summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherFieldStepInterpolator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/LutherFieldStepInterpolator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/LutherFieldStepInterpolator.java224
1 files changed, 224 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherFieldStepInterpolator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherFieldStepInterpolator.java
new file mode 100644
index 0000000..9e38a96
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherFieldStepInterpolator.java
@@ -0,0 +1,224 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.Field;
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.ode.FieldEquationsMapper;
+import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
+
+/**
+ * This class represents an interpolator over the last step during an
+ * ODE integration for the 6th order Luther integrator.
+ *
+ * <p>This interpolator computes dense output inside the last
+ * step computed. The interpolation equation is consistent with the
+ * integration scheme.</p>
+ *
+ * @see LutherFieldIntegrator
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+
+class LutherFieldStepInterpolator<T extends RealFieldElement<T>>
+ extends RungeKuttaFieldStepInterpolator<T> {
+
+ /** -49 - 49 q. */
+ private final T c5a;
+
+ /** 392 + 287 q. */
+ private final T c5b;
+
+ /** -637 - 357 q. */
+ private final T c5c;
+
+ /** 833 + 343 q. */
+ private final T c5d;
+
+ /** -49 + 49 q. */
+ private final T c6a;
+
+ /** -392 - 287 q. */
+ private final T c6b;
+
+ /** -637 + 357 q. */
+ private final T c6c;
+
+ /** 833 - 343 q. */
+ private final T c6d;
+
+ /** 49 + 49 q. */
+ private final T d5a;
+
+ /** -1372 - 847 q. */
+ private final T d5b;
+
+ /** 2254 + 1029 q */
+ private final T d5c;
+
+ /** 49 - 49 q. */
+ private final T d6a;
+
+ /** -1372 + 847 q. */
+ private final T d6b;
+
+ /** 2254 - 1029 q */
+ private final T d6c;
+
+ /** Simple constructor.
+ * @param field field to which the time and state vector elements belong
+ * @param forward integration direction indicator
+ * @param yDotK slopes at the intermediate points
+ * @param globalPreviousState start of the global step
+ * @param globalCurrentState end of the global step
+ * @param softPreviousState start of the restricted step
+ * @param softCurrentState end of the restricted step
+ * @param mapper equations mapper for the all equations
+ */
+ LutherFieldStepInterpolator(final Field<T> field, final boolean forward,
+ final T[][] yDotK,
+ final FieldODEStateAndDerivative<T> globalPreviousState,
+ final FieldODEStateAndDerivative<T> globalCurrentState,
+ final FieldODEStateAndDerivative<T> softPreviousState,
+ final FieldODEStateAndDerivative<T> softCurrentState,
+ final FieldEquationsMapper<T> mapper) {
+ super(field, forward, yDotK,
+ globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
+ mapper);
+ final T q = field.getZero().add(21).sqrt();
+ c5a = q.multiply( -49).add( -49);
+ c5b = q.multiply( 287).add( 392);
+ c5c = q.multiply( -357).add( -637);
+ c5d = q.multiply( 343).add( 833);
+ c6a = q.multiply( 49).add( -49);
+ c6b = q.multiply( -287).add( 392);
+ c6c = q.multiply( 357).add( -637);
+ c6d = q.multiply( -343).add( 833);
+ d5a = q.multiply( 49).add( 49);
+ d5b = q.multiply( -847).add(-1372);
+ d5c = q.multiply( 1029).add( 2254);
+ d6a = q.multiply( -49).add( 49);
+ d6b = q.multiply( 847).add(-1372);
+ d6c = q.multiply(-1029).add( 2254);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected LutherFieldStepInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
+ final FieldODEStateAndDerivative<T> newGlobalPreviousState,
+ final FieldODEStateAndDerivative<T> newGlobalCurrentState,
+ final FieldODEStateAndDerivative<T> newSoftPreviousState,
+ final FieldODEStateAndDerivative<T> newSoftCurrentState,
+ final FieldEquationsMapper<T> newMapper) {
+ return new LutherFieldStepInterpolator<T>(newField, newForward, newYDotK,
+ newGlobalPreviousState, newGlobalCurrentState,
+ newSoftPreviousState, newSoftCurrentState,
+ newMapper);
+ }
+
+ /** {@inheritDoc} */
+ @SuppressWarnings("unchecked")
+ @Override
+ protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
+ final T time, final T theta,
+ final T thetaH, final T oneMinusThetaH) {
+
+ // the coefficients below have been computed by solving the
+ // order conditions from a theorem from Butcher (1963), using
+ // the method explained in Folkmar Bornemann paper "Runge-Kutta
+ // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich
+ // University of Technology, February 9, 2001
+ //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html>
+
+ // the method is implemented in the rkcheck tool
+ // <https://www.spaceroots.org/software/rkcheck/index.html>.
+ // Running it for order 5 gives the following order conditions
+ // for an interpolator:
+ // order 1 conditions
+ // \sum_{i=1}^{i=s}\left(b_{i} \right) =1
+ // order 2 conditions
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2}
+ // order 3 conditions
+ // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6}
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3}
+ // order 4 conditions
+ // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24}
+ // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12}
+ // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8}
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4}
+ // order 5 conditions
+ // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120}
+ // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60}
+ // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40}
+ // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20}
+ // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30}
+ // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15}
+ // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20}
+ // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10}
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5}
+
+ // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve
+ // are the b_i for the interpolator. They are found by solving the above equations.
+ // For a given interpolator, some equations are redundant, so in our case when we select
+ // all equations from order 1 to 4, we still don't have enough independent equations
+ // to solve from b_1 to b_7. We need to also select one equation from order 5. Here,
+ // we selected the last equation. It appears this choice implied at least the last 3 equations
+ // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5.
+ // At the end, we get the b_i as polynomials in theta.
+
+ final T coeffDot1 = theta.multiply(theta.multiply(theta.multiply(theta.multiply( 21 ).add( -47 )).add( 36 )).add( -54 / 5.0)).add(1);
+ final T coeffDot2 = time.getField().getZero();
+ final T coeffDot3 = theta.multiply(theta.multiply(theta.multiply(theta.multiply( 112 ).add(-608 / 3.0)).add( 320 / 3.0 )).add(-208 / 15.0));
+ final T coeffDot4 = theta.multiply(theta.multiply(theta.multiply(theta.multiply( -567 / 5.0).add( 972 / 5.0)).add( -486 / 5.0 )).add( 324 / 25.0));
+ final T coeffDot5 = theta.multiply(theta.multiply(theta.multiply(theta.multiply(c5a.divide(5)).add(c5b.divide(15))).add(c5c.divide(30))).add(c5d.divide(150)));
+ final T coeffDot6 = theta.multiply(theta.multiply(theta.multiply(theta.multiply(c6a.divide(5)).add(c6b.divide(15))).add(c6c.divide(30))).add(c6d.divide(150)));
+ final T coeffDot7 = theta.multiply(theta.multiply(theta.multiply( 3.0 ).add( -3 )).add( 3 / 5.0));
+ final T[] interpolatedState;
+ final T[] interpolatedDerivatives;
+
+ if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
+
+ final T s = thetaH;
+ final T coeff1 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( 21 / 5.0).add( -47 / 4.0)).add( 12 )).add( -27 / 5.0)).add(1));
+ final T coeff2 = time.getField().getZero();
+ final T coeff3 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( 112 / 5.0).add(-152 / 3.0)).add( 320 / 9.0 )).add(-104 / 15.0)));
+ final T coeff4 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-567 / 25.0).add( 243 / 5.0)).add( -162 / 5.0 )).add( 162 / 25.0)));
+ final T coeff5 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(c5a.divide(25)).add(c5b.divide(60))).add(c5c.divide(90))).add(c5d.divide(300))));
+ final T coeff6 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(c6a.divide(25)).add(c6b.divide(60))).add(c6c.divide(90))).add(c6d.divide(300))));
+ final T coeff7 = s.multiply(theta.multiply(theta.multiply(theta.multiply( 3 / 4.0 ).add( -1 )).add( 3 / 10.0)));
+ interpolatedState = previousStateLinearCombination(coeff1, coeff2, coeff3, coeff4, coeff5, coeff6, coeff7);
+ interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
+ } else {
+
+ final T s = oneMinusThetaH;
+ final T coeff1 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( -21 / 5.0).add( 151 / 20.0)).add( -89 / 20.0)).add( 19 / 20.0)).add(- 1 / 20.0));
+ final T coeff2 = time.getField().getZero();
+ final T coeff3 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-112 / 5.0).add( 424 / 15.0)).add( -328 / 45.0)).add( -16 / 45.0)).add(-16 / 45.0));
+ final T coeff4 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( 567 / 25.0).add( -648 / 25.0)).add( 162 / 25.0))));
+ final T coeff5 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(d5a.divide(25)).add(d5b.divide(300))).add(d5c.divide(900))).add( -49 / 180.0)).add(-49 / 180.0));
+ final T coeff6 = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(d6a.divide(25)).add(d6b.divide(300))).add(d6c.divide(900))).add( -49 / 180.0)).add(-49 / 180.0));
+ final T coeff7 = s.multiply( theta.multiply(theta.multiply(theta.multiply( -3 / 4.0 ).add( 1 / 4.0)).add( -1 / 20.0)).add( -1 / 20.0));
+ interpolatedState = currentStateLinearCombination(coeff1, coeff2, coeff3, coeff4, coeff5, coeff6, coeff7);
+ interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
+ }
+
+ return new FieldODEStateAndDerivative<T>(time, interpolatedState, interpolatedDerivatives);
+
+ }
+
+}