summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java385
1 files changed, 385 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java
new file mode 100644
index 0000000..036cf01
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java
@@ -0,0 +1,385 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.Field;
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.NoBracketingException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.ode.FieldEquationsMapper;
+import org.apache.commons.math3.ode.FieldExpandableODE;
+import org.apache.commons.math3.ode.FieldODEState;
+import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * This class implements the common part of all embedded Runge-Kutta
+ * integrators for Ordinary Differential Equations.
+ *
+ * <p>These methods are embedded explicit Runge-Kutta methods with two
+ * sets of coefficients allowing to estimate the error, their Butcher
+ * arrays are as follows :
+ * <pre>
+ * 0 |
+ * c2 | a21
+ * c3 | a31 a32
+ * ... | ...
+ * cs | as1 as2 ... ass-1
+ * |--------------------------
+ * | b1 b2 ... bs-1 bs
+ * | b'1 b'2 ... b's-1 b's
+ * </pre>
+ * </p>
+ *
+ * <p>In fact, we rather use the array defined by ej = bj - b'j to
+ * compute directly the error rather than computing two estimates and
+ * then comparing them.</p>
+ *
+ * <p>Some methods are qualified as <i>fsal</i> (first same as last)
+ * methods. This means the last evaluation of the derivatives in one
+ * step is the same as the first in the next step. Then, this
+ * evaluation can be reused from one step to the next one and the cost
+ * of such a method is really s-1 evaluations despite the method still
+ * has s stages. This behaviour is true only for successful steps, if
+ * the step is rejected after the error estimation phase, no
+ * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
+ * asi = bi for all i.</p>
+ *
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+
+public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
+ extends AdaptiveStepsizeFieldIntegrator<T>
+ implements FieldButcherArrayProvider<T> {
+
+ /** Index of the pre-computed derivative for <i>fsal</i> methods. */
+ private final int fsal;
+
+ /** Time steps from Butcher array (without the first zero). */
+ private final T[] c;
+
+ /** Internal weights from Butcher array (without the first empty row). */
+ private final T[][] a;
+
+ /** External weights for the high order method from Butcher array. */
+ private final T[] b;
+
+ /** Stepsize control exponent. */
+ private final T exp;
+
+ /** Safety factor for stepsize control. */
+ private T safety;
+
+ /** Minimal reduction factor for stepsize control. */
+ private T minReduction;
+
+ /** Maximal growth factor for stepsize control. */
+ private T maxGrowth;
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
+ * or -1 if method is not <i>fsal</i>
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance) {
+
+ super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = getC();
+ this.a = getA();
+ this.b = getB();
+
+ exp = field.getOne().divide(-getOrder());
+
+ // set the default values of the algorithm control parameters
+ setSafety(field.getZero().add(0.9));
+ setMinReduction(field.getZero().add(0.2));
+ setMaxGrowth(field.getZero().add(10.0));
+
+ }
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
+ * or -1 if method is not <i>fsal</i>
+ * @param minStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maxStep maximal step (must be positive even for backward
+ * integration)
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance) {
+
+ super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = getC();
+ this.a = getA();
+ this.b = getB();
+
+ exp = field.getOne().divide(-getOrder());
+
+ // set the default values of the algorithm control parameters
+ setSafety(field.getZero().add(0.9));
+ setMinReduction(field.getZero().add(0.2));
+ setMaxGrowth(field.getZero().add(10.0));
+
+ }
+
+ /** Create a fraction.
+ * @param p numerator
+ * @param q denominator
+ * @return p/q computed in the instance field
+ */
+ protected T fraction(final int p, final int q) {
+ return getField().getOne().multiply(p).divide(q);
+ }
+
+ /** Create a fraction.
+ * @param p numerator
+ * @param q denominator
+ * @return p/q computed in the instance field
+ */
+ protected T fraction(final double p, final double q) {
+ return getField().getOne().multiply(p).divide(q);
+ }
+
+ /** Create an interpolator.
+ * @param forward integration direction indicator
+ * @param yDotK slopes at the intermediate points
+ * @param globalPreviousState start of the global step
+ * @param globalCurrentState end of the global step
+ * @param mapper equations mapper for the all equations
+ * @return external weights for the high order method from Butcher array
+ */
+ protected abstract RungeKuttaFieldStepInterpolator<T> createInterpolator(boolean forward, T[][] yDotK,
+ final FieldODEStateAndDerivative<T> globalPreviousState,
+ final FieldODEStateAndDerivative<T> globalCurrentState,
+ FieldEquationsMapper<T> mapper);
+ /** Get the order of the method.
+ * @return order of the method
+ */
+ public abstract int getOrder();
+
+ /** Get the safety factor for stepsize control.
+ * @return safety factor
+ */
+ public T getSafety() {
+ return safety;
+ }
+
+ /** Set the safety factor for stepsize control.
+ * @param safety safety factor
+ */
+ public void setSafety(final T safety) {
+ this.safety = safety;
+ }
+
+ /** {@inheritDoc} */
+ public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
+ final FieldODEState<T> initialState, final T finalTime)
+ throws NumberIsTooSmallException, DimensionMismatchException,
+ MaxCountExceededException, NoBracketingException {
+
+ sanityChecks(initialState, finalTime);
+ final T t0 = initialState.getTime();
+ final T[] y0 = equations.getMapper().mapState(initialState);
+ setStepStart(initIntegration(equations, t0, y0, finalTime));
+ final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
+
+ // create some internal working arrays
+ final int stages = c.length + 1;
+ T[] y = y0;
+ final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1);
+ final T[] yTmp = MathArrays.buildArray(getField(), y0.length);
+
+ // set up integration control objects
+ T hNew = getField().getZero();
+ boolean firstTime = true;
+
+ // main integration loop
+ setIsLastStep(false);
+ do {
+
+ // iterate over step size, ensuring local normalized error is smaller than 1
+ T error = getField().getZero().add(10);
+ while (error.subtract(1.0).getReal() >= 0) {
+
+ // first stage
+ y = equations.getMapper().mapState(getStepStart());
+ yDotK[0] = equations.getMapper().mapDerivative(getStepStart());
+
+ if (firstTime) {
+ final T[] scale = MathArrays.buildArray(getField(), mainSetDimension);
+ if (vecAbsoluteTolerance == null) {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = y[i].abs().multiply(scalRelativeTolerance).add(scalAbsoluteTolerance);
+ }
+ } else {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
+ }
+ }
+ hNew = initializeStep(forward, getOrder(), scale, getStepStart(), equations.getMapper());
+ firstTime = false;
+ }
+
+ setStepSize(hNew);
+ if (forward) {
+ if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() >= 0) {
+ setStepSize(finalTime.subtract(getStepStart().getTime()));
+ }
+ } else {
+ if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() <= 0) {
+ setStepSize(finalTime.subtract(getStepStart().getTime()));
+ }
+ }
+
+ // next stages
+ for (int k = 1; k < stages; ++k) {
+
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(a[k-1][0]);
+ for (int l = 1; l < k; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
+ }
+ yTmp[j] = y[j].add(getStepSize().multiply(sum));
+ }
+
+ yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp);
+
+ }
+
+ // estimate the state at the end of the step
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(b[0]);
+ for (int l = 1; l < stages; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(b[l]));
+ }
+ yTmp[j] = y[j].add(getStepSize().multiply(sum));
+ }
+
+ // estimate the error at the end of the step
+ error = estimateError(yDotK, y, yTmp, getStepSize());
+ if (error.subtract(1.0).getReal() >= 0) {
+ // reject the step and attempt to reduce error by stepsize control
+ final T factor = MathUtils.min(maxGrowth,
+ MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
+ hNew = filterStep(getStepSize().multiply(factor), forward, false);
+ }
+
+ }
+ final T stepEnd = getStepStart().getTime().add(getStepSize());
+ final T[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
+ final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<T>(stepEnd, yTmp, yDotTmp);
+
+ // local error is small enough: accept the step, trigger events and step handlers
+ System.arraycopy(yTmp, 0, y, 0, y0.length);
+ setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
+ finalTime));
+
+ if (!isLastStep()) {
+
+ // stepsize control for next step
+ final T factor = MathUtils.min(maxGrowth,
+ MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
+ final T scaledH = getStepSize().multiply(factor);
+ final T nextT = getStepStart().getTime().add(scaledH);
+ final boolean nextIsLast = forward ?
+ nextT.subtract(finalTime).getReal() >= 0 :
+ nextT.subtract(finalTime).getReal() <= 0;
+ hNew = filterStep(scaledH, forward, nextIsLast);
+
+ final T filteredNextT = getStepStart().getTime().add(hNew);
+ final boolean filteredNextIsLast = forward ?
+ filteredNextT.subtract(finalTime).getReal() >= 0 :
+ filteredNextT.subtract(finalTime).getReal() <= 0;
+ if (filteredNextIsLast) {
+ hNew = finalTime.subtract(getStepStart().getTime());
+ }
+
+ }
+
+ } while (!isLastStep());
+
+ final FieldODEStateAndDerivative<T> finalState = getStepStart();
+ resetInternalState();
+ return finalState;
+
+ }
+
+ /** Get the minimal reduction factor for stepsize control.
+ * @return minimal reduction factor
+ */
+ public T getMinReduction() {
+ return minReduction;
+ }
+
+ /** Set the minimal reduction factor for stepsize control.
+ * @param minReduction minimal reduction factor
+ */
+ public void setMinReduction(final T minReduction) {
+ this.minReduction = minReduction;
+ }
+
+ /** Get the maximal growth factor for stepsize control.
+ * @return maximal growth factor
+ */
+ public T getMaxGrowth() {
+ return maxGrowth;
+ }
+
+ /** Set the maximal growth factor for stepsize control.
+ * @param maxGrowth maximal growth factor
+ */
+ public void setMaxGrowth(final T maxGrowth) {
+ this.maxGrowth = maxGrowth;
+ }
+
+ /** Compute the error ratio.
+ * @param yDotK derivatives computed during the first stages
+ * @param y0 estimate of the step at the start of the step
+ * @param y1 estimate of the step at the end of the step
+ * @param h current step
+ * @return error ratio, greater than 1 if step should be rejected
+ */
+ protected abstract T estimateError(T[][] yDotK, T[] y0, T[] y1, T h);
+
+}