summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java')
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java186
1 files changed, 186 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
new file mode 100644
index 0000000..931f17f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
@@ -0,0 +1,186 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * <p>Adapter extending bounded {@link MultivariateFunction} to an unbouded
+ * domain using a penalty function.</p>
+ *
+ * <p>
+ * This adapter can be used to wrap functions subject to simple bounds on
+ * parameters so they can be used by optimizers that do <em>not</em> directly
+ * support simple bounds.
+ * </p>
+ * <p>
+ * The principle is that the user function that will be wrapped will see its
+ * parameters bounded as required, i.e when its {@code value} method is called
+ * with argument array {@code point}, the elements array will fulfill requirement
+ * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components
+ * may be unbounded or bounded only on one side if the corresponding bound is
+ * set to an infinite value. The optimizer will not manage the user function by
+ * itself, but it will handle this adapter and it is this adapter that will take
+ * care the bounds are fulfilled. The adapter {@link #value(double[])} method will
+ * be called by the optimizer with unbound parameters, and the adapter will check
+ * if the parameters is within range or not. If it is in range, then the underlying
+ * user function will be called, and if it is not the value of a penalty function
+ * will be returned instead.
+ * </p>
+ * <p>
+ * This adapter is only a poor-man's solution to simple bounds optimization
+ * constraints that can be used with simple optimizers like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer
+ * SimplexOptimizer}.
+ * A better solution is to use an optimizer that directly supports simple bounds like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer
+ * CMAESOptimizer} or
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
+ * BOBYQAOptimizer}.
+ * One caveat of this poor-man's solution is that if start point or start simplex
+ * is completely outside of the allowed range, only the penalty function is used,
+ * and the optimizer may converge without ever entering the range.
+ * </p>
+ *
+ * @see MultivariateFunctionMappingAdapter
+ *
+ * @since 3.0
+ */
+public class MultivariateFunctionPenaltyAdapter
+ implements MultivariateFunction {
+ /** Underlying bounded function. */
+ private final MultivariateFunction bounded;
+ /** Lower bounds. */
+ private final double[] lower;
+ /** Upper bounds. */
+ private final double[] upper;
+ /** Penalty offset. */
+ private final double offset;
+ /** Penalty scales. */
+ private final double[] scale;
+
+ /**
+ * Simple constructor.
+ * <p>
+ * When the optimizer provided points are out of range, the value of the
+ * penalty function will be used instead of the value of the underlying
+ * function. In order for this penalty to be effective in rejecting this
+ * point during the optimization process, the penalty function value should
+ * be defined with care. This value is computed as:
+ * <pre>
+ * penalty(point) = offset + &sum;<sub>i</sub>[scale[i] * &radic;|point[i]-boundary[i]|]
+ * </pre>
+ * where indices i correspond to all the components that violates their boundaries.
+ * </p>
+ * <p>
+ * So when attempting a function minimization, offset should be larger than
+ * the maximum expected value of the underlying function and scale components
+ * should all be positive. When attempting a function maximization, offset
+ * should be lesser than the minimum expected value of the underlying function
+ * and scale components should all be negative.
+ * minimization, and lesser than the minimum expected value of the underlying
+ * function when attempting maximization.
+ * </p>
+ * <p>
+ * These choices for the penalty function have two properties. First, all out
+ * of range points will return a function value that is worse than the value
+ * returned by any in range point. Second, the penalty is worse for large
+ * boundaries violation than for small violations, so the optimizer has an hint
+ * about the direction in which it should search for acceptable points.
+ * </p>
+ * @param bounded bounded function
+ * @param lower lower bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for
+ * unbounded values)
+ * @param upper upper bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.POSITIVE_INFINITY} for
+ * unbounded values)
+ * @param offset base offset of the penalty function
+ * @param scale scale of the penalty function
+ * @exception DimensionMismatchException if lower bounds, upper bounds and
+ * scales are not consistent, either according to dimension or to bounadary
+ * values
+ */
+ public MultivariateFunctionPenaltyAdapter(final MultivariateFunction bounded,
+ final double[] lower, final double[] upper,
+ final double offset, final double[] scale) {
+
+ // safety checks
+ MathUtils.checkNotNull(lower);
+ MathUtils.checkNotNull(upper);
+ MathUtils.checkNotNull(scale);
+ if (lower.length != upper.length) {
+ throw new DimensionMismatchException(lower.length, upper.length);
+ }
+ if (lower.length != scale.length) {
+ throw new DimensionMismatchException(lower.length, scale.length);
+ }
+ for (int i = 0; i < lower.length; ++i) {
+ // note the following test is written in such a way it also fails for NaN
+ if (!(upper[i] >= lower[i])) {
+ throw new NumberIsTooSmallException(upper[i], lower[i], true);
+ }
+ }
+
+ this.bounded = bounded;
+ this.lower = lower.clone();
+ this.upper = upper.clone();
+ this.offset = offset;
+ this.scale = scale.clone();
+ }
+
+ /**
+ * Computes the underlying function value from an unbounded point.
+ * <p>
+ * This method simply returns the value of the underlying function
+ * if the unbounded point already fulfills the bounds, and compute
+ * a replacement value using the offset and scale if bounds are
+ * violated, without calling the function at all.
+ * </p>
+ * @param point unbounded point
+ * @return either underlying function value or penalty function value
+ */
+ public double value(double[] point) {
+
+ for (int i = 0; i < scale.length; ++i) {
+ if ((point[i] < lower[i]) || (point[i] > upper[i])) {
+ // bound violation starting at this component
+ double sum = 0;
+ for (int j = i; j < scale.length; ++j) {
+ final double overshoot;
+ if (point[j] < lower[j]) {
+ overshoot = scale[j] * (lower[j] - point[j]);
+ } else if (point[j] > upper[j]) {
+ overshoot = scale[j] * (point[j] - upper[j]);
+ } else {
+ overshoot = 0;
+ }
+ sum += FastMath.sqrt(overshoot);
+ }
+ return offset + sum;
+ }
+ }
+
+ // all boundaries are fulfilled, we are in the expected
+ // domain of the underlying function
+ return bounded.value(point);
+ }
+}