summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java380
1 files changed, 380 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java
new file mode 100644
index 0000000..098d2e5
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java
@@ -0,0 +1,380 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.NoBracketingException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.ode.ExpandableStatefulODE;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * This class implements the common part of all embedded Runge-Kutta
+ * integrators for Ordinary Differential Equations.
+ *
+ * <p>These methods are embedded explicit Runge-Kutta methods with two
+ * sets of coefficients allowing to estimate the error, their Butcher
+ * arrays are as follows :
+ * <pre>
+ * 0 |
+ * c2 | a21
+ * c3 | a31 a32
+ * ... | ...
+ * cs | as1 as2 ... ass-1
+ * |--------------------------
+ * | b1 b2 ... bs-1 bs
+ * | b'1 b'2 ... b's-1 b's
+ * </pre>
+ * </p>
+ *
+ * <p>In fact, we rather use the array defined by ej = bj - b'j to
+ * compute directly the error rather than computing two estimates and
+ * then comparing them.</p>
+ *
+ * <p>Some methods are qualified as <i>fsal</i> (first same as last)
+ * methods. This means the last evaluation of the derivatives in one
+ * step is the same as the first in the next step. Then, this
+ * evaluation can be reused from one step to the next one and the cost
+ * of such a method is really s-1 evaluations despite the method still
+ * has s stages. This behaviour is true only for successful steps, if
+ * the step is rejected after the error estimation phase, no
+ * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
+ * asi = bi for all i.</p>
+ *
+ * @since 1.2
+ */
+
+public abstract class EmbeddedRungeKuttaIntegrator
+ extends AdaptiveStepsizeIntegrator {
+
+ /** Indicator for <i>fsal</i> methods. */
+ private final boolean fsal;
+
+ /** Time steps from Butcher array (without the first zero). */
+ private final double[] c;
+
+ /** Internal weights from Butcher array (without the first empty row). */
+ private final double[][] a;
+
+ /** External weights for the high order method from Butcher array. */
+ private final double[] b;
+
+ /** Prototype of the step interpolator. */
+ private final RungeKuttaStepInterpolator prototype;
+
+ /** Stepsize control exponent. */
+ private final double exp;
+
+ /** Safety factor for stepsize control. */
+ private double safety;
+
+ /** Minimal reduction factor for stepsize control. */
+ private double minReduction;
+
+ /** Maximal growth factor for stepsize control. */
+ private double maxGrowth;
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param name name of the method
+ * @param fsal indicate that the method is an <i>fsal</i>
+ * @param c time steps from Butcher array (without the first zero)
+ * @param a internal weights from Butcher array (without the first empty row)
+ * @param b propagation weights for the high order method from Butcher array
+ * @param prototype prototype of the step interpolator to use
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
+ final double[] c, final double[][] a, final double[] b,
+ final RungeKuttaStepInterpolator prototype,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance) {
+
+ super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = c;
+ this.a = a;
+ this.b = b;
+ this.prototype = prototype;
+
+ exp = -1.0 / getOrder();
+
+ // set the default values of the algorithm control parameters
+ setSafety(0.9);
+ setMinReduction(0.2);
+ setMaxGrowth(10.0);
+
+ }
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param name name of the method
+ * @param fsal indicate that the method is an <i>fsal</i>
+ * @param c time steps from Butcher array (without the first zero)
+ * @param a internal weights from Butcher array (without the first empty row)
+ * @param b propagation weights for the high order method from Butcher array
+ * @param prototype prototype of the step interpolator to use
+ * @param minStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maxStep maximal step (must be positive even for backward
+ * integration)
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
+ final double[] c, final double[][] a, final double[] b,
+ final RungeKuttaStepInterpolator prototype,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance) {
+
+ super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = c;
+ this.a = a;
+ this.b = b;
+ this.prototype = prototype;
+
+ exp = -1.0 / getOrder();
+
+ // set the default values of the algorithm control parameters
+ setSafety(0.9);
+ setMinReduction(0.2);
+ setMaxGrowth(10.0);
+
+ }
+
+ /** Get the order of the method.
+ * @return order of the method
+ */
+ public abstract int getOrder();
+
+ /** Get the safety factor for stepsize control.
+ * @return safety factor
+ */
+ public double getSafety() {
+ return safety;
+ }
+
+ /** Set the safety factor for stepsize control.
+ * @param safety safety factor
+ */
+ public void setSafety(final double safety) {
+ this.safety = safety;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void integrate(final ExpandableStatefulODE equations, final double t)
+ throws NumberIsTooSmallException, DimensionMismatchException,
+ MaxCountExceededException, NoBracketingException {
+
+ sanityChecks(equations, t);
+ setEquations(equations);
+ final boolean forward = t > equations.getTime();
+
+ // create some internal working arrays
+ final double[] y0 = equations.getCompleteState();
+ final double[] y = y0.clone();
+ final int stages = c.length + 1;
+ final double[][] yDotK = new double[stages][y.length];
+ final double[] yTmp = y0.clone();
+ final double[] yDotTmp = new double[y.length];
+
+ // set up an interpolator sharing the integrator arrays
+ final RungeKuttaStepInterpolator interpolator = (RungeKuttaStepInterpolator) prototype.copy();
+ interpolator.reinitialize(this, yTmp, yDotK, forward,
+ equations.getPrimaryMapper(), equations.getSecondaryMappers());
+ interpolator.storeTime(equations.getTime());
+
+ // set up integration control objects
+ stepStart = equations.getTime();
+ double hNew = 0;
+ boolean firstTime = true;
+ initIntegration(equations.getTime(), y0, t);
+
+ // main integration loop
+ isLastStep = false;
+ do {
+
+ interpolator.shift();
+
+ // iterate over step size, ensuring local normalized error is smaller than 1
+ double error = 10;
+ while (error >= 1.0) {
+
+ if (firstTime || !fsal) {
+ // first stage
+ computeDerivatives(stepStart, y, yDotK[0]);
+ }
+
+ if (firstTime) {
+ final double[] scale = new double[mainSetDimension];
+ if (vecAbsoluteTolerance == null) {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = scalAbsoluteTolerance + scalRelativeTolerance * FastMath.abs(y[i]);
+ }
+ } else {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * FastMath.abs(y[i]);
+ }
+ }
+ hNew = initializeStep(forward, getOrder(), scale,
+ stepStart, y, yDotK[0], yTmp, yDotK[1]);
+ firstTime = false;
+ }
+
+ stepSize = hNew;
+ if (forward) {
+ if (stepStart + stepSize >= t) {
+ stepSize = t - stepStart;
+ }
+ } else {
+ if (stepStart + stepSize <= t) {
+ stepSize = t - stepStart;
+ }
+ }
+
+ // next stages
+ for (int k = 1; k < stages; ++k) {
+
+ for (int j = 0; j < y0.length; ++j) {
+ double sum = a[k-1][0] * yDotK[0][j];
+ for (int l = 1; l < k; ++l) {
+ sum += a[k-1][l] * yDotK[l][j];
+ }
+ yTmp[j] = y[j] + stepSize * sum;
+ }
+
+ computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]);
+
+ }
+
+ // estimate the state at the end of the step
+ for (int j = 0; j < y0.length; ++j) {
+ double sum = b[0] * yDotK[0][j];
+ for (int l = 1; l < stages; ++l) {
+ sum += b[l] * yDotK[l][j];
+ }
+ yTmp[j] = y[j] + stepSize * sum;
+ }
+
+ // estimate the error at the end of the step
+ error = estimateError(yDotK, y, yTmp, stepSize);
+ if (error >= 1.0) {
+ // reject the step and attempt to reduce error by stepsize control
+ final double factor =
+ FastMath.min(maxGrowth,
+ FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
+ hNew = filterStep(stepSize * factor, forward, false);
+ }
+
+ }
+
+ // local error is small enough: accept the step, trigger events and step handlers
+ interpolator.storeTime(stepStart + stepSize);
+ System.arraycopy(yTmp, 0, y, 0, y0.length);
+ System.arraycopy(yDotK[stages - 1], 0, yDotTmp, 0, y0.length);
+ stepStart = acceptStep(interpolator, y, yDotTmp, t);
+ System.arraycopy(y, 0, yTmp, 0, y.length);
+
+ if (!isLastStep) {
+
+ // prepare next step
+ interpolator.storeTime(stepStart);
+
+ if (fsal) {
+ // save the last evaluation for the next step
+ System.arraycopy(yDotTmp, 0, yDotK[0], 0, y0.length);
+ }
+
+ // stepsize control for next step
+ final double factor =
+ FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
+ final double scaledH = stepSize * factor;
+ final double nextT = stepStart + scaledH;
+ final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
+ hNew = filterStep(scaledH, forward, nextIsLast);
+
+ final double filteredNextT = stepStart + hNew;
+ final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
+ if (filteredNextIsLast) {
+ hNew = t - stepStart;
+ }
+
+ }
+
+ } while (!isLastStep);
+
+ // dispatch results
+ equations.setTime(stepStart);
+ equations.setCompleteState(y);
+
+ resetInternalState();
+
+ }
+
+ /** Get the minimal reduction factor for stepsize control.
+ * @return minimal reduction factor
+ */
+ public double getMinReduction() {
+ return minReduction;
+ }
+
+ /** Set the minimal reduction factor for stepsize control.
+ * @param minReduction minimal reduction factor
+ */
+ public void setMinReduction(final double minReduction) {
+ this.minReduction = minReduction;
+ }
+
+ /** Get the maximal growth factor for stepsize control.
+ * @return maximal growth factor
+ */
+ public double getMaxGrowth() {
+ return maxGrowth;
+ }
+
+ /** Set the maximal growth factor for stepsize control.
+ * @param maxGrowth maximal growth factor
+ */
+ public void setMaxGrowth(final double maxGrowth) {
+ this.maxGrowth = maxGrowth;
+ }
+
+ /** Compute the error ratio.
+ * @param yDotK derivatives computed during the first stages
+ * @param y0 estimate of the step at the start of the step
+ * @param y1 estimate of the step at the end of the step
+ * @param h current step
+ * @return error ratio, greater than 1 if step should be rejected
+ */
+ protected abstract double estimateError(double[][] yDotK,
+ double[] y0, double[] y1,
+ double h);
+
+}