size control parameters.
+ * <p>
+ * A side effect of this method is to also reset the initial
+ * step so it will be automatically computed by the integrator
+ * if {@link #setInitialStepSize(RealFieldElement) setInitialStepSize}
+ * is not called by the user.
+ * </p>
+ * @param minimalStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maximalStep maximal step (must be positive even for backward
+ * integration)
+ * @param absoluteTolerance allowed absolute error
+ * @param relativeTolerance allowed relative error
+ */
+ public void setStepSizeControl(final double minimalStep, final double maximalStep,
+ final double absoluteTolerance,
+ final double relativeTolerance) {
+
+ minStep = getField().getZero().add(FastMath.abs(minimalStep));
+ maxStep = getField().getZero().add(FastMath.abs(maximalStep));
+ initialStep = getField().getOne().negate();
+
+ scalAbsoluteTolerance = absoluteTolerance;
+ scalRelativeTolerance = relativeTolerance;
+ vecAbsoluteTolerance = null;
+ vecRelativeTolerance = null;
+
+ }
+
+ /** Set the adaptive step size control parameters.
+ * <p>
+ * A side effect of this method is to also reset the initial
+ * step so it will be automatically computed by the integrator
+ * if {@link #setInitialStepSize(RealFieldElement) setInitialStepSize}
+ * is not called by the user.
+ * </p>
+ * @param minimalStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maximalStep maximal step (must be positive even for backward
+ * integration)
+ * @param absoluteTolerance allowed absolute error
+ * @param relativeTolerance allowed relative error
+ */
+ public void setStepSizeControl(final double minimalStep, final double maximalStep,
+ final double[] absoluteTolerance,
+ final double[] relativeTolerance) {
+
+ minStep = getField().getZero().add(FastMath.abs(minimalStep));
+ maxStep = getField().getZero().add(FastMath.abs(maximalStep));
+ initialStep = getField().getOne().negate();
+
+ scalAbsoluteTolerance = 0;
+ scalRelativeTolerance = 0;
+ vecAbsoluteTolerance = absoluteTolerance.clone();
+ vecRelativeTolerance = relativeTolerance.clone();
+
+ }
+
+ /** Set the initial step size.
+ * <p>This method allows the user to specify an initial positive
+ * step size instead of letting the integrator guess it by
+ * itself. If this method is not called before integration is
+ * started, the initial step size will be estimated by the
+ * integrator.</p>
+ * @param initialStepSize initial step size to use (must be positive even
+ * for backward integration ; providing a negative value or a value
+ * outside of the min/max step interval will lead the integrator to
+ * ignore the value and compute the initial step size by itself)
+ */
+ public void setInitialStepSize(final T initialStepSize) {
+ if (initialStepSize.subtract(minStep).getReal() < 0 ||
+ initialStepSize.subtract(maxStep).getReal() > 0) {
+ initialStep = getField().getOne().negate();
+ } else {
+ initialStep = initialStepSize;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected void sanityChecks(final FieldODEState<T> eqn, final T t)
+ throws DimensionMismatchException, NumberIsTooSmallException {
+
+ super.sanityChecks(eqn, t);
+
+ mainSetDimension = eqn.getStateDimension();
+
+ if (vecAbsoluteTolerance != null && vecAbsoluteTolerance.length != mainSetDimension) {
+ throw new DimensionMismatchException(mainSetDimension, vecAbsoluteTolerance.length);
+ }
+
+ if (vecRelativeTolerance != null && vecRelativeTolerance.length != mainSetDimension) {
+ throw new DimensionMismatchException(mainSetDimension, vecRelativeTolerance.length);
+ }
+
+ }
+
+ /** Initialize the integration step.
+ * @param forward forward integration indicator
+ * @param order order of the method
+ * @param scale scaling vector for the state vector (can be shorter than state vector)
+ * @param state0 state at integration start time
+ * @param mapper mapper for all the equations
+ * @return first integration step
+ * @exception MaxCountExceededException if the number of functions evaluations is exceeded
+ * @exception DimensionMismatchException if arrays dimensions do not match equations settings
+ */
+ public T initializeStep(final boolean forward, final int order, final T[] scale,
+ final FieldODEStateAndDerivative<T> state0,
+ final FieldEquationsMapper<T> mapper)
+ throws MaxCountExceededException, DimensionMismatchException {
+
+ if (initialStep.getReal() > 0) {
+ // use the user provided value
+ return forward ? initialStep : initialStep.negate();
+ }
+
+ // very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale||
+ // this guess will be used to perform an Euler step
+ final T[] y0 = mapper.mapState(state0);
+ final T[] yDot0 = mapper.mapDerivative(state0);
+ T yOnScale2 = getField().getZero();
+ T yDotOnScale2 = getField().getZero();
+ for (int j = 0; j < scale.length; ++j) {
+ final T ratio = y0[j].divide(scale[j]);
+ yOnScale2 = yOnScale2.add(ratio.multiply(ratio));
+ final T ratioDot = yDot0[j].divide(scale[j]);
+ yDotOnScale2 = yDotOnScale2.add(ratioDot.multiply(ratioDot));
+ }
+
+ T h = (yOnScale2.getReal() < 1.0e-10 || yDotOnScale2.getReal() < 1.0e-10) ?
+ getField().getZero().add(1.0e-6) :
+ yOnScale2.divide(yDotOnScale2).sqrt().multiply(0.01);
+ if (! forward) {
+ h = h.negate();
+ }
+
+ // perform an Euler step using the preceding rough guess
+ final T[] y1 = MathArrays.buildArray(getField(), y0.length);
+ for (int j = 0; j < y0.length; ++j) {
+ y1[j] = y0[j].add(yDot0[j].multiply(h));
+ }
+ final T[] yDot1 = computeDerivatives(state0.getTime().add(h), y1);
+
+ // estimate the second derivative of the solution
+ T yDDotOnScale = getField().getZero();
+ for (int j = 0; j < scale.length; ++j) {
+ final T ratioDotDot = yDot1[j].subtract(yDot0[j]).divide(scale[j]);
+ yDDotOnScale = yDDotOnScale.add(ratioDotDot.multiply(ratioDotDot));
+ }
+ yDDotOnScale = yDDotOnScale.sqrt().divide(h);
+
+ // step size is computed such that
+ // h^order * max (||y'/tol||, ||y''/tol||) = 0.01
+ final T maxInv2 = MathUtils.max(yDotOnScale2.sqrt(), yDDotOnScale);
+ final T h1 = maxInv2.getReal() < 1.0e-15 ?
+ MathUtils.max(getField().getZero().add(1.0e-6), h.abs().multiply(0.001)) :
+ maxInv2.multiply(100).reciprocal().pow(1.0 / order);
+ h = MathUtils.min(h.abs().multiply(100), h1);
+ h = MathUtils.max(h, state0.getTime().abs().multiply(1.0e-12)); // avoids cancellation when computing t1 - t0
+ h = MathUtils.max(minStep, MathUtils.min(maxStep, h));
+ if (! forward) {
+ h = h.negate();
+ }
+
+ return h;
+
+ }
+
+ /** Filter the integration step.
+ * @param h signed step
+ * @param forward forward integration indicator
+ * @param acceptSmall if true, steps smaller than the minimal value
+ * are silently increased up to this value, if false such small
+ * steps generate an exception
+ * @return a bounded integration step (h if no bound is reach, or a bounded value)
+ * @exception NumberIsTooSmallException if the step is too small and acceptSmall is false
+ */
+ protected T filterStep(final T h, final boolean forward, final boolean acceptSmall)
+ throws NumberIsTooSmallException {
+
+ T filteredH = h;
+ if (h.abs().subtract(minStep).getReal() < 0) {
+ if (acceptSmall) {
+ filteredH = forward ? minStep : minStep.negate();
+ } else {
+ throw new NumberIsTooSmallException(LocalizedFormats.MINIMAL_STEPSIZE_REACHED_DURING_INTEGRATION,
+ h.abs().getReal(), minStep.getReal(), true);
+ }
+ }
+
+ if (filteredH.subtract(maxStep).getReal() > 0) {
+ filteredH = maxStep;
+ } else if (filteredH.add(maxStep).getReal() < 0) {
+ filteredH = maxStep.negate();
+ }
+
+ return filteredH;
+
+ }
+
+ /** Reset internal state to dummy values. */
+ protected void resetInternalState() {
+ setStepStart(null);
+ setStepSize(minStep.multiply(maxStep).sqrt());
+ }
+
+ /** Get the minimal step.
+ * @return minimal step
+ */
+ public T getMinStep() {
+ return minStep;
+ }
+
+ /** Get the maximal step.
+ * @return maximal step
+ */
+ public T getMaxStep() {
+ return maxStep;
+ }
+
+}