summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/RungeKuttaFieldIntegrator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/RungeKuttaFieldIntegrator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/RungeKuttaFieldIntegrator.java273
1 files changed, 273 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/RungeKuttaFieldIntegrator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/RungeKuttaFieldIntegrator.java
new file mode 100644
index 0000000..a97e9f5
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/RungeKuttaFieldIntegrator.java
@@ -0,0 +1,273 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+
+import org.apache.commons.math3.Field;
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.NoBracketingException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.ode.AbstractFieldIntegrator;
+import org.apache.commons.math3.ode.FieldEquationsMapper;
+import org.apache.commons.math3.ode.FieldExpandableODE;
+import org.apache.commons.math3.ode.FirstOrderFieldDifferentialEquations;
+import org.apache.commons.math3.ode.FieldODEState;
+import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math3.util.MathArrays;
+
+/**
+ * This class implements the common part of all fixed step Runge-Kutta
+ * integrators for Ordinary Differential Equations.
+ *
+ * <p>These methods are explicit Runge-Kutta methods, their Butcher
+ * arrays are as follows :
+ * <pre>
+ * 0 |
+ * c2 | a21
+ * c3 | a31 a32
+ * ... | ...
+ * cs | as1 as2 ... ass-1
+ * |--------------------------
+ * | b1 b2 ... bs-1 bs
+ * </pre>
+ * </p>
+ *
+ * @see EulerFieldIntegrator
+ * @see ClassicalRungeKuttaFieldIntegrator
+ * @see GillFieldIntegrator
+ * @see MidpointFieldIntegrator
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+
+public abstract class RungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
+ extends AbstractFieldIntegrator<T>
+ implements FieldButcherArrayProvider<T> {
+
+ /** Time steps from Butcher array (without the first zero). */
+ private final T[] c;
+
+ /** Internal weights from Butcher array (without the first empty row). */
+ private final T[][] a;
+
+ /** External weights for the high order method from Butcher array. */
+ private final T[] b;
+
+ /** Integration step. */
+ private final T step;
+
+ /** Simple constructor.
+ * Build a Runge-Kutta integrator with the given
+ * step. The default step handler does nothing.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param step integration step
+ */
+ protected RungeKuttaFieldIntegrator(final Field<T> field, final String name, final T step) {
+ super(field, name);
+ this.c = getC();
+ this.a = getA();
+ this.b = getB();
+ this.step = step.abs();
+ }
+
+ /** Create a fraction.
+ * @param p numerator
+ * @param q denominator
+ * @return p/q computed in the instance field
+ */
+ protected T fraction(final int p, final int q) {
+ return getField().getZero().add(p).divide(q);
+ }
+
+ /** Create an interpolator.
+ * @param forward integration direction indicator
+ * @param yDotK slopes at the intermediate points
+ * @param globalPreviousState start of the global step
+ * @param globalCurrentState end of the global step
+ * @param mapper equations mapper for the all equations
+ * @return external weights for the high order method from Butcher array
+ */
+ protected abstract RungeKuttaFieldStepInterpolator<T> createInterpolator(boolean forward, T[][] yDotK,
+ final FieldODEStateAndDerivative<T> globalPreviousState,
+ final FieldODEStateAndDerivative<T> globalCurrentState,
+ FieldEquationsMapper<T> mapper);
+
+ /** {@inheritDoc} */
+ public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
+ final FieldODEState<T> initialState, final T finalTime)
+ throws NumberIsTooSmallException, DimensionMismatchException,
+ MaxCountExceededException, NoBracketingException {
+
+ sanityChecks(initialState, finalTime);
+ final T t0 = initialState.getTime();
+ final T[] y0 = equations.getMapper().mapState(initialState);
+ setStepStart(initIntegration(equations, t0, y0, finalTime));
+ final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
+
+ // create some internal working arrays
+ final int stages = c.length + 1;
+ T[] y = y0;
+ final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1);
+ final T[] yTmp = MathArrays.buildArray(getField(), y0.length);
+
+ // set up integration control objects
+ if (forward) {
+ if (getStepStart().getTime().add(step).subtract(finalTime).getReal() >= 0) {
+ setStepSize(finalTime.subtract(getStepStart().getTime()));
+ } else {
+ setStepSize(step);
+ }
+ } else {
+ if (getStepStart().getTime().subtract(step).subtract(finalTime).getReal() <= 0) {
+ setStepSize(finalTime.subtract(getStepStart().getTime()));
+ } else {
+ setStepSize(step.negate());
+ }
+ }
+
+ // main integration loop
+ setIsLastStep(false);
+ do {
+
+ // first stage
+ y = equations.getMapper().mapState(getStepStart());
+ yDotK[0] = equations.getMapper().mapDerivative(getStepStart());
+
+ // next stages
+ for (int k = 1; k < stages; ++k) {
+
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(a[k-1][0]);
+ for (int l = 1; l < k; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
+ }
+ yTmp[j] = y[j].add(getStepSize().multiply(sum));
+ }
+
+ yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp);
+
+ }
+
+ // estimate the state at the end of the step
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(b[0]);
+ for (int l = 1; l < stages; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(b[l]));
+ }
+ yTmp[j] = y[j].add(getStepSize().multiply(sum));
+ }
+ final T stepEnd = getStepStart().getTime().add(getStepSize());
+ final T[] yDotTmp = computeDerivatives(stepEnd, yTmp);
+ final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<T>(stepEnd, yTmp, yDotTmp);
+
+ // discrete events handling
+ System.arraycopy(yTmp, 0, y, 0, y0.length);
+ setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
+ finalTime));
+
+ if (!isLastStep()) {
+
+ // stepsize control for next step
+ final T nextT = getStepStart().getTime().add(getStepSize());
+ final boolean nextIsLast = forward ?
+ (nextT.subtract(finalTime).getReal() >= 0) :
+ (nextT.subtract(finalTime).getReal() <= 0);
+ if (nextIsLast) {
+ setStepSize(finalTime.subtract(getStepStart().getTime()));
+ }
+ }
+
+ } while (!isLastStep());
+
+ final FieldODEStateAndDerivative<T> finalState = getStepStart();
+ setStepStart(null);
+ setStepSize(null);
+ return finalState;
+
+ }
+
+ /** Fast computation of a single step of ODE integration.
+ * <p>This method is intended for the limited use case of
+ * very fast computation of only one step without using any of the
+ * rich features of general integrators that may take some time
+ * to set up (i.e. no step handlers, no events handlers, no additional
+ * states, no interpolators, no error control, no evaluations count,
+ * no sanity checks ...). It handles the strict minimum of computation,
+ * so it can be embedded in outer loops.</p>
+ * <p>
+ * This method is <em>not</em> used at all by the {@link #integrate(FieldExpandableODE,
+ * FieldODEState, RealFieldElement)} method. It also completely ignores the step set at
+ * construction time, and uses only a single step to go from {@code t0} to {@code t}.
+ * </p>
+ * <p>
+ * As this method does not use any of the state-dependent features of the integrator,
+ * it should be reasonably thread-safe <em>if and only if</em> the provided differential
+ * equations are themselves thread-safe.
+ * </p>
+ * @param equations differential equations to integrate
+ * @param t0 initial time
+ * @param y0 initial value of the state vector at t0
+ * @param t target time for the integration
+ * (can be set to a value smaller than {@code t0} for backward integration)
+ * @return state vector at {@code t}
+ */
+ public T[] singleStep(final FirstOrderFieldDifferentialEquations<T> equations,
+ final T t0, final T[] y0, final T t) {
+
+ // create some internal working arrays
+ final T[] y = y0.clone();
+ final int stages = c.length + 1;
+ final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1);
+ final T[] yTmp = y0.clone();
+
+ // first stage
+ final T h = t.subtract(t0);
+ yDotK[0] = equations.computeDerivatives(t0, y);
+
+ // next stages
+ for (int k = 1; k < stages; ++k) {
+
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(a[k-1][0]);
+ for (int l = 1; l < k; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
+ }
+ yTmp[j] = y[j].add(h.multiply(sum));
+ }
+
+ yDotK[k] = equations.computeDerivatives(t0.add(h.multiply(c[k-1])), yTmp);
+
+ }
+
+ // estimate the state at the end of the step
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(b[0]);
+ for (int l = 1; l < stages; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(b[l]));
+ }
+ y[j] = y[j].add(h.multiply(sum));
+ }
+
+ return y;
+
+ }
+
+}