summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java148
1 files changed, 148 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java
new file mode 100644
index 0000000..5639ed5
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java
@@ -0,0 +1,148 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.Field;
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.ode.FieldEquationsMapper;
+import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
+
+/**
+ * This class implements a step interpolator for the Gill fourth
+ * order Runge-Kutta integrator.
+ *
+ * <p>This interpolator allows to compute dense output inside the last
+ * step computed. The interpolation equation is consistent with the
+ * integration scheme :
+ * <ul>
+ * <li>Using reference point at step start:<br>
+ * y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
+ * + &theta; (h/6) [ (6 - 9 &theta; + 4 &theta;<sup>2</sup>) y'<sub>1</sub>
+ * + ( 6 &theta; - 4 &theta;<sup>2</sup>) ((1-1/&radic;2) y'<sub>2</sub> + (1+1/&radic;2)) y'<sub>3</sub>)
+ * + ( - 3 &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
+ * ]
+ * </li>
+ * <li>Using reference point at step start:<br>
+ * y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
+ * - (1 - &theta;) (h/6) [ (1 - 5 &theta; + 4 &theta;<sup>2</sup>) y'<sub>1</sub>
+ * + (2 + 2 &theta; - 4 &theta;<sup>2</sup>) ((1-1/&radic;2) y'<sub>2</sub> + (1+1/&radic;2)) y'<sub>3</sub>)
+ * + (1 + &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
+ * ]
+ * </li>
+ * </ul>
+ * </p>
+ * where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub>
+ * are the four evaluations of the derivatives already computed during
+ * the step.</p>
+ *
+ * @see GillFieldIntegrator
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+
+class GillFieldStepInterpolator<T extends RealFieldElement<T>>
+ extends RungeKuttaFieldStepInterpolator<T> {
+
+ /** First Gill coefficient. */
+ private final T one_minus_inv_sqrt_2;
+
+ /** Second Gill coefficient. */
+ private final T one_plus_inv_sqrt_2;
+
+ /** Simple constructor.
+ * @param field field to which the time and state vector elements belong
+ * @param forward integration direction indicator
+ * @param yDotK slopes at the intermediate points
+ * @param globalPreviousState start of the global step
+ * @param globalCurrentState end of the global step
+ * @param softPreviousState start of the restricted step
+ * @param softCurrentState end of the restricted step
+ * @param mapper equations mapper for the all equations
+ */
+ GillFieldStepInterpolator(final Field<T> field, final boolean forward,
+ final T[][] yDotK,
+ final FieldODEStateAndDerivative<T> globalPreviousState,
+ final FieldODEStateAndDerivative<T> globalCurrentState,
+ final FieldODEStateAndDerivative<T> softPreviousState,
+ final FieldODEStateAndDerivative<T> softCurrentState,
+ final FieldEquationsMapper<T> mapper) {
+ super(field, forward, yDotK,
+ globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
+ mapper);
+ final T sqrt = field.getZero().add(0.5).sqrt();
+ one_minus_inv_sqrt_2 = field.getOne().subtract(sqrt);
+ one_plus_inv_sqrt_2 = field.getOne().add(sqrt);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected GillFieldStepInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
+ final FieldODEStateAndDerivative<T> newGlobalPreviousState,
+ final FieldODEStateAndDerivative<T> newGlobalCurrentState,
+ final FieldODEStateAndDerivative<T> newSoftPreviousState,
+ final FieldODEStateAndDerivative<T> newSoftCurrentState,
+ final FieldEquationsMapper<T> newMapper) {
+ return new GillFieldStepInterpolator<T>(newField, newForward, newYDotK,
+ newGlobalPreviousState, newGlobalCurrentState,
+ newSoftPreviousState, newSoftCurrentState,
+ newMapper);
+ }
+
+ /** {@inheritDoc} */
+ @SuppressWarnings("unchecked")
+ @Override
+ protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
+ final T time, final T theta,
+ final T thetaH, final T oneMinusThetaH) {
+
+ final T one = time.getField().getOne();
+ final T twoTheta = theta.multiply(2);
+ final T fourTheta2 = twoTheta.multiply(twoTheta);
+ final T coeffDot1 = theta.multiply(twoTheta.subtract(3)).add(1);
+ final T cDot23 = twoTheta.multiply(one.subtract(theta));
+ final T coeffDot2 = cDot23.multiply(one_minus_inv_sqrt_2);
+ final T coeffDot3 = cDot23.multiply(one_plus_inv_sqrt_2);
+ final T coeffDot4 = theta.multiply(twoTheta.subtract(1));
+ final T[] interpolatedState;
+ final T[] interpolatedDerivatives;
+
+ if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
+ final T s = thetaH.divide(6.0);
+ final T c23 = s.multiply(theta.multiply(6).subtract(fourTheta2));
+ final T coeff1 = s.multiply(fourTheta2.subtract(theta.multiply(9)).add(6));
+ final T coeff2 = c23.multiply(one_minus_inv_sqrt_2);
+ final T coeff3 = c23.multiply(one_plus_inv_sqrt_2);
+ final T coeff4 = s.multiply(fourTheta2.subtract(theta.multiply(3)));
+ interpolatedState = previousStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
+ interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4);
+ } else {
+ final T s = oneMinusThetaH.divide(-6.0);
+ final T c23 = s.multiply(twoTheta.add(2).subtract(fourTheta2));
+ final T coeff1 = s.multiply(fourTheta2.subtract(theta.multiply(5)).add(1));
+ final T coeff2 = c23.multiply(one_minus_inv_sqrt_2);
+ final T coeff3 = c23.multiply(one_plus_inv_sqrt_2);
+ final T coeff4 = s.multiply(fourTheta2.add(theta).add(1));
+ interpolatedState = currentStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
+ interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4);
+ }
+
+ return new FieldODEStateAndDerivative<T>(time, interpolatedState, interpolatedDerivatives);
+
+ }
+
+}