summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java2475
1 files changed, 2475 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
new file mode 100644
index 0000000..e5bf39f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
@@ -0,0 +1,2475 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+// CHECKSTYLE: stop all
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.RealVector;
+import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Powell's BOBYQA algorithm. This implementation is translated and
+ * adapted from the Fortran version available
+ * <a href="http://plato.asu.edu/ftp/other_software/bobyqa.zip">here</a>.
+ * See <a href="http://www.optimization-online.org/DB_HTML/2010/05/2616.html">
+ * this paper</a> for an introduction.
+ * <br/>
+ * BOBYQA is particularly well suited for high dimensional problems
+ * where derivatives are not available. In most cases it outperforms the
+ * {@link PowellOptimizer} significantly. Stochastic algorithms like
+ * {@link CMAESOptimizer} succeed more often than BOBYQA, but are more
+ * expensive. BOBYQA could also be considered as a replacement of any
+ * derivative-based optimizer when the derivatives are approximated by
+ * finite differences.
+ *
+ * @since 3.0
+ */
+public class BOBYQAOptimizer
+ extends MultivariateOptimizer {
+ /** Minimum dimension of the problem: {@value} */
+ public static final int MINIMUM_PROBLEM_DIMENSION = 2;
+ /** Default value for {@link #initialTrustRegionRadius}: {@value} . */
+ public static final double DEFAULT_INITIAL_RADIUS = 10.0;
+ /** Default value for {@link #stoppingTrustRegionRadius}: {@value} . */
+ public static final double DEFAULT_STOPPING_RADIUS = 1E-8;
+ /** Constant 0. */
+ private static final double ZERO = 0d;
+ /** Constant 1. */
+ private static final double ONE = 1d;
+ /** Constant 2. */
+ private static final double TWO = 2d;
+ /** Constant 10. */
+ private static final double TEN = 10d;
+ /** Constant 16. */
+ private static final double SIXTEEN = 16d;
+ /** Constant 250. */
+ private static final double TWO_HUNDRED_FIFTY = 250d;
+ /** Constant -1. */
+ private static final double MINUS_ONE = -ONE;
+ /** Constant 1/2. */
+ private static final double HALF = ONE / 2;
+ /** Constant 1/4. */
+ private static final double ONE_OVER_FOUR = ONE / 4;
+ /** Constant 1/8. */
+ private static final double ONE_OVER_EIGHT = ONE / 8;
+ /** Constant 1/10. */
+ private static final double ONE_OVER_TEN = ONE / 10;
+ /** Constant 1/1000. */
+ private static final double ONE_OVER_A_THOUSAND = ONE / 1000;
+
+ /**
+ * numberOfInterpolationPoints XXX
+ */
+ private final int numberOfInterpolationPoints;
+ /**
+ * initialTrustRegionRadius XXX
+ */
+ private double initialTrustRegionRadius;
+ /**
+ * stoppingTrustRegionRadius XXX
+ */
+ private final double stoppingTrustRegionRadius;
+ /** Goal type (minimize or maximize). */
+ private boolean isMinimize;
+ /**
+ * Current best values for the variables to be optimized.
+ * The vector will be changed in-place to contain the values of the least
+ * calculated objective function values.
+ */
+ private ArrayRealVector currentBest;
+ /** Differences between the upper and lower bounds. */
+ private double[] boundDifference;
+ /**
+ * Index of the interpolation point at the trust region center.
+ */
+ private int trustRegionCenterInterpolationPointIndex;
+ /**
+ * Last <em>n</em> columns of matrix H (where <em>n</em> is the dimension
+ * of the problem).
+ * XXX "bmat" in the original code.
+ */
+ private Array2DRowRealMatrix bMatrix;
+ /**
+ * Factorization of the leading <em>npt</em> square submatrix of H, this
+ * factorization being Z Z<sup>T</sup>, which provides both the correct
+ * rank and positive semi-definiteness.
+ * XXX "zmat" in the original code.
+ */
+ private Array2DRowRealMatrix zMatrix;
+ /**
+ * Coordinates of the interpolation points relative to {@link #originShift}.
+ * XXX "xpt" in the original code.
+ */
+ private Array2DRowRealMatrix interpolationPoints;
+ /**
+ * Shift of origin that should reduce the contributions from rounding
+ * errors to values of the model and Lagrange functions.
+ * XXX "xbase" in the original code.
+ */
+ private ArrayRealVector originShift;
+ /**
+ * Values of the objective function at the interpolation points.
+ * XXX "fval" in the original code.
+ */
+ private ArrayRealVector fAtInterpolationPoints;
+ /**
+ * Displacement from {@link #originShift} of the trust region center.
+ * XXX "xopt" in the original code.
+ */
+ private ArrayRealVector trustRegionCenterOffset;
+ /**
+ * Gradient of the quadratic model at {@link #originShift} +
+ * {@link #trustRegionCenterOffset}.
+ * XXX "gopt" in the original code.
+ */
+ private ArrayRealVector gradientAtTrustRegionCenter;
+ /**
+ * Differences {@link #getLowerBound()} - {@link #originShift}.
+ * All the components of every {@link #trustRegionCenterOffset} are going
+ * to satisfy the bounds<br/>
+ * {@link #getLowerBound() lowerBound}<sub>i</sub> &le;
+ * {@link #trustRegionCenterOffset}<sub>i</sub>,<br/>
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is
+ * on a constraint boundary.
+ * XXX "sl" in the original code.
+ */
+ private ArrayRealVector lowerDifference;
+ /**
+ * Differences {@link #getUpperBound()} - {@link #originShift}
+ * All the components of every {@link #trustRegionCenterOffset} are going
+ * to satisfy the bounds<br/>
+ * {@link #trustRegionCenterOffset}<sub>i</sub> &le;
+ * {@link #getUpperBound() upperBound}<sub>i</sub>,<br/>
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is
+ * on a constraint boundary.
+ * XXX "su" in the original code.
+ */
+ private ArrayRealVector upperDifference;
+ /**
+ * Parameters of the implicit second derivatives of the quadratic model.
+ * XXX "pq" in the original code.
+ */
+ private ArrayRealVector modelSecondDerivativesParameters;
+ /**
+ * Point chosen by function {@link #trsbox(double,ArrayRealVector,
+ * ArrayRealVector, ArrayRealVector,ArrayRealVector,ArrayRealVector) trsbox}
+ * or {@link #altmov(int,double) altmov}.
+ * Usually {@link #originShift} + {@link #newPoint} is the vector of
+ * variables for the next evaluation of the objective function.
+ * It also satisfies the constraints indicated in {@link #lowerDifference}
+ * and {@link #upperDifference}.
+ * XXX "xnew" in the original code.
+ */
+ private ArrayRealVector newPoint;
+ /**
+ * Alternative to {@link #newPoint}, chosen by
+ * {@link #altmov(int,double) altmov}.
+ * It may replace {@link #newPoint} in order to increase the denominator
+ * in the {@link #update(double, double, int) updating procedure}.
+ * XXX "xalt" in the original code.
+ */
+ private ArrayRealVector alternativeNewPoint;
+ /**
+ * Trial step from {@link #trustRegionCenterOffset} which is usually
+ * {@link #newPoint} - {@link #trustRegionCenterOffset}.
+ * XXX "d__" in the original code.
+ */
+ private ArrayRealVector trialStepPoint;
+ /**
+ * Values of the Lagrange functions at a new point.
+ * XXX "vlag" in the original code.
+ */
+ private ArrayRealVector lagrangeValuesAtNewPoint;
+ /**
+ * Explicit second derivatives of the quadratic model.
+ * XXX "hq" in the original code.
+ */
+ private ArrayRealVector modelSecondDerivativesValues;
+
+ /**
+ * @param numberOfInterpolationPoints Number of interpolation conditions.
+ * For a problem of dimension {@code n}, its value must be in the interval
+ * {@code [n+2, (n+1)(n+2)/2]}.
+ * Choices that exceed {@code 2n+1} are not recommended.
+ */
+ public BOBYQAOptimizer(int numberOfInterpolationPoints) {
+ this(numberOfInterpolationPoints,
+ DEFAULT_INITIAL_RADIUS,
+ DEFAULT_STOPPING_RADIUS);
+ }
+
+ /**
+ * @param numberOfInterpolationPoints Number of interpolation conditions.
+ * For a problem of dimension {@code n}, its value must be in the interval
+ * {@code [n+2, (n+1)(n+2)/2]}.
+ * Choices that exceed {@code 2n+1} are not recommended.
+ * @param initialTrustRegionRadius Initial trust region radius.
+ * @param stoppingTrustRegionRadius Stopping trust region radius.
+ */
+ public BOBYQAOptimizer(int numberOfInterpolationPoints,
+ double initialTrustRegionRadius,
+ double stoppingTrustRegionRadius) {
+ super(null); // No custom convergence criterion.
+ this.numberOfInterpolationPoints = numberOfInterpolationPoints;
+ this.initialTrustRegionRadius = initialTrustRegionRadius;
+ this.stoppingTrustRegionRadius = stoppingTrustRegionRadius;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ final double[] lowerBound = getLowerBound();
+ final double[] upperBound = getUpperBound();
+
+ // Validity checks.
+ setup(lowerBound, upperBound);
+
+ isMinimize = (getGoalType() == GoalType.MINIMIZE);
+ currentBest = new ArrayRealVector(getStartPoint());
+
+ final double value = bobyqa(lowerBound, upperBound);
+
+ return new PointValuePair(currentBest.getDataRef(),
+ isMinimize ? value : -value);
+ }
+
+ /**
+ * This subroutine seeks the least value of a function of many variables,
+ * by applying a trust region method that forms quadratic models by
+ * interpolation. There is usually some freedom in the interpolation
+ * conditions, which is taken up by minimizing the Frobenius norm of
+ * the change to the second derivative of the model, beginning with the
+ * zero matrix. The values of the variables are constrained by upper and
+ * lower bounds. The arguments of the subroutine are as follows.
+ *
+ * N must be set to the number of variables and must be at least two.
+ * NPT is the number of interpolation conditions. Its value must be in
+ * the interval [N+2,(N+1)(N+2)/2]. Choices that exceed 2*N+1 are not
+ * recommended.
+ * Initial values of the variables must be set in X(1),X(2),...,X(N). They
+ * will be changed to the values that give the least calculated F.
+ * For I=1,2,...,N, XL(I) and XU(I) must provide the lower and upper
+ * bounds, respectively, on X(I). The construction of quadratic models
+ * requires XL(I) to be strictly less than XU(I) for each I. Further,
+ * the contribution to a model from changes to the I-th variable is
+ * damaged severely by rounding errors if XU(I)-XL(I) is too small.
+ * RHOBEG and RHOEND must be set to the initial and final values of a trust
+ * region radius, so both must be positive with RHOEND no greater than
+ * RHOBEG. Typically, RHOBEG should be about one tenth of the greatest
+ * expected change to a variable, while RHOEND should indicate the
+ * accuracy that is required in the final values of the variables. An
+ * error return occurs if any of the differences XU(I)-XL(I), I=1,...,N,
+ * is less than 2*RHOBEG.
+ * MAXFUN must be set to an upper bound on the number of calls of CALFUN.
+ * The array W will be used for working space. Its length must be at least
+ * (NPT+5)*(NPT+N)+3*N*(N+5)/2.
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ * @return the value of the objective at the optimum.
+ */
+ private double bobyqa(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+
+ // Return if there is insufficient space between the bounds. Modify the
+ // initial X if necessary in order to avoid conflicts between the bounds
+ // and the construction of the first quadratic model. The lower and upper
+ // bounds on moves from the updated X are set now, in the ISL and ISU
+ // partitions of W, in order to provide useful and exact information about
+ // components of X that become within distance RHOBEG from their bounds.
+
+ for (int j = 0; j < n; j++) {
+ final double boundDiff = boundDifference[j];
+ lowerDifference.setEntry(j, lowerBound[j] - currentBest.getEntry(j));
+ upperDifference.setEntry(j, upperBound[j] - currentBest.getEntry(j));
+ if (lowerDifference.getEntry(j) >= -initialTrustRegionRadius) {
+ if (lowerDifference.getEntry(j) >= ZERO) {
+ currentBest.setEntry(j, lowerBound[j]);
+ lowerDifference.setEntry(j, ZERO);
+ upperDifference.setEntry(j, boundDiff);
+ } else {
+ currentBest.setEntry(j, lowerBound[j] + initialTrustRegionRadius);
+ lowerDifference.setEntry(j, -initialTrustRegionRadius);
+ // Computing MAX
+ final double deltaOne = upperBound[j] - currentBest.getEntry(j);
+ upperDifference.setEntry(j, FastMath.max(deltaOne, initialTrustRegionRadius));
+ }
+ } else if (upperDifference.getEntry(j) <= initialTrustRegionRadius) {
+ if (upperDifference.getEntry(j) <= ZERO) {
+ currentBest.setEntry(j, upperBound[j]);
+ lowerDifference.setEntry(j, -boundDiff);
+ upperDifference.setEntry(j, ZERO);
+ } else {
+ currentBest.setEntry(j, upperBound[j] - initialTrustRegionRadius);
+ // Computing MIN
+ final double deltaOne = lowerBound[j] - currentBest.getEntry(j);
+ final double deltaTwo = -initialTrustRegionRadius;
+ lowerDifference.setEntry(j, FastMath.min(deltaOne, deltaTwo));
+ upperDifference.setEntry(j, initialTrustRegionRadius);
+ }
+ }
+ }
+
+ // Make the call of BOBYQB.
+
+ return bobyqb(lowerBound, upperBound);
+ } // bobyqa
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arguments N, NPT, X, XL, XU, RHOBEG, RHOEND, IPRINT and MAXFUN
+ * are identical to the corresponding arguments in SUBROUTINE BOBYQA.
+ * XBASE holds a shift of origin that should reduce the contributions
+ * from rounding errors to values of the model and Lagrange functions.
+ * XPT is a two-dimensional array that holds the coordinates of the
+ * interpolation points relative to XBASE.
+ * FVAL holds the values of F at the interpolation points.
+ * XOPT is set to the displacement from XBASE of the trust region centre.
+ * GOPT holds the gradient of the quadratic model at XBASE+XOPT.
+ * HQ holds the explicit second derivatives of the quadratic model.
+ * PQ contains the parameters of the implicit second derivatives of the
+ * quadratic model.
+ * BMAT holds the last N columns of H.
+ * ZMAT holds the factorization of the leading NPT by NPT submatrix of H,
+ * this factorization being ZMAT times ZMAT^T, which provides both the
+ * correct rank and positive semi-definiteness.
+ * NDIM is the first dimension of BMAT and has the value NPT+N.
+ * SL and SU hold the differences XL-XBASE and XU-XBASE, respectively.
+ * All the components of every XOPT are going to satisfy the bounds
+ * SL(I) .LEQ. XOPT(I) .LEQ. SU(I), with appropriate equalities when
+ * XOPT is on a constraint boundary.
+ * XNEW is chosen by SUBROUTINE TRSBOX or ALTMOV. Usually XBASE+XNEW is the
+ * vector of variables for the next call of CALFUN. XNEW also satisfies
+ * the SL and SU constraints in the way that has just been mentioned.
+ * XALT is an alternative to XNEW, chosen by ALTMOV, that may replace XNEW
+ * in order to increase the denominator in the updating of UPDATE.
+ * D is reserved for a trial step from XOPT, which is usually XNEW-XOPT.
+ * VLAG contains the values of the Lagrange functions at a new point X.
+ * They are part of a product that requires VLAG to be of length NDIM.
+ * W is a one-dimensional array that is used for working space. Its length
+ * must be at least 3*NDIM = 3*(NPT+N).
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ * @return the value of the objective at the optimum.
+ */
+ private double bobyqb(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int np = n + 1;
+ final int nptm = npt - np;
+ final int nh = n * np / 2;
+
+ final ArrayRealVector work1 = new ArrayRealVector(n);
+ final ArrayRealVector work2 = new ArrayRealVector(npt);
+ final ArrayRealVector work3 = new ArrayRealVector(npt);
+
+ double cauchy = Double.NaN;
+ double alpha = Double.NaN;
+ double dsq = Double.NaN;
+ double crvmin = Double.NaN;
+
+ // Set some constants.
+ // Parameter adjustments
+
+ // Function Body
+
+ // The call of PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
+ // BMAT and ZMAT for the first iteration, with the corresponding values of
+ // of NF and KOPT, which are the number of calls of CALFUN so far and the
+ // index of the interpolation point at the trust region centre. Then the
+ // initial XOPT is set too. The branch to label 720 occurs if MAXFUN is
+ // less than NPT. GOPT will be updated if KOPT is different from KBASE.
+
+ trustRegionCenterInterpolationPointIndex = 0;
+
+ prelim(lowerBound, upperBound);
+ double xoptsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ trustRegionCenterOffset.setEntry(i, interpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex, i));
+ // Computing 2nd power
+ final double deltaOne = trustRegionCenterOffset.getEntry(i);
+ xoptsq += deltaOne * deltaOne;
+ }
+ double fsave = fAtInterpolationPoints.getEntry(0);
+ final int kbase = 0;
+
+ // Complete the settings that are required for the iterative procedure.
+
+ int ntrits = 0;
+ int itest = 0;
+ int knew = 0;
+ int nfsav = getEvaluations();
+ double rho = initialTrustRegionRadius;
+ double delta = rho;
+ double diffa = ZERO;
+ double diffb = ZERO;
+ double diffc = ZERO;
+ double f = ZERO;
+ double beta = ZERO;
+ double adelt = ZERO;
+ double denom = ZERO;
+ double ratio = ZERO;
+ double dnorm = ZERO;
+ double scaden = ZERO;
+ double biglsq = ZERO;
+ double distsq = ZERO;
+
+ // Update GOPT if necessary before the first iteration and after each
+ // call of RESCUE that makes a call of CALFUN.
+
+ int state = 20;
+ for(;;) {
+ switch (state) {
+ case 20: {
+ printState(20); // XXX
+ if (trustRegionCenterInterpolationPointIndex != kbase) {
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(i));
+ }
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(j));
+ ih++;
+ }
+ }
+ if (getEvaluations() > npt) {
+ for (int k = 0; k < npt; k++) {
+ double temp = ZERO;
+ for (int j = 0; j < n; j++) {
+ temp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ temp *= modelSecondDerivativesParameters.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ // throw new PathIsExploredException(); // XXX
+ }
+ }
+
+ // Generate the next point in the trust region that provides a small value
+ // of the quadratic model subject to the constraints on the variables.
+ // The int NTRITS is set to the number "trust region" iterations that
+ // have occurred since the last "alternative" iteration. If the length
+ // of XNEW-XOPT is less than HALF*RHO, however, then there is a branch to
+ // label 650 or 680 with NTRITS=-1, instead of calculating F at XNEW.
+
+ }
+ case 60: {
+ printState(60); // XXX
+ final ArrayRealVector gnew = new ArrayRealVector(n);
+ final ArrayRealVector xbdi = new ArrayRealVector(n);
+ final ArrayRealVector s = new ArrayRealVector(n);
+ final ArrayRealVector hs = new ArrayRealVector(n);
+ final ArrayRealVector hred = new ArrayRealVector(n);
+
+ final double[] dsqCrvmin = trsbox(delta, gnew, xbdi, s,
+ hs, hred);
+ dsq = dsqCrvmin[0];
+ crvmin = dsqCrvmin[1];
+
+ // Computing MIN
+ double deltaOne = delta;
+ double deltaTwo = FastMath.sqrt(dsq);
+ dnorm = FastMath.min(deltaOne, deltaTwo);
+ if (dnorm < HALF * rho) {
+ ntrits = -1;
+ // Computing 2nd power
+ deltaOne = TEN * rho;
+ distsq = deltaOne * deltaOne;
+ if (getEvaluations() <= nfsav + 2) {
+ state = 650; break;
+ }
+
+ // The following choice between labels 650 and 680 depends on whether or
+ // not our work with the current RHO seems to be complete. Either RHO is
+ // decreased or termination occurs if the errors in the quadratic model at
+ // the last three interpolation points compare favourably with predictions
+ // of likely improvements to the model within distance HALF*RHO of XOPT.
+
+ // Computing MAX
+ deltaOne = FastMath.max(diffa, diffb);
+ final double errbig = FastMath.max(deltaOne, diffc);
+ final double frhosq = rho * ONE_OVER_EIGHT * rho;
+ if (crvmin > ZERO &&
+ errbig > frhosq * crvmin) {
+ state = 650; break;
+ }
+ final double bdtol = errbig / rho;
+ for (int j = 0; j < n; j++) {
+ double bdtest = bdtol;
+ if (newPoint.getEntry(j) == lowerDifference.getEntry(j)) {
+ bdtest = work1.getEntry(j);
+ }
+ if (newPoint.getEntry(j) == upperDifference.getEntry(j)) {
+ bdtest = -work1.getEntry(j);
+ }
+ if (bdtest < bdtol) {
+ double curv = modelSecondDerivativesValues.getEntry((j + j * j) / 2);
+ for (int k = 0; k < npt; k++) {
+ // Computing 2nd power
+ final double d1 = interpolationPoints.getEntry(k, j);
+ curv += modelSecondDerivativesParameters.getEntry(k) * (d1 * d1);
+ }
+ bdtest += HALF * curv * rho;
+ if (bdtest < bdtol) {
+ state = 650; break;
+ }
+ // throw new PathIsExploredException(); // XXX
+ }
+ }
+ state = 680; break;
+ }
+ ++ntrits;
+
+ // Severe cancellation is likely to occur if XOPT is too far from XBASE.
+ // If the following test holds, then XBASE is shifted so that XOPT becomes
+ // zero. The appropriate changes are made to BMAT and to the second
+ // derivatives of the current model, beginning with the changes to BMAT
+ // that do not depend on ZMAT. VLAG is used temporarily for working space.
+
+ }
+ case 90: {
+ printState(90); // XXX
+ if (dsq <= xoptsq * ONE_OVER_A_THOUSAND) {
+ final double fracsq = xoptsq * ONE_OVER_FOUR;
+ double sumpq = ZERO;
+ // final RealVector sumVector
+ // = new ArrayRealVector(npt, -HALF * xoptsq).add(interpolationPoints.operate(trustRegionCenter));
+ for (int k = 0; k < npt; k++) {
+ sumpq += modelSecondDerivativesParameters.getEntry(k);
+ double sum = -HALF * xoptsq;
+ for (int i = 0; i < n; i++) {
+ sum += interpolationPoints.getEntry(k, i) * trustRegionCenterOffset.getEntry(i);
+ }
+ // sum = sumVector.getEntry(k); // XXX "testAckley" and "testDiffPow" fail.
+ work2.setEntry(k, sum);
+ final double temp = fracsq - HALF * sum;
+ for (int i = 0; i < n; i++) {
+ work1.setEntry(i, bMatrix.getEntry(k, i));
+ lagrangeValuesAtNewPoint.setEntry(i, sum * interpolationPoints.getEntry(k, i) + temp * trustRegionCenterOffset.getEntry(i));
+ final int ip = npt + i;
+ for (int j = 0; j <= i; j++) {
+ bMatrix.setEntry(ip, j,
+ bMatrix.getEntry(ip, j)
+ + work1.getEntry(i) * lagrangeValuesAtNewPoint.getEntry(j)
+ + lagrangeValuesAtNewPoint.getEntry(i) * work1.getEntry(j));
+ }
+ }
+ }
+
+ // Then the revisions of BMAT that depend on ZMAT are calculated.
+
+ for (int m = 0; m < nptm; m++) {
+ double sumz = ZERO;
+ double sumw = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sumz += zMatrix.getEntry(k, m);
+ lagrangeValuesAtNewPoint.setEntry(k, work2.getEntry(k) * zMatrix.getEntry(k, m));
+ sumw += lagrangeValuesAtNewPoint.getEntry(k);
+ }
+ for (int j = 0; j < n; j++) {
+ double sum = (fracsq * sumz - HALF * sumw) * trustRegionCenterOffset.getEntry(j);
+ for (int k = 0; k < npt; k++) {
+ sum += lagrangeValuesAtNewPoint.getEntry(k) * interpolationPoints.getEntry(k, j);
+ }
+ work1.setEntry(j, sum);
+ for (int k = 0; k < npt; k++) {
+ bMatrix.setEntry(k, j,
+ bMatrix.getEntry(k, j)
+ + sum * zMatrix.getEntry(k, m));
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ final int ip = i + npt;
+ final double temp = work1.getEntry(i);
+ for (int j = 0; j <= i; j++) {
+ bMatrix.setEntry(ip, j,
+ bMatrix.getEntry(ip, j)
+ + temp * work1.getEntry(j));
+ }
+ }
+ }
+
+ // The following instructions complete the shift, including the changes
+ // to the second derivative parameters of the quadratic model.
+
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ work1.setEntry(j, -HALF * sumpq * trustRegionCenterOffset.getEntry(j));
+ for (int k = 0; k < npt; k++) {
+ work1.setEntry(j, work1.getEntry(j) + modelSecondDerivativesParameters.getEntry(k) * interpolationPoints.getEntry(k, j));
+ interpolationPoints.setEntry(k, j, interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j));
+ }
+ for (int i = 0; i <= j; i++) {
+ modelSecondDerivativesValues.setEntry(ih,
+ modelSecondDerivativesValues.getEntry(ih)
+ + work1.getEntry(i) * trustRegionCenterOffset.getEntry(j)
+ + trustRegionCenterOffset.getEntry(i) * work1.getEntry(j));
+ bMatrix.setEntry(npt + i, j, bMatrix.getEntry(npt + j, i));
+ ih++;
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ originShift.setEntry(i, originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i));
+ newPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ lowerDifference.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ upperDifference.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ trustRegionCenterOffset.setEntry(i, ZERO);
+ }
+ xoptsq = ZERO;
+ }
+ if (ntrits == 0) {
+ state = 210; break;
+ }
+ state = 230; break;
+
+ // XBASE is also moved to XOPT by a call of RESCUE. This calculation is
+ // more expensive than the previous shift, because new matrices BMAT and
+ // ZMAT are generated from scratch, which may include the replacement of
+ // interpolation points whose positions seem to be causing near linear
+ // dependence in the interpolation conditions. Therefore RESCUE is called
+ // only if rounding errors have reduced by at least a factor of two the
+ // denominator of the formula for updating the H matrix. It provides a
+ // useful safeguard, but is not invoked in most applications of BOBYQA.
+
+ }
+ case 210: {
+ printState(210); // XXX
+ // Pick two alternative vectors of variables, relative to XBASE, that
+ // are suitable as new positions of the KNEW-th interpolation point.
+ // Firstly, XNEW is set to the point on a line through XOPT and another
+ // interpolation point that minimizes the predicted value of the next
+ // denominator, subject to ||XNEW - XOPT|| .LEQ. ADELT and to the SL
+ // and SU bounds. Secondly, XALT is set to the best feasible point on
+ // a constrained version of the Cauchy step of the KNEW-th Lagrange
+ // function, the corresponding value of the square of this function
+ // being returned in CAUCHY. The choice between these alternatives is
+ // going to be made when the denominator is calculated.
+
+ final double[] alphaCauchy = altmov(knew, adelt);
+ alpha = alphaCauchy[0];
+ cauchy = alphaCauchy[1];
+
+ for (int i = 0; i < n; i++) {
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ }
+
+ // Calculate VLAG and BETA for the current choice of D. The scalar
+ // product of D with XPT(K,.) is going to be held in W(NPT+K) for
+ // use when VQUAD is calculated.
+
+ }
+ case 230: {
+ printState(230); // XXX
+ for (int k = 0; k < npt; k++) {
+ double suma = ZERO;
+ double sumb = ZERO;
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ suma += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
+ sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ sum += bMatrix.getEntry(k, j) * trialStepPoint.getEntry(j);
+ }
+ work3.setEntry(k, suma * (HALF * suma + sumb));
+ lagrangeValuesAtNewPoint.setEntry(k, sum);
+ work2.setEntry(k, suma);
+ }
+ beta = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += zMatrix.getEntry(k, m) * work3.getEntry(k);
+ }
+ beta -= sum * sum;
+ for (int k = 0; k < npt; k++) {
+ lagrangeValuesAtNewPoint.setEntry(k, lagrangeValuesAtNewPoint.getEntry(k) + sum * zMatrix.getEntry(k, m));
+ }
+ }
+ dsq = ZERO;
+ double bsum = ZERO;
+ double dx = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(j);
+ dsq += d1 * d1;
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += work3.getEntry(k) * bMatrix.getEntry(k, j);
+ }
+ bsum += sum * trialStepPoint.getEntry(j);
+ final int jp = npt + j;
+ for (int i = 0; i < n; i++) {
+ sum += bMatrix.getEntry(jp, i) * trialStepPoint.getEntry(i);
+ }
+ lagrangeValuesAtNewPoint.setEntry(jp, sum);
+ bsum += sum * trialStepPoint.getEntry(j);
+ dx += trialStepPoint.getEntry(j) * trustRegionCenterOffset.getEntry(j);
+ }
+
+ beta = dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) + beta - bsum; // Original
+ // beta += dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) - bsum; // XXX "testAckley" and "testDiffPow" fail.
+ // beta = dx * dx + dsq * (xoptsq + 2 * dx + HALF * dsq) + beta - bsum; // XXX "testDiffPow" fails.
+
+ lagrangeValuesAtNewPoint.setEntry(trustRegionCenterInterpolationPointIndex,
+ lagrangeValuesAtNewPoint.getEntry(trustRegionCenterInterpolationPointIndex) + ONE);
+
+ // If NTRITS is zero, the denominator may be increased by replacing
+ // the step D of ALTMOV by a Cauchy step. Then RESCUE may be called if
+ // rounding errors have damaged the chosen denominator.
+
+ if (ntrits == 0) {
+ // Computing 2nd power
+ final double d1 = lagrangeValuesAtNewPoint.getEntry(knew);
+ denom = d1 * d1 + alpha * beta;
+ if (denom < cauchy && cauchy > ZERO) {
+ for (int i = 0; i < n; i++) {
+ newPoint.setEntry(i, alternativeNewPoint.getEntry(i));
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ }
+ cauchy = ZERO; // XXX Useful statement?
+ state = 230; break;
+ }
+ // Alternatively, if NTRITS is positive, then set KNEW to the index of
+ // the next interpolation point to be deleted to make room for a trust
+ // region step. Again RESCUE may be called if rounding errors have damaged_
+ // the chosen denominator, which is the reason for attempting to select
+ // KNEW before calculating the next value of the objective function.
+
+ } else {
+ final double delsq = delta * delta;
+ scaden = ZERO;
+ biglsq = ZERO;
+ knew = 0;
+ for (int k = 0; k < npt; k++) {
+ if (k == trustRegionCenterInterpolationPointIndex) {
+ continue;
+ }
+ double hdiag = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ // Computing 2nd power
+ final double d1 = zMatrix.getEntry(k, m);
+ hdiag += d1 * d1;
+ }
+ // Computing 2nd power
+ final double d2 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double den = beta * hdiag + d2 * d2;
+ distsq = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d3 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
+ distsq += d3 * d3;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d4 = distsq / delsq;
+ final double temp = FastMath.max(ONE, d4 * d4);
+ if (temp * den > scaden) {
+ scaden = temp * den;
+ knew = k;
+ denom = den;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d5 = lagrangeValuesAtNewPoint.getEntry(k);
+ biglsq = FastMath.max(biglsq, temp * (d5 * d5));
+ }
+ }
+
+ // Put the variables for the next calculation of the objective function
+ // in XNEW, with any adjustments for the bounds.
+
+ // Calculate the value of the objective function at XBASE+XNEW, unless
+ // the limit on the number of calculations of F has been reached.
+
+ }
+ case 360: {
+ printState(360); // XXX
+ for (int i = 0; i < n; i++) {
+ // Computing MIN
+ // Computing MAX
+ final double d3 = lowerBound[i];
+ final double d4 = originShift.getEntry(i) + newPoint.getEntry(i);
+ final double d1 = FastMath.max(d3, d4);
+ final double d2 = upperBound[i];
+ currentBest.setEntry(i, FastMath.min(d1, d2));
+ if (newPoint.getEntry(i) == lowerDifference.getEntry(i)) {
+ currentBest.setEntry(i, lowerBound[i]);
+ }
+ if (newPoint.getEntry(i) == upperDifference.getEntry(i)) {
+ currentBest.setEntry(i, upperBound[i]);
+ }
+ }
+
+ f = computeObjectiveValue(currentBest.toArray());
+
+ if (!isMinimize) {
+ f = -f;
+ }
+ if (ntrits == -1) {
+ fsave = f;
+ state = 720; break;
+ }
+
+ // Use the quadratic model to predict the change in F due to the step D,
+ // and set DIFF to the error of this prediction.
+
+ final double fopt = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
+ double vquad = ZERO;
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ vquad += trialStepPoint.getEntry(j) * gradientAtTrustRegionCenter.getEntry(j);
+ for (int i = 0; i <= j; i++) {
+ double temp = trialStepPoint.getEntry(i) * trialStepPoint.getEntry(j);
+ if (i == j) {
+ temp *= HALF;
+ }
+ vquad += modelSecondDerivativesValues.getEntry(ih) * temp;
+ ih++;
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ // Computing 2nd power
+ final double d1 = work2.getEntry(k);
+ final double d2 = d1 * d1; // "d1" must be squared first to prevent test failures.
+ vquad += HALF * modelSecondDerivativesParameters.getEntry(k) * d2;
+ }
+ final double diff = f - fopt - vquad;
+ diffc = diffb;
+ diffb = diffa;
+ diffa = FastMath.abs(diff);
+ if (dnorm > rho) {
+ nfsav = getEvaluations();
+ }
+
+ // Pick the next value of DELTA after a trust region step.
+
+ if (ntrits > 0) {
+ if (vquad >= ZERO) {
+ throw new MathIllegalStateException(LocalizedFormats.TRUST_REGION_STEP_FAILED, vquad);
+ }
+ ratio = (f - fopt) / vquad;
+ final double hDelta = HALF * delta;
+ if (ratio <= ONE_OVER_TEN) {
+ // Computing MIN
+ delta = FastMath.min(hDelta, dnorm);
+ } else if (ratio <= .7) {
+ // Computing MAX
+ delta = FastMath.max(hDelta, dnorm);
+ } else {
+ // Computing MAX
+ delta = FastMath.max(hDelta, 2 * dnorm);
+ }
+ if (delta <= rho * 1.5) {
+ delta = rho;
+ }
+
+ // Recalculate KNEW and DENOM if the new F is less than FOPT.
+
+ if (f < fopt) {
+ final int ksav = knew;
+ final double densav = denom;
+ final double delsq = delta * delta;
+ scaden = ZERO;
+ biglsq = ZERO;
+ knew = 0;
+ for (int k = 0; k < npt; k++) {
+ double hdiag = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ // Computing 2nd power
+ final double d1 = zMatrix.getEntry(k, m);
+ hdiag += d1 * d1;
+ }
+ // Computing 2nd power
+ final double d1 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double den = beta * hdiag + d1 * d1;
+ distsq = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d2 = interpolationPoints.getEntry(k, j) - newPoint.getEntry(j);
+ distsq += d2 * d2;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d3 = distsq / delsq;
+ final double temp = FastMath.max(ONE, d3 * d3);
+ if (temp * den > scaden) {
+ scaden = temp * den;
+ knew = k;
+ denom = den;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d4 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double d5 = temp * (d4 * d4);
+ biglsq = FastMath.max(biglsq, d5);
+ }
+ if (scaden <= HALF * biglsq) {
+ knew = ksav;
+ denom = densav;
+ }
+ }
+ }
+
+ // Update BMAT and ZMAT, so that the KNEW-th interpolation point can be
+ // moved. Also update the second derivative terms of the model.
+
+ update(beta, denom, knew);
+
+ ih = 0;
+ final double pqold = modelSecondDerivativesParameters.getEntry(knew);
+ modelSecondDerivativesParameters.setEntry(knew, ZERO);
+ for (int i = 0; i < n; i++) {
+ final double temp = pqold * interpolationPoints.getEntry(knew, i);
+ for (int j = 0; j <= i; j++) {
+ modelSecondDerivativesValues.setEntry(ih, modelSecondDerivativesValues.getEntry(ih) + temp * interpolationPoints.getEntry(knew, j));
+ ih++;
+ }
+ }
+ for (int m = 0; m < nptm; m++) {
+ final double temp = diff * zMatrix.getEntry(knew, m);
+ for (int k = 0; k < npt; k++) {
+ modelSecondDerivativesParameters.setEntry(k, modelSecondDerivativesParameters.getEntry(k) + temp * zMatrix.getEntry(k, m));
+ }
+ }
+
+ // Include the new interpolation point, and make the changes to GOPT at
+ // the old XOPT that are caused by the updating of the quadratic model.
+
+ fAtInterpolationPoints.setEntry(knew, f);
+ for (int i = 0; i < n; i++) {
+ interpolationPoints.setEntry(knew, i, newPoint.getEntry(i));
+ work1.setEntry(i, bMatrix.getEntry(knew, i));
+ }
+ for (int k = 0; k < npt; k++) {
+ double suma = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ suma += zMatrix.getEntry(knew, m) * zMatrix.getEntry(k, m);
+ }
+ double sumb = ZERO;
+ for (int j = 0; j < n; j++) {
+ sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ final double temp = suma * sumb;
+ for (int i = 0; i < n; i++) {
+ work1.setEntry(i, work1.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + diff * work1.getEntry(i));
+ }
+
+ // Update XOPT, GOPT and KOPT if the new calculated F is less than FOPT.
+
+ if (f < fopt) {
+ trustRegionCenterInterpolationPointIndex = knew;
+ xoptsq = ZERO;
+ ih = 0;
+ for (int j = 0; j < n; j++) {
+ trustRegionCenterOffset.setEntry(j, newPoint.getEntry(j));
+ // Computing 2nd power
+ final double d1 = trustRegionCenterOffset.getEntry(j);
+ xoptsq += d1 * d1;
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(i));
+ }
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(j));
+ ih++;
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ double temp = ZERO;
+ for (int j = 0; j < n; j++) {
+ temp += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
+ }
+ temp *= modelSecondDerivativesParameters.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ }
+
+ // Calculate the parameters of the least Frobenius norm interpolant to
+ // the current data, the gradient of this interpolant at XOPT being put
+ // into VLAG(NPT+I), I=1,2,...,N.
+
+ if (ntrits > 0) {
+ for (int k = 0; k < npt; k++) {
+ lagrangeValuesAtNewPoint.setEntry(k, fAtInterpolationPoints.getEntry(k) - fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex));
+ work3.setEntry(k, ZERO);
+ }
+ for (int j = 0; j < nptm; j++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += zMatrix.getEntry(k, j) * lagrangeValuesAtNewPoint.getEntry(k);
+ }
+ for (int k = 0; k < npt; k++) {
+ work3.setEntry(k, work3.getEntry(k) + sum * zMatrix.getEntry(k, j));
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ sum += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ work2.setEntry(k, work3.getEntry(k));
+ work3.setEntry(k, sum * work3.getEntry(k));
+ }
+ double gqsq = ZERO;
+ double gisq = ZERO;
+ for (int i = 0; i < n; i++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += bMatrix.getEntry(k, i) *
+ lagrangeValuesAtNewPoint.getEntry(k) + interpolationPoints.getEntry(k, i) * work3.getEntry(k);
+ }
+ if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
+ // Computing MIN
+ // Computing 2nd power
+ final double d1 = FastMath.min(ZERO, gradientAtTrustRegionCenter.getEntry(i));
+ gqsq += d1 * d1;
+ // Computing 2nd power
+ final double d2 = FastMath.min(ZERO, sum);
+ gisq += d2 * d2;
+ } else if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
+ // Computing MAX
+ // Computing 2nd power
+ final double d1 = FastMath.max(ZERO, gradientAtTrustRegionCenter.getEntry(i));
+ gqsq += d1 * d1;
+ // Computing 2nd power
+ final double d2 = FastMath.max(ZERO, sum);
+ gisq += d2 * d2;
+ } else {
+ // Computing 2nd power
+ final double d1 = gradientAtTrustRegionCenter.getEntry(i);
+ gqsq += d1 * d1;
+ gisq += sum * sum;
+ }
+ lagrangeValuesAtNewPoint.setEntry(npt + i, sum);
+ }
+
+ // Test whether to replace the new quadratic model by the least Frobenius
+ // norm interpolant, making the replacement if the test is satisfied.
+
+ ++itest;
+ if (gqsq < TEN * gisq) {
+ itest = 0;
+ }
+ if (itest >= 3) {
+ for (int i = 0, max = FastMath.max(npt, nh); i < max; i++) {
+ if (i < n) {
+ gradientAtTrustRegionCenter.setEntry(i, lagrangeValuesAtNewPoint.getEntry(npt + i));
+ }
+ if (i < npt) {
+ modelSecondDerivativesParameters.setEntry(i, work2.getEntry(i));
+ }
+ if (i < nh) {
+ modelSecondDerivativesValues.setEntry(i, ZERO);
+ }
+ itest = 0;
+ }
+ }
+ }
+
+ // If a trust region step has provided a sufficient decrease in F, then
+ // branch for another trust region calculation. The case NTRITS=0 occurs
+ // when the new interpolation point was reached by an alternative step.
+
+ if (ntrits == 0) {
+ state = 60; break;
+ }
+ if (f <= fopt + ONE_OVER_TEN * vquad) {
+ state = 60; break;
+ }
+
+ // Alternatively, find out if the interpolation points are close enough
+ // to the best point so far.
+
+ // Computing MAX
+ // Computing 2nd power
+ final double d1 = TWO * delta;
+ // Computing 2nd power
+ final double d2 = TEN * rho;
+ distsq = FastMath.max(d1 * d1, d2 * d2);
+ }
+ case 650: {
+ printState(650); // XXX
+ knew = -1;
+ for (int k = 0; k < npt; k++) {
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d1 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
+ sum += d1 * d1;
+ }
+ if (sum > distsq) {
+ knew = k;
+ distsq = sum;
+ }
+ }
+
+ // If KNEW is positive, then ALTMOV finds alternative new positions for
+ // the KNEW-th interpolation point within distance ADELT of XOPT. It is
+ // reached via label 90. Otherwise, there is a branch to label 60 for
+ // another trust region iteration, unless the calculations with the
+ // current RHO are complete.
+
+ if (knew >= 0) {
+ final double dist = FastMath.sqrt(distsq);
+ if (ntrits == -1) {
+ // Computing MIN
+ delta = FastMath.min(ONE_OVER_TEN * delta, HALF * dist);
+ if (delta <= rho * 1.5) {
+ delta = rho;
+ }
+ }
+ ntrits = 0;
+ // Computing MAX
+ // Computing MIN
+ final double d1 = FastMath.min(ONE_OVER_TEN * dist, delta);
+ adelt = FastMath.max(d1, rho);
+ dsq = adelt * adelt;
+ state = 90; break;
+ }
+ if (ntrits == -1) {
+ state = 680; break;
+ }
+ if (ratio > ZERO) {
+ state = 60; break;
+ }
+ if (FastMath.max(delta, dnorm) > rho) {
+ state = 60; break;
+ }
+
+ // The calculations with the current value of RHO are complete. Pick the
+ // next values of RHO and DELTA.
+ }
+ case 680: {
+ printState(680); // XXX
+ if (rho > stoppingTrustRegionRadius) {
+ delta = HALF * rho;
+ ratio = rho / stoppingTrustRegionRadius;
+ if (ratio <= SIXTEEN) {
+ rho = stoppingTrustRegionRadius;
+ } else if (ratio <= TWO_HUNDRED_FIFTY) {
+ rho = FastMath.sqrt(ratio) * stoppingTrustRegionRadius;
+ } else {
+ rho *= ONE_OVER_TEN;
+ }
+ delta = FastMath.max(delta, rho);
+ ntrits = 0;
+ nfsav = getEvaluations();
+ state = 60; break;
+ }
+
+ // Return from the calculation, after another Newton-Raphson step, if
+ // it is too short to have been tried before.
+
+ if (ntrits == -1) {
+ state = 360; break;
+ }
+ }
+ case 720: {
+ printState(720); // XXX
+ if (fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex) <= fsave) {
+ for (int i = 0; i < n; i++) {
+ // Computing MIN
+ // Computing MAX
+ final double d3 = lowerBound[i];
+ final double d4 = originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i);
+ final double d1 = FastMath.max(d3, d4);
+ final double d2 = upperBound[i];
+ currentBest.setEntry(i, FastMath.min(d1, d2));
+ if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
+ currentBest.setEntry(i, lowerBound[i]);
+ }
+ if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
+ currentBest.setEntry(i, upperBound[i]);
+ }
+ }
+ f = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
+ }
+ return f;
+ }
+ default: {
+ throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "bobyqb");
+ }}}
+ } // bobyqb
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arguments N, NPT, XPT, XOPT, BMAT, ZMAT, NDIM, SL and SU all have
+ * the same meanings as the corresponding arguments of BOBYQB.
+ * KOPT is the index of the optimal interpolation point.
+ * KNEW is the index of the interpolation point that is going to be moved.
+ * ADELT is the current trust region bound.
+ * XNEW will be set to a suitable new position for the interpolation point
+ * XPT(KNEW,.). Specifically, it satisfies the SL, SU and trust region
+ * bounds and it should provide a large denominator in the next call of
+ * UPDATE. The step XNEW-XOPT from XOPT is restricted to moves along the
+ * straight lines through XOPT and another interpolation point.
+ * XALT also provides a large value of the modulus of the KNEW-th Lagrange
+ * function subject to the constraints that have been mentioned, its main
+ * difference from XNEW being that XALT-XOPT is a constrained version of
+ * the Cauchy step within the trust region. An exception is that XALT is
+ * not calculated if all components of GLAG (see below) are zero.
+ * ALPHA will be set to the KNEW-th diagonal element of the H matrix.
+ * CAUCHY will be set to the square of the KNEW-th Lagrange function at
+ * the step XALT-XOPT from XOPT for the vector XALT that is returned,
+ * except that CAUCHY is set to zero if XALT is not calculated.
+ * GLAG is a working space vector of length N for the gradient of the
+ * KNEW-th Lagrange function at XOPT.
+ * HCOL is a working space vector of length NPT for the second derivative
+ * coefficients of the KNEW-th Lagrange function.
+ * W is a working space vector of length 2N that is going to hold the
+ * constrained Cauchy step from XOPT of the Lagrange function, followed
+ * by the downhill version of XALT when the uphill step is calculated.
+ *
+ * Set the first NPT components of W to the leading elements of the
+ * KNEW-th column of the H matrix.
+ * @param knew
+ * @param adelt
+ */
+ private double[] altmov(
+ int knew,
+ double adelt
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+
+ final ArrayRealVector glag = new ArrayRealVector(n);
+ final ArrayRealVector hcol = new ArrayRealVector(npt);
+
+ final ArrayRealVector work1 = new ArrayRealVector(n);
+ final ArrayRealVector work2 = new ArrayRealVector(n);
+
+ for (int k = 0; k < npt; k++) {
+ hcol.setEntry(k, ZERO);
+ }
+ for (int j = 0, max = npt - n - 1; j < max; j++) {
+ final double tmp = zMatrix.getEntry(knew, j);
+ for (int k = 0; k < npt; k++) {
+ hcol.setEntry(k, hcol.getEntry(k) + tmp * zMatrix.getEntry(k, j));
+ }
+ }
+ final double alpha = hcol.getEntry(knew);
+ final double ha = HALF * alpha;
+
+ // Calculate the gradient of the KNEW-th Lagrange function at XOPT.
+
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, bMatrix.getEntry(knew, i));
+ }
+ for (int k = 0; k < npt; k++) {
+ double tmp = ZERO;
+ for (int j = 0; j < n; j++) {
+ tmp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ tmp *= hcol.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, glag.getEntry(i) + tmp * interpolationPoints.getEntry(k, i));
+ }
+ }
+
+ // Search for a large denominator along the straight lines through XOPT
+ // and another interpolation point. SLBD and SUBD will be lower and upper
+ // bounds on the step along each of these lines in turn. PREDSQ will be
+ // set to the square of the predicted denominator for each line. PRESAV
+ // will be set to the largest admissible value of PREDSQ that occurs.
+
+ double presav = ZERO;
+ double step = Double.NaN;
+ int ksav = 0;
+ int ibdsav = 0;
+ double stpsav = 0;
+ for (int k = 0; k < npt; k++) {
+ if (k == trustRegionCenterInterpolationPointIndex) {
+ continue;
+ }
+ double dderiv = ZERO;
+ double distsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
+ dderiv += glag.getEntry(i) * tmp;
+ distsq += tmp * tmp;
+ }
+ double subd = adelt / FastMath.sqrt(distsq);
+ double slbd = -subd;
+ int ilbd = 0;
+ int iubd = 0;
+ final double sumin = FastMath.min(ONE, subd);
+
+ // Revise SLBD and SUBD if necessary because of the bounds in SL and SU.
+
+ for (int i = 0; i < n; i++) {
+ final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
+ if (tmp > ZERO) {
+ if (slbd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ slbd = (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
+ ilbd = -i - 1;
+ }
+ if (subd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ // Computing MAX
+ subd = FastMath.max(sumin,
+ (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
+ iubd = i + 1;
+ }
+ } else if (tmp < ZERO) {
+ if (slbd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ slbd = (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
+ ilbd = i + 1;
+ }
+ if (subd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ // Computing MAX
+ subd = FastMath.max(sumin,
+ (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
+ iubd = -i - 1;
+ }
+ }
+ }
+
+ // Seek a large modulus of the KNEW-th Lagrange function when the index
+ // of the other interpolation point on the line through XOPT is KNEW.
+
+ step = slbd;
+ int isbd = ilbd;
+ double vlag = Double.NaN;
+ if (k == knew) {
+ final double diff = dderiv - ONE;
+ vlag = slbd * (dderiv - slbd * diff);
+ final double d1 = subd * (dderiv - subd * diff);
+ if (FastMath.abs(d1) > FastMath.abs(vlag)) {
+ step = subd;
+ vlag = d1;
+ isbd = iubd;
+ }
+ final double d2 = HALF * dderiv;
+ final double d3 = d2 - diff * slbd;
+ final double d4 = d2 - diff * subd;
+ if (d3 * d4 < ZERO) {
+ final double d5 = d2 * d2 / diff;
+ if (FastMath.abs(d5) > FastMath.abs(vlag)) {
+ step = d2 / diff;
+ vlag = d5;
+ isbd = 0;
+ }
+ }
+
+ // Search along each of the other lines through XOPT and another point.
+
+ } else {
+ vlag = slbd * (ONE - slbd);
+ final double tmp = subd * (ONE - subd);
+ if (FastMath.abs(tmp) > FastMath.abs(vlag)) {
+ step = subd;
+ vlag = tmp;
+ isbd = iubd;
+ }
+ if (subd > HALF && FastMath.abs(vlag) < ONE_OVER_FOUR) {
+ step = HALF;
+ vlag = ONE_OVER_FOUR;
+ isbd = 0;
+ }
+ vlag *= dderiv;
+ }
+
+ // Calculate PREDSQ for the current line search and maintain PRESAV.
+
+ final double tmp = step * (ONE - step) * distsq;
+ final double predsq = vlag * vlag * (vlag * vlag + ha * tmp * tmp);
+ if (predsq > presav) {
+ presav = predsq;
+ ksav = k;
+ stpsav = step;
+ ibdsav = isbd;
+ }
+ }
+
+ // Construct XNEW in a way that satisfies the bound constraints exactly.
+
+ for (int i = 0; i < n; i++) {
+ final double tmp = trustRegionCenterOffset.getEntry(i) + stpsav * (interpolationPoints.getEntry(ksav, i) - trustRegionCenterOffset.getEntry(i));
+ newPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i),
+ FastMath.min(upperDifference.getEntry(i), tmp)));
+ }
+ if (ibdsav < 0) {
+ newPoint.setEntry(-ibdsav - 1, lowerDifference.getEntry(-ibdsav - 1));
+ }
+ if (ibdsav > 0) {
+ newPoint.setEntry(ibdsav - 1, upperDifference.getEntry(ibdsav - 1));
+ }
+
+ // Prepare for the iterative method that assembles the constrained Cauchy
+ // step in W. The sum of squares of the fixed components of W is formed in
+ // WFIXSQ, and the free components of W are set to BIGSTP.
+
+ final double bigstp = adelt + adelt;
+ int iflag = 0;
+ double cauchy = Double.NaN;
+ double csave = ZERO;
+ while (true) {
+ double wfixsq = ZERO;
+ double ggfree = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double glagValue = glag.getEntry(i);
+ work1.setEntry(i, ZERO);
+ if (FastMath.min(trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i), glagValue) > ZERO ||
+ FastMath.max(trustRegionCenterOffset.getEntry(i) - upperDifference.getEntry(i), glagValue) < ZERO) {
+ work1.setEntry(i, bigstp);
+ // Computing 2nd power
+ ggfree += glagValue * glagValue;
+ }
+ }
+ if (ggfree == ZERO) {
+ return new double[] { alpha, ZERO };
+ }
+
+ // Investigate whether more components of W can be fixed.
+ final double tmp1 = adelt * adelt - wfixsq;
+ if (tmp1 > ZERO) {
+ step = FastMath.sqrt(tmp1 / ggfree);
+ ggfree = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (work1.getEntry(i) == bigstp) {
+ final double tmp2 = trustRegionCenterOffset.getEntry(i) - step * glag.getEntry(i);
+ if (tmp2 <= lowerDifference.getEntry(i)) {
+ work1.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = work1.getEntry(i);
+ wfixsq += d1 * d1;
+ } else if (tmp2 >= upperDifference.getEntry(i)) {
+ work1.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = work1.getEntry(i);
+ wfixsq += d1 * d1;
+ } else {
+ // Computing 2nd power
+ final double d1 = glag.getEntry(i);
+ ggfree += d1 * d1;
+ }
+ }
+ }
+ }
+
+ // Set the remaining free components of W and all components of XALT,
+ // except that W may be scaled later.
+
+ double gw = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double glagValue = glag.getEntry(i);
+ if (work1.getEntry(i) == bigstp) {
+ work1.setEntry(i, -step * glagValue);
+ final double min = FastMath.min(upperDifference.getEntry(i),
+ trustRegionCenterOffset.getEntry(i) + work1.getEntry(i));
+ alternativeNewPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i), min));
+ } else if (work1.getEntry(i) == ZERO) {
+ alternativeNewPoint.setEntry(i, trustRegionCenterOffset.getEntry(i));
+ } else if (glagValue > ZERO) {
+ alternativeNewPoint.setEntry(i, lowerDifference.getEntry(i));
+ } else {
+ alternativeNewPoint.setEntry(i, upperDifference.getEntry(i));
+ }
+ gw += glagValue * work1.getEntry(i);
+ }
+
+ // Set CURV to the curvature of the KNEW-th Lagrange function along W.
+ // Scale W by a factor less than one if that can reduce the modulus of
+ // the Lagrange function at XOPT+W. Set CAUCHY to the final value of
+ // the square of this function.
+
+ double curv = ZERO;
+ for (int k = 0; k < npt; k++) {
+ double tmp = ZERO;
+ for (int j = 0; j < n; j++) {
+ tmp += interpolationPoints.getEntry(k, j) * work1.getEntry(j);
+ }
+ curv += hcol.getEntry(k) * tmp * tmp;
+ }
+ if (iflag == 1) {
+ curv = -curv;
+ }
+ if (curv > -gw &&
+ curv < -gw * (ONE + FastMath.sqrt(TWO))) {
+ final double scale = -gw / curv;
+ for (int i = 0; i < n; i++) {
+ final double tmp = trustRegionCenterOffset.getEntry(i) + scale * work1.getEntry(i);
+ alternativeNewPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i),
+ FastMath.min(upperDifference.getEntry(i), tmp)));
+ }
+ // Computing 2nd power
+ final double d1 = HALF * gw * scale;
+ cauchy = d1 * d1;
+ } else {
+ // Computing 2nd power
+ final double d1 = gw + HALF * curv;
+ cauchy = d1 * d1;
+ }
+
+ // If IFLAG is zero, then XALT is calculated as before after reversing
+ // the sign of GLAG. Thus two XALT vectors become available. The one that
+ // is chosen is the one that gives the larger value of CAUCHY.
+
+ if (iflag == 0) {
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, -glag.getEntry(i));
+ work2.setEntry(i, alternativeNewPoint.getEntry(i));
+ }
+ csave = cauchy;
+ iflag = 1;
+ } else {
+ break;
+ }
+ }
+ if (csave > cauchy) {
+ for (int i = 0; i < n; i++) {
+ alternativeNewPoint.setEntry(i, work2.getEntry(i));
+ }
+ cauchy = csave;
+ }
+
+ return new double[] { alpha, cauchy };
+ } // altmov
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
+ * BMAT and ZMAT for the first iteration, and it maintains the values of
+ * NF and KOPT. The vector X is also changed by PRELIM.
+ *
+ * The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the
+ * same as the corresponding arguments in SUBROUTINE BOBYQA.
+ * The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU
+ * are the same as the corresponding arguments in BOBYQB, the elements
+ * of SL and SU being set in BOBYQA.
+ * GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but
+ * it is set by PRELIM to the gradient of the quadratic model at XBASE.
+ * If XOPT is nonzero, BOBYQB will change it to its usual value later.
+ * NF is maintaned as the number of calls of CALFUN so far.
+ * KOPT will be such that the least calculated value of F so far is at
+ * the point XPT(KOPT,.)+XBASE in the space of the variables.
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ */
+ private void prelim(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int ndim = bMatrix.getRowDimension();
+
+ final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius;
+ final double recip = 1d / rhosq;
+ final int np = n + 1;
+
+ // Set XBASE to the initial vector of variables, and set the initial
+ // elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
+
+ for (int j = 0; j < n; j++) {
+ originShift.setEntry(j, currentBest.getEntry(j));
+ for (int k = 0; k < npt; k++) {
+ interpolationPoints.setEntry(k, j, ZERO);
+ }
+ for (int i = 0; i < ndim; i++) {
+ bMatrix.setEntry(i, j, ZERO);
+ }
+ }
+ for (int i = 0, max = n * np / 2; i < max; i++) {
+ modelSecondDerivativesValues.setEntry(i, ZERO);
+ }
+ for (int k = 0; k < npt; k++) {
+ modelSecondDerivativesParameters.setEntry(k, ZERO);
+ for (int j = 0, max = npt - np; j < max; j++) {
+ zMatrix.setEntry(k, j, ZERO);
+ }
+ }
+
+ // Begin the initialization procedure. NF becomes one more than the number
+ // of function values so far. The coordinates of the displacement of the
+ // next initial interpolation point from XBASE are set in XPT(NF+1,.).
+
+ int ipt = 0;
+ int jpt = 0;
+ double fbeg = Double.NaN;
+ do {
+ final int nfm = getEvaluations();
+ final int nfx = nfm - n;
+ final int nfmm = nfm - 1;
+ final int nfxm = nfx - 1;
+ double stepa = 0;
+ double stepb = 0;
+ if (nfm <= 2 * n) {
+ if (nfm >= 1 &&
+ nfm <= n) {
+ stepa = initialTrustRegionRadius;
+ if (upperDifference.getEntry(nfmm) == ZERO) {
+ stepa = -stepa;
+ // throw new PathIsExploredException(); // XXX
+ }
+ interpolationPoints.setEntry(nfm, nfmm, stepa);
+ } else if (nfm > n) {
+ stepa = interpolationPoints.getEntry(nfx, nfxm);
+ stepb = -initialTrustRegionRadius;
+ if (lowerDifference.getEntry(nfxm) == ZERO) {
+ stepb = FastMath.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm));
+ // throw new PathIsExploredException(); // XXX
+ }
+ if (upperDifference.getEntry(nfxm) == ZERO) {
+ stepb = FastMath.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm));
+ // throw new PathIsExploredException(); // XXX
+ }
+ interpolationPoints.setEntry(nfm, nfxm, stepb);
+ }
+ } else {
+ final int tmp1 = (nfm - np) / n;
+ jpt = nfm - tmp1 * n - n;
+ ipt = jpt + tmp1;
+ if (ipt > n) {
+ final int tmp2 = jpt;
+ jpt = ipt - n;
+ ipt = tmp2;
+// throw new PathIsExploredException(); // XXX
+ }
+ final int iptMinus1 = ipt - 1;
+ final int jptMinus1 = jpt - 1;
+ interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1));
+ interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1));
+ }
+
+ // Calculate the next value of F. The least function value so far and
+ // its index are required.
+
+ for (int j = 0; j < n; j++) {
+ currentBest.setEntry(j, FastMath.min(FastMath.max(lowerBound[j],
+ originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)),
+ upperBound[j]));
+ if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) {
+ currentBest.setEntry(j, lowerBound[j]);
+ }
+ if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) {
+ currentBest.setEntry(j, upperBound[j]);
+ }
+ }
+
+ final double objectiveValue = computeObjectiveValue(currentBest.toArray());
+ final double f = isMinimize ? objectiveValue : -objectiveValue;
+ final int numEval = getEvaluations(); // nfm + 1
+ fAtInterpolationPoints.setEntry(nfm, f);
+
+ if (numEval == 1) {
+ fbeg = f;
+ trustRegionCenterInterpolationPointIndex = 0;
+ } else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) {
+ trustRegionCenterInterpolationPointIndex = nfm;
+ }
+
+ // Set the nonzero initial elements of BMAT and the quadratic model in the
+ // cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions
+ // of the NF-th and (NF-N)-th interpolation points may be switched, in
+ // order that the function value at the first of them contributes to the
+ // off-diagonal second derivative terms of the initial quadratic model.
+
+ if (numEval <= 2 * n + 1) {
+ if (numEval >= 2 &&
+ numEval <= n + 1) {
+ gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa);
+ if (npt < numEval + n) {
+ final double oneOverStepA = ONE / stepa;
+ bMatrix.setEntry(0, nfmm, -oneOverStepA);
+ bMatrix.setEntry(nfm, nfmm, oneOverStepA);
+ bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq);
+ // throw new PathIsExploredException(); // XXX
+ }
+ } else if (numEval >= n + 2) {
+ final int ih = nfx * (nfx + 1) / 2 - 1;
+ final double tmp = (f - fbeg) / stepb;
+ final double diff = stepb - stepa;
+ modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff);
+ gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff);
+ if (stepa * stepb < ZERO && f < fAtInterpolationPoints.getEntry(nfm - n)) {
+ fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n));
+ fAtInterpolationPoints.setEntry(nfm - n, f);
+ if (trustRegionCenterInterpolationPointIndex == nfm) {
+ trustRegionCenterInterpolationPointIndex = nfm - n;
+ }
+ interpolationPoints.setEntry(nfm - n, nfxm, stepb);
+ interpolationPoints.setEntry(nfm, nfxm, stepa);
+ }
+ bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb));
+ bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm));
+ bMatrix.setEntry(nfm - n, nfxm,
+ -bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm));
+ zMatrix.setEntry(0, nfxm, FastMath.sqrt(TWO) / (stepa * stepb));
+ zMatrix.setEntry(nfm, nfxm, FastMath.sqrt(HALF) / rhosq);
+ // zMatrix.setEntry(nfm, nfxm, FastMath.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail.
+ zMatrix.setEntry(nfm - n, nfxm,
+ -zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm));
+ }
+
+ // Set the off-diagonal second derivatives of the Lagrange functions and
+ // the initial quadratic model.
+
+ } else {
+ zMatrix.setEntry(0, nfxm, recip);
+ zMatrix.setEntry(nfm, nfxm, recip);
+ zMatrix.setEntry(ipt, nfxm, -recip);
+ zMatrix.setEntry(jpt, nfxm, -recip);
+
+ final int ih = ipt * (ipt - 1) / 2 + jpt - 1;
+ final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1);
+ modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp);
+// throw new PathIsExploredException(); // XXX
+ }
+ } while (getEvaluations() < npt);
+ } // prelim
+
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * A version of the truncated conjugate gradient is applied. If a line
+ * search is restricted by a constraint, then the procedure is restarted,
+ * the values of the variables that are at their bounds being fixed. If
+ * the trust region boundary is reached, then further changes may be made
+ * to D, each one being in the two dimensional space that is spanned
+ * by the current D and the gradient of Q at XOPT+D, staying on the trust
+ * region boundary. Termination occurs when the reduction in Q seems to
+ * be close to the greatest reduction that can be achieved.
+ * The arguments N, NPT, XPT, XOPT, GOPT, HQ, PQ, SL and SU have the same
+ * meanings as the corresponding arguments of BOBYQB.
+ * DELTA is the trust region radius for the present calculation, which
+ * seeks a small value of the quadratic model within distance DELTA of
+ * XOPT subject to the bounds on the variables.
+ * XNEW will be set to a new vector of variables that is approximately
+ * the one that minimizes the quadratic model within the trust region
+ * subject to the SL and SU constraints on the variables. It satisfies
+ * as equations the bounds that become active during the calculation.
+ * D is the calculated trial step from XOPT, generated iteratively from an
+ * initial value of zero. Thus XNEW is XOPT+D after the final iteration.
+ * GNEW holds the gradient of the quadratic model at XOPT+D. It is updated
+ * when D is updated.
+ * xbdi.get( is a working space vector. For I=1,2,...,N, the element xbdi.get((I) is
+ * set to -1.0, 0.0, or 1.0, the value being nonzero if and only if the
+ * I-th variable has become fixed at a bound, the bound being SL(I) or
+ * SU(I) in the case xbdi.get((I)=-1.0 or xbdi.get((I)=1.0, respectively. This
+ * information is accumulated during the construction of XNEW.
+ * The arrays S, HS and HRED are also used for working space. They hold the
+ * current search direction, and the changes in the gradient of Q along S
+ * and the reduced D, respectively, where the reduced D is the same as D,
+ * except that the components of the fixed variables are zero.
+ * DSQ will be set to the square of the length of XNEW-XOPT.
+ * CRVMIN is set to zero if D reaches the trust region boundary. Otherwise
+ * it is set to the least curvature of H that occurs in the conjugate
+ * gradient searches that are not restricted by any constraints. The
+ * value CRVMIN=-1.0D0 is set, however, if all of these searches are
+ * constrained.
+ * @param delta
+ * @param gnew
+ * @param xbdi
+ * @param s
+ * @param hs
+ * @param hred
+ */
+ private double[] trsbox(
+ double delta,
+ ArrayRealVector gnew,
+ ArrayRealVector xbdi,
+ ArrayRealVector s,
+ ArrayRealVector hs,
+ ArrayRealVector hred
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+
+ double dsq = Double.NaN;
+ double crvmin = Double.NaN;
+
+ // Local variables
+ double ds;
+ int iu;
+ double dhd, dhs, cth, shs, sth, ssq, beta=0, sdec, blen;
+ int iact = -1;
+ int nact = 0;
+ double angt = 0, qred;
+ int isav;
+ double temp = 0, xsav = 0, xsum = 0, angbd = 0, dredg = 0, sredg = 0;
+ int iterc;
+ double resid = 0, delsq = 0, ggsav = 0, tempa = 0, tempb = 0,
+ redmax = 0, dredsq = 0, redsav = 0, gredsq = 0, rednew = 0;
+ int itcsav = 0;
+ double rdprev = 0, rdnext = 0, stplen = 0, stepsq = 0;
+ int itermax = 0;
+
+ // Set some constants.
+
+ // Function Body
+
+ // The sign of GOPT(I) gives the sign of the change to the I-th variable
+ // that will reduce Q from its value at XOPT. Thus xbdi.get((I) shows whether
+ // or not to fix the I-th variable at one of its bounds initially, with
+ // NACT being set to the number of fixed variables. D and GNEW are also
+ // set for the first iteration. DELSQ is the upper bound on the sum of
+ // squares of the free variables. QRED is the reduction in Q so far.
+
+ iterc = 0;
+ nact = 0;
+ for (int i = 0; i < n; i++) {
+ xbdi.setEntry(i, ZERO);
+ if (trustRegionCenterOffset.getEntry(i) <= lowerDifference.getEntry(i)) {
+ if (gradientAtTrustRegionCenter.getEntry(i) >= ZERO) {
+ xbdi.setEntry(i, MINUS_ONE);
+ }
+ } else if (trustRegionCenterOffset.getEntry(i) >= upperDifference.getEntry(i) &&
+ gradientAtTrustRegionCenter.getEntry(i) <= ZERO) {
+ xbdi.setEntry(i, ONE);
+ }
+ if (xbdi.getEntry(i) != ZERO) {
+ ++nact;
+ }
+ trialStepPoint.setEntry(i, ZERO);
+ gnew.setEntry(i, gradientAtTrustRegionCenter.getEntry(i));
+ }
+ delsq = delta * delta;
+ qred = ZERO;
+ crvmin = MINUS_ONE;
+
+ // Set the next search direction of the conjugate gradient method. It is
+ // the steepest descent direction initially and when the iterations are
+ // restarted because a variable has just been fixed by a bound, and of
+ // course the components of the fixed variables are zero. ITERMAX is an
+ // upper bound on the indices of the conjugate gradient iterations.
+
+ int state = 20;
+ for(;;) {
+ switch (state) {
+ case 20: {
+ printState(20); // XXX
+ beta = ZERO;
+ }
+ case 30: {
+ printState(30); // XXX
+ stepsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) != ZERO) {
+ s.setEntry(i, ZERO);
+ } else if (beta == ZERO) {
+ s.setEntry(i, -gnew.getEntry(i));
+ } else {
+ s.setEntry(i, beta * s.getEntry(i) - gnew.getEntry(i));
+ }
+ // Computing 2nd power
+ final double d1 = s.getEntry(i);
+ stepsq += d1 * d1;
+ }
+ if (stepsq == ZERO) {
+ state = 190; break;
+ }
+ if (beta == ZERO) {
+ gredsq = stepsq;
+ itermax = iterc + n - nact;
+ }
+ if (gredsq * delsq <= qred * 1e-4 * qred) {
+ state = 190; break;
+ }
+
+ // Multiply the search direction by the second derivative matrix of Q and
+ // calculate some scalars for the choice of steplength. Then set BLEN to
+ // the length of the the step to the trust region boundary and STPLEN to
+ // the steplength, ignoring the simple bounds.
+
+ state = 210; break;
+ }
+ case 50: {
+ printState(50); // XXX
+ resid = delsq;
+ ds = ZERO;
+ shs = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(i);
+ resid -= d1 * d1;
+ ds += s.getEntry(i) * trialStepPoint.getEntry(i);
+ shs += s.getEntry(i) * hs.getEntry(i);
+ }
+ }
+ if (resid <= ZERO) {
+ state = 90; break;
+ }
+ temp = FastMath.sqrt(stepsq * resid + ds * ds);
+ if (ds < ZERO) {
+ blen = (temp - ds) / stepsq;
+ } else {
+ blen = resid / (temp + ds);
+ }
+ stplen = blen;
+ if (shs > ZERO) {
+ // Computing MIN
+ stplen = FastMath.min(blen, gredsq / shs);
+ }
+
+ // Reduce STPLEN if necessary in order to preserve the simple bounds,
+ // letting IACT be the index of the new constrained variable.
+
+ iact = -1;
+ for (int i = 0; i < n; i++) {
+ if (s.getEntry(i) != ZERO) {
+ xsum = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i);
+ if (s.getEntry(i) > ZERO) {
+ temp = (upperDifference.getEntry(i) - xsum) / s.getEntry(i);
+ } else {
+ temp = (lowerDifference.getEntry(i) - xsum) / s.getEntry(i);
+ }
+ if (temp < stplen) {
+ stplen = temp;
+ iact = i;
+ }
+ }
+ }
+
+ // Update CRVMIN, GNEW and D. Set SDEC to the decrease that occurs in Q.
+
+ sdec = ZERO;
+ if (stplen > ZERO) {
+ ++iterc;
+ temp = shs / stepsq;
+ if (iact == -1 && temp > ZERO) {
+ crvmin = FastMath.min(crvmin,temp);
+ if (crvmin == MINUS_ONE) {
+ crvmin = temp;
+ }
+ }
+ ggsav = gredsq;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ gnew.setEntry(i, gnew.getEntry(i) + stplen * hs.getEntry(i));
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ final double d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ }
+ trialStepPoint.setEntry(i, trialStepPoint.getEntry(i) + stplen * s.getEntry(i));
+ }
+ // Computing MAX
+ final double d1 = stplen * (ggsav - HALF * stplen * shs);
+ sdec = FastMath.max(d1, ZERO);
+ qred += sdec;
+ }
+
+ // Restart the conjugate gradient method if it has hit a new bound.
+
+ if (iact >= 0) {
+ ++nact;
+ xbdi.setEntry(iact, ONE);
+ if (s.getEntry(iact) < ZERO) {
+ xbdi.setEntry(iact, MINUS_ONE);
+ }
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(iact);
+ delsq -= d1 * d1;
+ if (delsq <= ZERO) {
+ state = 190; break;
+ }
+ state = 20; break;
+ }
+
+ // If STPLEN is less than BLEN, then either apply another conjugate
+ // gradient iteration or RETURN.
+
+ if (stplen < blen) {
+ if (iterc == itermax) {
+ state = 190; break;
+ }
+ if (sdec <= qred * .01) {
+ state = 190; break;
+ }
+ beta = gredsq / ggsav;
+ state = 30; break;
+ }
+ }
+ case 90: {
+ printState(90); // XXX
+ crvmin = ZERO;
+
+ // Prepare for the alternative iteration by calculating some scalars
+ // and by multiplying the reduced D by the second derivative matrix of
+ // Q, where S holds the reduced D in the call of GGMULT.
+
+ }
+ case 100: {
+ printState(100); // XXX
+ if (nact >= n - 1) {
+ state = 190; break;
+ }
+ dredsq = ZERO;
+ dredg = ZERO;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ double d1 = trialStepPoint.getEntry(i);
+ dredsq += d1 * d1;
+ dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
+ // Computing 2nd power
+ d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ s.setEntry(i, trialStepPoint.getEntry(i));
+ } else {
+ s.setEntry(i, ZERO);
+ }
+ }
+ itcsav = iterc;
+ state = 210; break;
+ // Let the search direction S be a linear combination of the reduced D
+ // and the reduced G that is orthogonal to the reduced D.
+ }
+ case 120: {
+ printState(120); // XXX
+ ++iterc;
+ temp = gredsq * dredsq - dredg * dredg;
+ if (temp <= qred * 1e-4 * qred) {
+ state = 190; break;
+ }
+ temp = FastMath.sqrt(temp);
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ s.setEntry(i, (dredg * trialStepPoint.getEntry(i) - dredsq * gnew.getEntry(i)) / temp);
+ } else {
+ s.setEntry(i, ZERO);
+ }
+ }
+ sredg = -temp;
+
+ // By considering the simple bounds on the variables, calculate an upper
+ // bound on the tangent of half the angle of the alternative iteration,
+ // namely ANGBD, except that, if already a free variable has reached a
+ // bound, there is a branch back to label 100 after fixing that variable.
+
+ angbd = ONE;
+ iact = -1;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ tempa = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i) - lowerDifference.getEntry(i);
+ tempb = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i) - trialStepPoint.getEntry(i);
+ if (tempa <= ZERO) {
+ ++nact;
+ xbdi.setEntry(i, MINUS_ONE);
+ state = 100; break;
+ } else if (tempb <= ZERO) {
+ ++nact;
+ xbdi.setEntry(i, ONE);
+ state = 100; break;
+ }
+ // Computing 2nd power
+ double d1 = trialStepPoint.getEntry(i);
+ // Computing 2nd power
+ double d2 = s.getEntry(i);
+ ssq = d1 * d1 + d2 * d2;
+ // Computing 2nd power
+ d1 = trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i);
+ temp = ssq - d1 * d1;
+ if (temp > ZERO) {
+ temp = FastMath.sqrt(temp) - s.getEntry(i);
+ if (angbd * temp > tempa) {
+ angbd = tempa / temp;
+ iact = i;
+ xsav = MINUS_ONE;
+ }
+ }
+ // Computing 2nd power
+ d1 = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i);
+ temp = ssq - d1 * d1;
+ if (temp > ZERO) {
+ temp = FastMath.sqrt(temp) + s.getEntry(i);
+ if (angbd * temp > tempb) {
+ angbd = tempb / temp;
+ iact = i;
+ xsav = ONE;
+ }
+ }
+ }
+ }
+
+ // Calculate HHD and some curvatures for the alternative iteration.
+
+ state = 210; break;
+ }
+ case 150: {
+ printState(150); // XXX
+ shs = ZERO;
+ dhs = ZERO;
+ dhd = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ shs += s.getEntry(i) * hs.getEntry(i);
+ dhs += trialStepPoint.getEntry(i) * hs.getEntry(i);
+ dhd += trialStepPoint.getEntry(i) * hred.getEntry(i);
+ }
+ }
+
+ // Seek the greatest reduction in Q for a range of equally spaced values
+ // of ANGT in [0,ANGBD], where ANGT is the tangent of half the angle of
+ // the alternative iteration.
+
+ redmax = ZERO;
+ isav = -1;
+ redsav = ZERO;
+ iu = (int) (angbd * 17. + 3.1);
+ for (int i = 0; i < iu; i++) {
+ angt = angbd * i / iu;
+ sth = (angt + angt) / (ONE + angt * angt);
+ temp = shs + angt * (angt * dhd - dhs - dhs);
+ rednew = sth * (angt * dredg - sredg - HALF * sth * temp);
+ if (rednew > redmax) {
+ redmax = rednew;
+ isav = i;
+ rdprev = redsav;
+ } else if (i == isav + 1) {
+ rdnext = rednew;
+ }
+ redsav = rednew;
+ }
+
+ // Return if the reduction is zero. Otherwise, set the sine and cosine
+ // of the angle of the alternative iteration, and calculate SDEC.
+
+ if (isav < 0) {
+ state = 190; break;
+ }
+ if (isav < iu) {
+ temp = (rdnext - rdprev) / (redmax + redmax - rdprev - rdnext);
+ angt = angbd * (isav + HALF * temp) / iu;
+ }
+ cth = (ONE - angt * angt) / (ONE + angt * angt);
+ sth = (angt + angt) / (ONE + angt * angt);
+ temp = shs + angt * (angt * dhd - dhs - dhs);
+ sdec = sth * (angt * dredg - sredg - HALF * sth * temp);
+ if (sdec <= ZERO) {
+ state = 190; break;
+ }
+
+ // Update GNEW, D and HRED. If the angle of the alternative iteration
+ // is restricted by a bound on a free variable, that variable is fixed
+ // at the bound.
+
+ dredg = ZERO;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ gnew.setEntry(i, gnew.getEntry(i) + (cth - ONE) * hred.getEntry(i) + sth * hs.getEntry(i));
+ if (xbdi.getEntry(i) == ZERO) {
+ trialStepPoint.setEntry(i, cth * trialStepPoint.getEntry(i) + sth * s.getEntry(i));
+ dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
+ // Computing 2nd power
+ final double d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ }
+ hred.setEntry(i, cth * hred.getEntry(i) + sth * hs.getEntry(i));
+ }
+ qred += sdec;
+ if (iact >= 0 && isav == iu) {
+ ++nact;
+ xbdi.setEntry(iact, xsav);
+ state = 100; break;
+ }
+
+ // If SDEC is sufficiently small, then RETURN after setting XNEW to
+ // XOPT+D, giving careful attention to the bounds.
+
+ if (sdec > qred * .01) {
+ state = 120; break;
+ }
+ }
+ case 190: {
+ printState(190); // XXX
+ dsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ // Computing MAX
+ // Computing MIN
+ final double min = FastMath.min(trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i),
+ upperDifference.getEntry(i));
+ newPoint.setEntry(i, FastMath.max(min, lowerDifference.getEntry(i)));
+ if (xbdi.getEntry(i) == MINUS_ONE) {
+ newPoint.setEntry(i, lowerDifference.getEntry(i));
+ }
+ if (xbdi.getEntry(i) == ONE) {
+ newPoint.setEntry(i, upperDifference.getEntry(i));
+ }
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(i);
+ dsq += d1 * d1;
+ }
+ return new double[] { dsq, crvmin };
+ // The following instructions multiply the current S-vector by the second
+ // derivative matrix of the quadratic model, putting the product in HS.
+ // They are reached from three different parts of the software above and
+ // they can be regarded as an external subroutine.
+ }
+ case 210: {
+ printState(210); // XXX
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ hs.setEntry(j, ZERO);
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ hs.setEntry(j, hs.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(i));
+ }
+ hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
+ ih++;
+ }
+ }
+ final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
+ for (int k = 0; k < npt; k++) {
+ if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
+ for (int i = 0; i < n; i++) {
+ hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
+ }
+ }
+ }
+ if (crvmin != ZERO) {
+ state = 50; break;
+ }
+ if (iterc > itcsav) {
+ state = 150; break;
+ }
+ for (int i = 0; i < n; i++) {
+ hred.setEntry(i, hs.getEntry(i));
+ }
+ state = 120; break;
+ }
+ default: {
+ throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "trsbox");
+ }}
+ }
+ } // trsbox
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arrays BMAT and ZMAT are updated, as required by the new position
+ * of the interpolation point that has the index KNEW. The vector VLAG has
+ * N+NPT components, set on entry to the first NPT and last N components
+ * of the product Hw in equation (4.11) of the Powell (2006) paper on
+ * NEWUOA. Further, BETA is set on entry to the value of the parameter
+ * with that name, and DENOM is set to the denominator of the updating
+ * formula. Elements of ZMAT may be treated as zero if their moduli are
+ * at most ZTEST. The first NDIM elements of W are used for working space.
+ * @param beta
+ * @param denom
+ * @param knew
+ */
+ private void update(
+ double beta,
+ double denom,
+ int knew
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int nptm = npt - n - 1;
+
+ // XXX Should probably be split into two arrays.
+ final ArrayRealVector work = new ArrayRealVector(npt + n);
+
+ double ztest = ZERO;
+ for (int k = 0; k < npt; k++) {
+ for (int j = 0; j < nptm; j++) {
+ // Computing MAX
+ ztest = FastMath.max(ztest, FastMath.abs(zMatrix.getEntry(k, j)));
+ }
+ }
+ ztest *= 1e-20;
+
+ // Apply the rotations that put zeros in the KNEW-th row of ZMAT.
+
+ for (int j = 1; j < nptm; j++) {
+ final double d1 = zMatrix.getEntry(knew, j);
+ if (FastMath.abs(d1) > ztest) {
+ // Computing 2nd power
+ final double d2 = zMatrix.getEntry(knew, 0);
+ // Computing 2nd power
+ final double d3 = zMatrix.getEntry(knew, j);
+ final double d4 = FastMath.sqrt(d2 * d2 + d3 * d3);
+ final double d5 = zMatrix.getEntry(knew, 0) / d4;
+ final double d6 = zMatrix.getEntry(knew, j) / d4;
+ for (int i = 0; i < npt; i++) {
+ final double d7 = d5 * zMatrix.getEntry(i, 0) + d6 * zMatrix.getEntry(i, j);
+ zMatrix.setEntry(i, j, d5 * zMatrix.getEntry(i, j) - d6 * zMatrix.getEntry(i, 0));
+ zMatrix.setEntry(i, 0, d7);
+ }
+ }
+ zMatrix.setEntry(knew, j, ZERO);
+ }
+
+ // Put the first NPT components of the KNEW-th column of HLAG into W,
+ // and calculate the parameters of the updating formula.
+
+ for (int i = 0; i < npt; i++) {
+ work.setEntry(i, zMatrix.getEntry(knew, 0) * zMatrix.getEntry(i, 0));
+ }
+ final double alpha = work.getEntry(knew);
+ final double tau = lagrangeValuesAtNewPoint.getEntry(knew);
+ lagrangeValuesAtNewPoint.setEntry(knew, lagrangeValuesAtNewPoint.getEntry(knew) - ONE);
+
+ // Complete the updating of ZMAT.
+
+ final double sqrtDenom = FastMath.sqrt(denom);
+ final double d1 = tau / sqrtDenom;
+ final double d2 = zMatrix.getEntry(knew, 0) / sqrtDenom;
+ for (int i = 0; i < npt; i++) {
+ zMatrix.setEntry(i, 0,
+ d1 * zMatrix.getEntry(i, 0) - d2 * lagrangeValuesAtNewPoint.getEntry(i));
+ }
+
+ // Finally, update the matrix BMAT.
+
+ for (int j = 0; j < n; j++) {
+ final int jp = npt + j;
+ work.setEntry(jp, bMatrix.getEntry(knew, j));
+ final double d3 = (alpha * lagrangeValuesAtNewPoint.getEntry(jp) - tau * work.getEntry(jp)) / denom;
+ final double d4 = (-beta * work.getEntry(jp) - tau * lagrangeValuesAtNewPoint.getEntry(jp)) / denom;
+ for (int i = 0; i <= jp; i++) {
+ bMatrix.setEntry(i, j,
+ bMatrix.getEntry(i, j) + d3 * lagrangeValuesAtNewPoint.getEntry(i) + d4 * work.getEntry(i));
+ if (i >= npt) {
+ bMatrix.setEntry(jp, (i - npt), bMatrix.getEntry(i, j));
+ }
+ }
+ }
+ } // update
+
+ /**
+ * Performs validity checks.
+ *
+ * @param lowerBound Lower bounds (constraints) of the objective variables.
+ * @param upperBound Upperer bounds (constraints) of the objective variables.
+ */
+ private void setup(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ double[] init = getStartPoint();
+ final int dimension = init.length;
+
+ // Check problem dimension.
+ if (dimension < MINIMUM_PROBLEM_DIMENSION) {
+ throw new NumberIsTooSmallException(dimension, MINIMUM_PROBLEM_DIMENSION, true);
+ }
+ // Check number of interpolation points.
+ final int[] nPointsInterval = { dimension + 2, (dimension + 2) * (dimension + 1) / 2 };
+ if (numberOfInterpolationPoints < nPointsInterval[0] ||
+ numberOfInterpolationPoints > nPointsInterval[1]) {
+ throw new OutOfRangeException(LocalizedFormats.NUMBER_OF_INTERPOLATION_POINTS,
+ numberOfInterpolationPoints,
+ nPointsInterval[0],
+ nPointsInterval[1]);
+ }
+
+ // Initialize bound differences.
+ boundDifference = new double[dimension];
+
+ double requiredMinDiff = 2 * initialTrustRegionRadius;
+ double minDiff = Double.POSITIVE_INFINITY;
+ for (int i = 0; i < dimension; i++) {
+ boundDifference[i] = upperBound[i] - lowerBound[i];
+ minDiff = FastMath.min(minDiff, boundDifference[i]);
+ }
+ if (minDiff < requiredMinDiff) {
+ initialTrustRegionRadius = minDiff / 3.0;
+ }
+
+ // Initialize the data structures used by the "bobyqa" method.
+ bMatrix = new Array2DRowRealMatrix(dimension + numberOfInterpolationPoints,
+ dimension);
+ zMatrix = new Array2DRowRealMatrix(numberOfInterpolationPoints,
+ numberOfInterpolationPoints - dimension - 1);
+ interpolationPoints = new Array2DRowRealMatrix(numberOfInterpolationPoints,
+ dimension);
+ originShift = new ArrayRealVector(dimension);
+ fAtInterpolationPoints = new ArrayRealVector(numberOfInterpolationPoints);
+ trustRegionCenterOffset = new ArrayRealVector(dimension);
+ gradientAtTrustRegionCenter = new ArrayRealVector(dimension);
+ lowerDifference = new ArrayRealVector(dimension);
+ upperDifference = new ArrayRealVector(dimension);
+ modelSecondDerivativesParameters = new ArrayRealVector(numberOfInterpolationPoints);
+ newPoint = new ArrayRealVector(dimension);
+ alternativeNewPoint = new ArrayRealVector(dimension);
+ trialStepPoint = new ArrayRealVector(dimension);
+ lagrangeValuesAtNewPoint = new ArrayRealVector(dimension + numberOfInterpolationPoints);
+ modelSecondDerivativesValues = new ArrayRealVector(dimension * (dimension + 1) / 2);
+ }
+
+ // XXX utility for figuring out call sequence.
+ private static String caller(int n) {
+ final Throwable t = new Throwable();
+ final StackTraceElement[] elements = t.getStackTrace();
+ final StackTraceElement e = elements[n];
+ return e.getMethodName() + " (at line " + e.getLineNumber() + ")";
+ }
+ // XXX utility for figuring out call sequence.
+ private static void printState(int s) {
+ // System.out.println(caller(2) + ": state " + s);
+ }
+ // XXX utility for figuring out call sequence.
+ private static void printMethod() {
+ // System.out.println(caller(2));
+ }
+
+ /**
+ * Marker for code paths that are not explored with the current unit tests.
+ * If the path becomes explored, it should just be removed from the code.
+ */
+ private static class PathIsExploredException extends RuntimeException {
+ /** Serializable UID. */
+ private static final long serialVersionUID = 745350979634801853L;
+
+ /** Message string. */
+ private static final String PATH_IS_EXPLORED
+ = "If this exception is thrown, just remove it from the code";
+
+ PathIsExploredException() {
+ super(PATH_IS_EXPLORED + " " + BOBYQAOptimizer.caller(3));
+ }
+ }
+}
+//CHECKSTYLE: resume all