summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optim/nonlinear/scalar')
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GoalType.java32
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GradientMultivariateOptimizer.java102
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LeastSquaresConverter.java186
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LineSearch.java138
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizer.java111
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapter.java294
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java186
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateOptimizer.java117
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunction.java46
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunctionGradient.java46
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java415
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/Preconditioner.java44
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/package-info.java21
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/AbstractSimplex.java345
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java2475
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java1354
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/MultiDirectionalSimplex.java215
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/NelderMeadSimplex.java280
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizer.java299
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java222
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/package-info.java21
-rw-r--r--src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/package-info.java21
22 files changed, 6970 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GoalType.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GoalType.java
new file mode 100644
index 0000000..c0457b4
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GoalType.java
@@ -0,0 +1,32 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.optim.OptimizationData;
+
+/**
+ * Goal type for an optimization problem (minimization or maximization of
+ * a scalar function.
+ *
+ * @since 2.0
+ */
+public enum GoalType implements OptimizationData {
+ /** Maximization. */
+ MAXIMIZE,
+ /** Minimization. */
+ MINIMIZE
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GradientMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GradientMultivariateOptimizer.java
new file mode 100644
index 0000000..38a8bf7
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/GradientMultivariateOptimizer.java
@@ -0,0 +1,102 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.optim.OptimizationData;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+
+/**
+ * Base class for implementing optimizers for multivariate scalar
+ * differentiable functions.
+ * It contains boiler-plate code for dealing with gradient evaluation.
+ *
+ * @since 3.1
+ */
+public abstract class GradientMultivariateOptimizer
+ extends MultivariateOptimizer {
+ /**
+ * Gradient of the objective function.
+ */
+ private MultivariateVectorFunction gradient;
+
+ /**
+ * @param checker Convergence checker.
+ */
+ protected GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * Compute the gradient vector.
+ *
+ * @param params Point at which the gradient must be evaluated.
+ * @return the gradient at the specified point.
+ */
+ protected double[] computeObjectiveGradient(final double[] params) {
+ return gradient.value(params);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @param optData Optimization data. In addition to those documented in
+ * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
+ * MultivariateOptimizer}, this method will register the following data:
+ * <ul>
+ * <li>{@link ObjectiveFunctionGradient}</li>
+ * </ul>
+ * @return {@inheritDoc}
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations (of the objective function) is exceeded.
+ */
+ @Override
+ public PointValuePair optimize(OptimizationData... optData)
+ throws TooManyEvaluationsException {
+ // Set up base class and perform computation.
+ return super.optimize(optData);
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data.
+ * The following data will be looked for:
+ * <ul>
+ * <li>{@link ObjectiveFunctionGradient}</li>
+ * </ul>
+ */
+ @Override
+ protected void parseOptimizationData(OptimizationData... optData) {
+ // Allow base class to register its own data.
+ super.parseOptimizationData(optData);
+
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof ObjectiveFunctionGradient) {
+ gradient = ((ObjectiveFunctionGradient) data).getObjectiveFunctionGradient();
+ // If more data must be parsed, this statement _must_ be
+ // changed to "continue".
+ break;
+ }
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LeastSquaresConverter.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LeastSquaresConverter.java
new file mode 100644
index 0000000..4be1f12
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LeastSquaresConverter.java
@@ -0,0 +1,186 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.linear.RealMatrix;
+
+/**
+ * This class converts
+ * {@link MultivariateVectorFunction vectorial objective functions} to
+ * {@link MultivariateFunction scalar objective functions}
+ * when the goal is to minimize them.
+ * <br/>
+ * This class is mostly used when the vectorial objective function represents
+ * a theoretical result computed from a point set applied to a model and
+ * the models point must be adjusted to fit the theoretical result to some
+ * reference observations. The observations may be obtained for example from
+ * physical measurements whether the model is built from theoretical
+ * considerations.
+ * <br/>
+ * This class computes a possibly weighted squared sum of the residuals, which is
+ * a scalar value. The residuals are the difference between the theoretical model
+ * (i.e. the output of the vectorial objective function) and the observations. The
+ * class implements the {@link MultivariateFunction} interface and can therefore be
+ * minimized by any optimizer supporting scalar objectives functions.This is one way
+ * to perform a least square estimation. There are other ways to do this without using
+ * this converter, as some optimization algorithms directly support vectorial objective
+ * functions.
+ * <br/>
+ * This class support combination of residuals with or without weights and correlations.
+ *
+ * @see MultivariateFunction
+ * @see MultivariateVectorFunction
+ * @since 2.0
+ */
+
+public class LeastSquaresConverter implements MultivariateFunction {
+ /** Underlying vectorial function. */
+ private final MultivariateVectorFunction function;
+ /** Observations to be compared to objective function to compute residuals. */
+ private final double[] observations;
+ /** Optional weights for the residuals. */
+ private final double[] weights;
+ /** Optional scaling matrix (weight and correlations) for the residuals. */
+ private final RealMatrix scale;
+
+ /**
+ * Builds a simple converter for uncorrelated residuals with identical
+ * weights.
+ *
+ * @param function vectorial residuals function to wrap
+ * @param observations observations to be compared to objective function to compute residuals
+ */
+ public LeastSquaresConverter(final MultivariateVectorFunction function,
+ final double[] observations) {
+ this.function = function;
+ this.observations = observations.clone();
+ this.weights = null;
+ this.scale = null;
+ }
+
+ /**
+ * Builds a simple converter for uncorrelated residuals with the
+ * specified weights.
+ * <p>
+ * The scalar objective function value is computed as:
+ * <pre>
+ * objective = &sum;weight<sub>i</sub>(observation<sub>i</sub>-objective<sub>i</sub>)<sup>2</sup>
+ * </pre>
+ * </p>
+ * <p>
+ * Weights can be used for example to combine residuals with different standard
+ * deviations. As an example, consider a residuals array in which even elements
+ * are angular measurements in degrees with a 0.01&deg; standard deviation and
+ * odd elements are distance measurements in meters with a 15m standard deviation.
+ * In this case, the weights array should be initialized with value
+ * 1.0/(0.01<sup>2</sup>) in the even elements and 1.0/(15.0<sup>2</sup>) in the
+ * odd elements (i.e. reciprocals of variances).
+ * </p>
+ * <p>
+ * The array computed by the objective function, the observations array and the
+ * weights array must have consistent sizes or a {@link DimensionMismatchException}
+ * will be triggered while computing the scalar objective.
+ * </p>
+ *
+ * @param function vectorial residuals function to wrap
+ * @param observations observations to be compared to objective function to compute residuals
+ * @param weights weights to apply to the residuals
+ * @throws DimensionMismatchException if the observations vector and the weights
+ * vector dimensions do not match (objective function dimension is checked only when
+ * the {@link #value(double[])} method is called)
+ */
+ public LeastSquaresConverter(final MultivariateVectorFunction function,
+ final double[] observations,
+ final double[] weights) {
+ if (observations.length != weights.length) {
+ throw new DimensionMismatchException(observations.length, weights.length);
+ }
+ this.function = function;
+ this.observations = observations.clone();
+ this.weights = weights.clone();
+ this.scale = null;
+ }
+
+ /**
+ * Builds a simple converter for correlated residuals with the
+ * specified weights.
+ * <p>
+ * The scalar objective function value is computed as:
+ * <pre>
+ * objective = y<sup>T</sup>y with y = scale&times;(observation-objective)
+ * </pre>
+ * </p>
+ * <p>
+ * The array computed by the objective function, the observations array and the
+ * the scaling matrix must have consistent sizes or a {@link DimensionMismatchException}
+ * will be triggered while computing the scalar objective.
+ * </p>
+ *
+ * @param function vectorial residuals function to wrap
+ * @param observations observations to be compared to objective function to compute residuals
+ * @param scale scaling matrix
+ * @throws DimensionMismatchException if the observations vector and the scale
+ * matrix dimensions do not match (objective function dimension is checked only when
+ * the {@link #value(double[])} method is called)
+ */
+ public LeastSquaresConverter(final MultivariateVectorFunction function,
+ final double[] observations,
+ final RealMatrix scale) {
+ if (observations.length != scale.getColumnDimension()) {
+ throw new DimensionMismatchException(observations.length, scale.getColumnDimension());
+ }
+ this.function = function;
+ this.observations = observations.clone();
+ this.weights = null;
+ this.scale = scale.copy();
+ }
+
+ /** {@inheritDoc} */
+ public double value(final double[] point) {
+ // compute residuals
+ final double[] residuals = function.value(point);
+ if (residuals.length != observations.length) {
+ throw new DimensionMismatchException(residuals.length, observations.length);
+ }
+ for (int i = 0; i < residuals.length; ++i) {
+ residuals[i] -= observations[i];
+ }
+
+ // compute sum of squares
+ double sumSquares = 0;
+ if (weights != null) {
+ for (int i = 0; i < residuals.length; ++i) {
+ final double ri = residuals[i];
+ sumSquares += weights[i] * ri * ri;
+ }
+ } else if (scale != null) {
+ for (final double yi : scale.operate(residuals)) {
+ sumSquares += yi * yi;
+ }
+ } else {
+ for (final double ri : residuals) {
+ sumSquares += ri * ri;
+ }
+ }
+
+ return sumSquares;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LineSearch.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LineSearch.java
new file mode 100644
index 0000000..4a630a2
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/LineSearch.java
@@ -0,0 +1,138 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.optim.univariate.UnivariateOptimizer;
+import org.apache.commons.math3.optim.univariate.BrentOptimizer;
+import org.apache.commons.math3.optim.univariate.BracketFinder;
+import org.apache.commons.math3.optim.univariate.UnivariatePointValuePair;
+import org.apache.commons.math3.optim.univariate.SimpleUnivariateValueChecker;
+import org.apache.commons.math3.optim.univariate.SearchInterval;
+import org.apache.commons.math3.optim.univariate.UnivariateObjectiveFunction;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.optim.MaxEval;
+
+/**
+ * Class for finding the minimum of the objective function along a given
+ * direction.
+ *
+ * @since 3.3
+ */
+public class LineSearch {
+ /**
+ * Value that will pass the precondition check for {@link BrentOptimizer}
+ * but will not pass the convergence check, so that the custom checker
+ * will always decide when to stop the line search.
+ */
+ private static final double REL_TOL_UNUSED = 1e-15;
+ /**
+ * Value that will pass the precondition check for {@link BrentOptimizer}
+ * but will not pass the convergence check, so that the custom checker
+ * will always decide when to stop the line search.
+ */
+ private static final double ABS_TOL_UNUSED = Double.MIN_VALUE;
+ /**
+ * Optimizer used for line search.
+ */
+ private final UnivariateOptimizer lineOptimizer;
+ /**
+ * Automatic bracketing.
+ */
+ private final BracketFinder bracket = new BracketFinder();
+ /**
+ * Extent of the initial interval used to find an interval that
+ * brackets the optimum.
+ */
+ private final double initialBracketingRange;
+ /**
+ * Optimizer on behalf of which the line search must be performed.
+ */
+ private final MultivariateOptimizer mainOptimizer;
+
+ /**
+ * The {@code BrentOptimizer} default stopping criterion uses the
+ * tolerances to check the domain (point) values, not the function
+ * values.
+ * The {@code relativeTolerance} and {@code absoluteTolerance}
+ * arguments are thus passed to a {@link SimpleUnivariateValueChecker
+ * custom checker} that will use the function values.
+ *
+ * @param optimizer Optimizer on behalf of which the line search
+ * be performed.
+ * Its {@link MultivariateOptimizer#computeObjectiveValue(double[])
+ * computeObjectiveValue} method will be called by the
+ * {@link #search(double[],double[]) search} method.
+ * @param relativeTolerance Search will stop when the function relative
+ * difference between successive iterations is below this value.
+ * @param absoluteTolerance Search will stop when the function absolute
+ * difference between successive iterations is below this value.
+ * @param initialBracketingRange Extent of the initial interval used to
+ * find an interval that brackets the optimum.
+ * If the optimized function varies a lot in the vicinity of the optimum,
+ * it may be necessary to provide a value lower than the distance between
+ * successive local minima.
+ */
+ public LineSearch(MultivariateOptimizer optimizer,
+ double relativeTolerance,
+ double absoluteTolerance,
+ double initialBracketingRange) {
+ mainOptimizer = optimizer;
+ lineOptimizer = new BrentOptimizer(REL_TOL_UNUSED,
+ ABS_TOL_UNUSED,
+ new SimpleUnivariateValueChecker(relativeTolerance,
+ absoluteTolerance));
+ this.initialBracketingRange = initialBracketingRange;
+ }
+
+ /**
+ * Finds the number {@code alpha} that optimizes
+ * {@code f(startPoint + alpha * direction)}.
+ *
+ * @param startPoint Starting point.
+ * @param direction Search direction.
+ * @return the optimum.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the number of evaluations is exceeded.
+ */
+ public UnivariatePointValuePair search(final double[] startPoint,
+ final double[] direction) {
+ final int n = startPoint.length;
+ final UnivariateFunction f = new UnivariateFunction() {
+ /** {@inheritDoc} */
+ public double value(double alpha) {
+ final double[] x = new double[n];
+ for (int i = 0; i < n; i++) {
+ x[i] = startPoint[i] + alpha * direction[i];
+ }
+ final double obj = mainOptimizer.computeObjectiveValue(x);
+ return obj;
+ }
+ };
+
+ final GoalType goal = mainOptimizer.getGoalType();
+ bracket.search(f, goal, 0, initialBracketingRange);
+ // Passing "MAX_VALUE" as a dummy value because it is the enclosing
+ // class that counts the number of evaluations (and will eventually
+ // generate the exception).
+ return lineOptimizer.optimize(new MaxEval(Integer.MAX_VALUE),
+ new UnivariateObjectiveFunction(f),
+ goal,
+ new SearchInterval(bracket.getLo(),
+ bracket.getHi(),
+ bracket.getMid()));
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizer.java
new file mode 100644
index 0000000..86dcd70
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultiStartMultivariateOptimizer.java
@@ -0,0 +1,111 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import java.util.Collections;
+import java.util.List;
+import java.util.ArrayList;
+import java.util.Comparator;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+import org.apache.commons.math3.optim.BaseMultiStartMultivariateOptimizer;
+import org.apache.commons.math3.optim.PointValuePair;
+
+/**
+ * Multi-start optimizer.
+ *
+ * This class wraps an optimizer in order to use it several times in
+ * turn with different starting points (trying to avoid being trapped
+ * in a local extremum when looking for a global one).
+ *
+ * @since 3.0
+ */
+public class MultiStartMultivariateOptimizer
+ extends BaseMultiStartMultivariateOptimizer<PointValuePair> {
+ /** Underlying optimizer. */
+ private final MultivariateOptimizer optimizer;
+ /** Found optima. */
+ private final List<PointValuePair> optima = new ArrayList<PointValuePair>();
+
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform.
+ * If {@code starts == 1}, the result will be same as if {@code optimizer}
+ * is called directly.
+ * @param generator Random vector generator to use for restarts.
+ * @throws NullArgumentException if {@code optimizer} or {@code generator}
+ * is {@code null}.
+ * @throws NotStrictlyPositiveException if {@code starts < 1}.
+ */
+ public MultiStartMultivariateOptimizer(final MultivariateOptimizer optimizer,
+ final int starts,
+ final RandomVectorGenerator generator)
+ throws NullArgumentException,
+ NotStrictlyPositiveException {
+ super(optimizer, starts, generator);
+ this.optimizer = optimizer;
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ public PointValuePair[] getOptima() {
+ Collections.sort(optima, getPairComparator());
+ return optima.toArray(new PointValuePair[0]);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ protected void store(PointValuePair optimum) {
+ optima.add(optimum);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ protected void clear() {
+ optima.clear();
+ }
+
+ /**
+ * @return a comparator for sorting the optima.
+ */
+ private Comparator<PointValuePair> getPairComparator() {
+ return new Comparator<PointValuePair>() {
+ /** {@inheritDoc} */
+ public int compare(final PointValuePair o1,
+ final PointValuePair o2) {
+ if (o1 == null) {
+ return (o2 == null) ? 0 : 1;
+ } else if (o2 == null) {
+ return -1;
+ }
+ final double v1 = o1.getValue();
+ final double v2 = o2.getValue();
+ return (optimizer.getGoalType() == GoalType.MINIMIZE) ?
+ Double.compare(v1, v2) : Double.compare(v2, v1);
+ }
+ };
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapter.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapter.java
new file mode 100644
index 0000000..3c5127c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionMappingAdapter.java
@@ -0,0 +1,294 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.analysis.function.Logit;
+import org.apache.commons.math3.analysis.function.Sigmoid;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * <p>Adapter for mapping bounded {@link MultivariateFunction} to unbounded ones.</p>
+ *
+ * <p>
+ * This adapter can be used to wrap functions subject to simple bounds on
+ * parameters so they can be used by optimizers that do <em>not</em> directly
+ * support simple bounds.
+ * </p>
+ * <p>
+ * The principle is that the user function that will be wrapped will see its
+ * parameters bounded as required, i.e when its {@code value} method is called
+ * with argument array {@code point}, the elements array will fulfill requirement
+ * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components
+ * may be unbounded or bounded only on one side if the corresponding bound is
+ * set to an infinite value. The optimizer will not manage the user function by
+ * itself, but it will handle this adapter and it is this adapter that will take
+ * care the bounds are fulfilled. The adapter {@link #value(double[])} method will
+ * be called by the optimizer with unbound parameters, and the adapter will map
+ * the unbounded value to the bounded range using appropriate functions like
+ * {@link Sigmoid} for double bounded elements for example.
+ * </p>
+ * <p>
+ * As the optimizer sees only unbounded parameters, it should be noted that the
+ * start point or simplex expected by the optimizer should be unbounded, so the
+ * user is responsible for converting his bounded point to unbounded by calling
+ * {@link #boundedToUnbounded(double[])} before providing them to the optimizer.
+ * For the same reason, the point returned by the {@link
+ * org.apache.commons.math3.optimization.BaseMultivariateOptimizer#optimize(int,
+ * MultivariateFunction, org.apache.commons.math3.optimization.GoalType, double[])}
+ * method is unbounded. So to convert this point to bounded, users must call
+ * {@link #unboundedToBounded(double[])} by themselves!</p>
+ * <p>
+ * This adapter is only a poor man solution to simple bounds optimization constraints
+ * that can be used with simple optimizers like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer
+ * SimplexOptimizer}.
+ * A better solution is to use an optimizer that directly supports simple bounds like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer
+ * CMAESOptimizer} or
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
+ * BOBYQAOptimizer}.
+ * One caveat of this poor-man's solution is that behavior near the bounds may be
+ * numerically unstable as bounds are mapped from infinite values.
+ * Another caveat is that convergence values are evaluated by the optimizer with
+ * respect to unbounded variables, so there will be scales differences when
+ * converted to bounded variables.
+ * </p>
+ *
+ * @see MultivariateFunctionPenaltyAdapter
+ *
+ * @since 3.0
+ */
+public class MultivariateFunctionMappingAdapter
+ implements MultivariateFunction {
+ /** Underlying bounded function. */
+ private final MultivariateFunction bounded;
+ /** Mapping functions. */
+ private final Mapper[] mappers;
+
+ /** Simple constructor.
+ * @param bounded bounded function
+ * @param lower lower bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for
+ * unbounded values)
+ * @param upper upper bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.POSITIVE_INFINITY} for
+ * unbounded values)
+ * @exception DimensionMismatchException if lower and upper bounds are not
+ * consistent, either according to dimension or to values
+ */
+ public MultivariateFunctionMappingAdapter(final MultivariateFunction bounded,
+ final double[] lower, final double[] upper) {
+ // safety checks
+ MathUtils.checkNotNull(lower);
+ MathUtils.checkNotNull(upper);
+ if (lower.length != upper.length) {
+ throw new DimensionMismatchException(lower.length, upper.length);
+ }
+ for (int i = 0; i < lower.length; ++i) {
+ // note the following test is written in such a way it also fails for NaN
+ if (!(upper[i] >= lower[i])) {
+ throw new NumberIsTooSmallException(upper[i], lower[i], true);
+ }
+ }
+
+ this.bounded = bounded;
+ this.mappers = new Mapper[lower.length];
+ for (int i = 0; i < mappers.length; ++i) {
+ if (Double.isInfinite(lower[i])) {
+ if (Double.isInfinite(upper[i])) {
+ // element is unbounded, no transformation is needed
+ mappers[i] = new NoBoundsMapper();
+ } else {
+ // element is simple-bounded on the upper side
+ mappers[i] = new UpperBoundMapper(upper[i]);
+ }
+ } else {
+ if (Double.isInfinite(upper[i])) {
+ // element is simple-bounded on the lower side
+ mappers[i] = new LowerBoundMapper(lower[i]);
+ } else {
+ // element is double-bounded
+ mappers[i] = new LowerUpperBoundMapper(lower[i], upper[i]);
+ }
+ }
+ }
+ }
+
+ /**
+ * Maps an array from unbounded to bounded.
+ *
+ * @param point Unbounded values.
+ * @return the bounded values.
+ */
+ public double[] unboundedToBounded(double[] point) {
+ // Map unbounded input point to bounded point.
+ final double[] mapped = new double[mappers.length];
+ for (int i = 0; i < mappers.length; ++i) {
+ mapped[i] = mappers[i].unboundedToBounded(point[i]);
+ }
+
+ return mapped;
+ }
+
+ /**
+ * Maps an array from bounded to unbounded.
+ *
+ * @param point Bounded values.
+ * @return the unbounded values.
+ */
+ public double[] boundedToUnbounded(double[] point) {
+ // Map bounded input point to unbounded point.
+ final double[] mapped = new double[mappers.length];
+ for (int i = 0; i < mappers.length; ++i) {
+ mapped[i] = mappers[i].boundedToUnbounded(point[i]);
+ }
+
+ return mapped;
+ }
+
+ /**
+ * Compute the underlying function value from an unbounded point.
+ * <p>
+ * This method simply bounds the unbounded point using the mappings
+ * set up at construction and calls the underlying function using
+ * the bounded point.
+ * </p>
+ * @param point unbounded value
+ * @return underlying function value
+ * @see #unboundedToBounded(double[])
+ */
+ public double value(double[] point) {
+ return bounded.value(unboundedToBounded(point));
+ }
+
+ /** Mapping interface. */
+ private interface Mapper {
+ /**
+ * Maps a value from unbounded to bounded.
+ *
+ * @param y Unbounded value.
+ * @return the bounded value.
+ */
+ double unboundedToBounded(double y);
+
+ /**
+ * Maps a value from bounded to unbounded.
+ *
+ * @param x Bounded value.
+ * @return the unbounded value.
+ */
+ double boundedToUnbounded(double x);
+ }
+
+ /** Local class for no bounds mapping. */
+ private static class NoBoundsMapper implements Mapper {
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return y;
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return x;
+ }
+ }
+
+ /** Local class for lower bounds mapping. */
+ private static class LowerBoundMapper implements Mapper {
+ /** Low bound. */
+ private final double lower;
+
+ /**
+ * Simple constructor.
+ *
+ * @param lower lower bound
+ */
+ LowerBoundMapper(final double lower) {
+ this.lower = lower;
+ }
+
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return lower + FastMath.exp(y);
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return FastMath.log(x - lower);
+ }
+
+ }
+
+ /** Local class for upper bounds mapping. */
+ private static class UpperBoundMapper implements Mapper {
+
+ /** Upper bound. */
+ private final double upper;
+
+ /** Simple constructor.
+ * @param upper upper bound
+ */
+ UpperBoundMapper(final double upper) {
+ this.upper = upper;
+ }
+
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return upper - FastMath.exp(-y);
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return -FastMath.log(upper - x);
+ }
+
+ }
+
+ /** Local class for lower and bounds mapping. */
+ private static class LowerUpperBoundMapper implements Mapper {
+ /** Function from unbounded to bounded. */
+ private final UnivariateFunction boundingFunction;
+ /** Function from bounded to unbounded. */
+ private final UnivariateFunction unboundingFunction;
+
+ /**
+ * Simple constructor.
+ *
+ * @param lower lower bound
+ * @param upper upper bound
+ */
+ LowerUpperBoundMapper(final double lower, final double upper) {
+ boundingFunction = new Sigmoid(lower, upper);
+ unboundingFunction = new Logit(lower, upper);
+ }
+
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return boundingFunction.value(y);
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return unboundingFunction.value(x);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
new file mode 100644
index 0000000..931f17f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateFunctionPenaltyAdapter.java
@@ -0,0 +1,186 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * <p>Adapter extending bounded {@link MultivariateFunction} to an unbouded
+ * domain using a penalty function.</p>
+ *
+ * <p>
+ * This adapter can be used to wrap functions subject to simple bounds on
+ * parameters so they can be used by optimizers that do <em>not</em> directly
+ * support simple bounds.
+ * </p>
+ * <p>
+ * The principle is that the user function that will be wrapped will see its
+ * parameters bounded as required, i.e when its {@code value} method is called
+ * with argument array {@code point}, the elements array will fulfill requirement
+ * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components
+ * may be unbounded or bounded only on one side if the corresponding bound is
+ * set to an infinite value. The optimizer will not manage the user function by
+ * itself, but it will handle this adapter and it is this adapter that will take
+ * care the bounds are fulfilled. The adapter {@link #value(double[])} method will
+ * be called by the optimizer with unbound parameters, and the adapter will check
+ * if the parameters is within range or not. If it is in range, then the underlying
+ * user function will be called, and if it is not the value of a penalty function
+ * will be returned instead.
+ * </p>
+ * <p>
+ * This adapter is only a poor-man's solution to simple bounds optimization
+ * constraints that can be used with simple optimizers like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer
+ * SimplexOptimizer}.
+ * A better solution is to use an optimizer that directly supports simple bounds like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer
+ * CMAESOptimizer} or
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
+ * BOBYQAOptimizer}.
+ * One caveat of this poor-man's solution is that if start point or start simplex
+ * is completely outside of the allowed range, only the penalty function is used,
+ * and the optimizer may converge without ever entering the range.
+ * </p>
+ *
+ * @see MultivariateFunctionMappingAdapter
+ *
+ * @since 3.0
+ */
+public class MultivariateFunctionPenaltyAdapter
+ implements MultivariateFunction {
+ /** Underlying bounded function. */
+ private final MultivariateFunction bounded;
+ /** Lower bounds. */
+ private final double[] lower;
+ /** Upper bounds. */
+ private final double[] upper;
+ /** Penalty offset. */
+ private final double offset;
+ /** Penalty scales. */
+ private final double[] scale;
+
+ /**
+ * Simple constructor.
+ * <p>
+ * When the optimizer provided points are out of range, the value of the
+ * penalty function will be used instead of the value of the underlying
+ * function. In order for this penalty to be effective in rejecting this
+ * point during the optimization process, the penalty function value should
+ * be defined with care. This value is computed as:
+ * <pre>
+ * penalty(point) = offset + &sum;<sub>i</sub>[scale[i] * &radic;|point[i]-boundary[i]|]
+ * </pre>
+ * where indices i correspond to all the components that violates their boundaries.
+ * </p>
+ * <p>
+ * So when attempting a function minimization, offset should be larger than
+ * the maximum expected value of the underlying function and scale components
+ * should all be positive. When attempting a function maximization, offset
+ * should be lesser than the minimum expected value of the underlying function
+ * and scale components should all be negative.
+ * minimization, and lesser than the minimum expected value of the underlying
+ * function when attempting maximization.
+ * </p>
+ * <p>
+ * These choices for the penalty function have two properties. First, all out
+ * of range points will return a function value that is worse than the value
+ * returned by any in range point. Second, the penalty is worse for large
+ * boundaries violation than for small violations, so the optimizer has an hint
+ * about the direction in which it should search for acceptable points.
+ * </p>
+ * @param bounded bounded function
+ * @param lower lower bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for
+ * unbounded values)
+ * @param upper upper bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.POSITIVE_INFINITY} for
+ * unbounded values)
+ * @param offset base offset of the penalty function
+ * @param scale scale of the penalty function
+ * @exception DimensionMismatchException if lower bounds, upper bounds and
+ * scales are not consistent, either according to dimension or to bounadary
+ * values
+ */
+ public MultivariateFunctionPenaltyAdapter(final MultivariateFunction bounded,
+ final double[] lower, final double[] upper,
+ final double offset, final double[] scale) {
+
+ // safety checks
+ MathUtils.checkNotNull(lower);
+ MathUtils.checkNotNull(upper);
+ MathUtils.checkNotNull(scale);
+ if (lower.length != upper.length) {
+ throw new DimensionMismatchException(lower.length, upper.length);
+ }
+ if (lower.length != scale.length) {
+ throw new DimensionMismatchException(lower.length, scale.length);
+ }
+ for (int i = 0; i < lower.length; ++i) {
+ // note the following test is written in such a way it also fails for NaN
+ if (!(upper[i] >= lower[i])) {
+ throw new NumberIsTooSmallException(upper[i], lower[i], true);
+ }
+ }
+
+ this.bounded = bounded;
+ this.lower = lower.clone();
+ this.upper = upper.clone();
+ this.offset = offset;
+ this.scale = scale.clone();
+ }
+
+ /**
+ * Computes the underlying function value from an unbounded point.
+ * <p>
+ * This method simply returns the value of the underlying function
+ * if the unbounded point already fulfills the bounds, and compute
+ * a replacement value using the offset and scale if bounds are
+ * violated, without calling the function at all.
+ * </p>
+ * @param point unbounded point
+ * @return either underlying function value or penalty function value
+ */
+ public double value(double[] point) {
+
+ for (int i = 0; i < scale.length; ++i) {
+ if ((point[i] < lower[i]) || (point[i] > upper[i])) {
+ // bound violation starting at this component
+ double sum = 0;
+ for (int j = i; j < scale.length; ++j) {
+ final double overshoot;
+ if (point[j] < lower[j]) {
+ overshoot = scale[j] * (lower[j] - point[j]);
+ } else if (point[j] > upper[j]) {
+ overshoot = scale[j] * (point[j] - upper[j]);
+ } else {
+ overshoot = 0;
+ }
+ sum += FastMath.sqrt(overshoot);
+ }
+ return offset + sum;
+ }
+ }
+
+ // all boundaries are fulfilled, we are in the expected
+ // domain of the underlying function
+ return bounded.value(point);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateOptimizer.java
new file mode 100644
index 0000000..bc0bec9
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/MultivariateOptimizer.java
@@ -0,0 +1,117 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.optim.BaseMultivariateOptimizer;
+import org.apache.commons.math3.optim.OptimizationData;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+
+/**
+ * Base class for a multivariate scalar function optimizer.
+ *
+ * @since 3.1
+ */
+public abstract class MultivariateOptimizer
+ extends BaseMultivariateOptimizer<PointValuePair> {
+ /** Objective function. */
+ private MultivariateFunction function;
+ /** Type of optimization. */
+ private GoalType goal;
+
+ /**
+ * @param checker Convergence checker.
+ */
+ protected MultivariateOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @param optData Optimization data. In addition to those documented in
+ * {@link BaseMultivariateOptimizer#parseOptimizationData(OptimizationData[])
+ * BaseMultivariateOptimizer}, this method will register the following data:
+ * <ul>
+ * <li>{@link ObjectiveFunction}</li>
+ * <li>{@link GoalType}</li>
+ * </ul>
+ * @return {@inheritDoc}
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations is exceeded.
+ */
+ @Override
+ public PointValuePair optimize(OptimizationData... optData)
+ throws TooManyEvaluationsException {
+ // Set up base class and perform computation.
+ return super.optimize(optData);
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data.
+ * The following data will be looked for:
+ * <ul>
+ * <li>{@link ObjectiveFunction}</li>
+ * <li>{@link GoalType}</li>
+ * </ul>
+ */
+ @Override
+ protected void parseOptimizationData(OptimizationData... optData) {
+ // Allow base class to register its own data.
+ super.parseOptimizationData(optData);
+
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof GoalType) {
+ goal = (GoalType) data;
+ continue;
+ }
+ if (data instanceof ObjectiveFunction) {
+ function = ((ObjectiveFunction) data).getObjectiveFunction();
+ continue;
+ }
+ }
+ }
+
+ /**
+ * @return the optimization type.
+ */
+ public GoalType getGoalType() {
+ return goal;
+ }
+
+ /**
+ * Computes the objective function value.
+ * This method <em>must</em> be called by subclasses to enforce the
+ * evaluation counter limit.
+ *
+ * @param params Point at which the objective function must be evaluated.
+ * @return the objective function value at the specified point.
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations is exceeded.
+ */
+ public double computeObjectiveValue(double[] params) {
+ super.incrementEvaluationCount();
+ return function.value(params);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunction.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunction.java
new file mode 100644
index 0000000..643cc03
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunction.java
@@ -0,0 +1,46 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.optim.OptimizationData;
+
+/**
+ * Scalar function to be optimized.
+ *
+ * @since 3.1
+ */
+public class ObjectiveFunction implements OptimizationData {
+ /** Function to be optimized. */
+ private final MultivariateFunction function;
+
+ /**
+ * @param f Function to be optimized.
+ */
+ public ObjectiveFunction(MultivariateFunction f) {
+ function = f;
+ }
+
+ /**
+ * Gets the function to be optimized.
+ *
+ * @return the objective function.
+ */
+ public MultivariateFunction getObjectiveFunction() {
+ return function;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunctionGradient.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunctionGradient.java
new file mode 100644
index 0000000..2fcf2ee
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/ObjectiveFunctionGradient.java
@@ -0,0 +1,46 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;
+
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.optim.OptimizationData;
+
+/**
+ * Gradient of the scalar function to be optimized.
+ *
+ * @since 3.1
+ */
+public class ObjectiveFunctionGradient implements OptimizationData {
+ /** Function to be optimized. */
+ private final MultivariateVectorFunction gradient;
+
+ /**
+ * @param g Gradient of the function to be optimized.
+ */
+ public ObjectiveFunctionGradient(MultivariateVectorFunction g) {
+ gradient = g;
+ }
+
+ /**
+ * Gets the gradient of the function to be optimized.
+ *
+ * @return the objective function gradient.
+ */
+ public MultivariateVectorFunction getObjectiveFunctionGradient() {
+ return gradient;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java
new file mode 100644
index 0000000..9074122
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/NonLinearConjugateGradientOptimizer.java
@@ -0,0 +1,415 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optim.nonlinear.scalar.gradient;
+
+import org.apache.commons.math3.analysis.solvers.UnivariateSolver;
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+import org.apache.commons.math3.exception.MathUnsupportedOperationException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optim.OptimizationData;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
+import org.apache.commons.math3.optim.nonlinear.scalar.GradientMultivariateOptimizer;
+import org.apache.commons.math3.optim.nonlinear.scalar.LineSearch;
+
+
+/**
+ * Non-linear conjugate gradient optimizer.
+ * <br/>
+ * This class supports both the Fletcher-Reeves and the Polak-Ribière
+ * update formulas for the conjugate search directions.
+ * It also supports optional preconditioning.
+ * <br/>
+ * Constraints are not supported: the call to
+ * {@link #optimize(OptimizationData[]) optimize} will throw
+ * {@link MathUnsupportedOperationException} if bounds are passed to it.
+ *
+ * @since 2.0
+ */
+public class NonLinearConjugateGradientOptimizer
+ extends GradientMultivariateOptimizer {
+ /** Update formula for the beta parameter. */
+ private final Formula updateFormula;
+ /** Preconditioner (may be null). */
+ private final Preconditioner preconditioner;
+ /** Line search algorithm. */
+ private final LineSearch line;
+
+ /**
+ * Available choices of update formulas for the updating the parameter
+ * that is used to compute the successive conjugate search directions.
+ * For non-linear conjugate gradients, there are
+ * two formulas:
+ * <ul>
+ * <li>Fletcher-Reeves formula</li>
+ * <li>Polak-Ribière formula</li>
+ * </ul>
+ *
+ * On the one hand, the Fletcher-Reeves formula is guaranteed to converge
+ * if the start point is close enough of the optimum whether the
+ * Polak-Ribière formula may not converge in rare cases. On the
+ * other hand, the Polak-Ribière formula is often faster when it
+ * does converge. Polak-Ribière is often used.
+ *
+ * @since 2.0
+ */
+ public enum Formula {
+ /** Fletcher-Reeves formula. */
+ FLETCHER_REEVES,
+ /** Polak-Ribière formula. */
+ POLAK_RIBIERE
+ }
+
+ /**
+ * The initial step is a factor with respect to the search direction
+ * (which itself is roughly related to the gradient of the function).
+ * <br/>
+ * It is used to find an interval that brackets the optimum in line
+ * search.
+ *
+ * @since 3.1
+ * @deprecated As of v3.3, this class is not used anymore.
+ * This setting is replaced by the {@code initialBracketingRange}
+ * argument to the new constructors.
+ */
+ @Deprecated
+ public static class BracketingStep implements OptimizationData {
+ /** Initial step. */
+ private final double initialStep;
+
+ /**
+ * @param step Initial step for the bracket search.
+ */
+ public BracketingStep(double step) {
+ initialStep = step;
+ }
+
+ /**
+ * Gets the initial step.
+ *
+ * @return the initial step.
+ */
+ public double getBracketingStep() {
+ return initialStep;
+ }
+ }
+
+ /**
+ * Constructor with default tolerances for the line search (1e-8) and
+ * {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link Formula#FLETCHER_REEVES} or
+ * {@link Formula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ */
+ public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
+ ConvergenceChecker<PointValuePair> checker) {
+ this(updateFormula,
+ checker,
+ 1e-8,
+ 1e-8,
+ 1e-8,
+ new IdentityPreconditioner());
+ }
+
+ /**
+ * Constructor with default {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link Formula#FLETCHER_REEVES} or
+ * {@link Formula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param lineSearchSolver Solver to use during line search.
+ * @deprecated as of 3.3. Please use
+ * {@link #NonLinearConjugateGradientOptimizer(Formula,ConvergenceChecker,double,double,double)} instead.
+ */
+ @Deprecated
+ public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ final UnivariateSolver lineSearchSolver) {
+ this(updateFormula,
+ checker,
+ lineSearchSolver,
+ new IdentityPreconditioner());
+ }
+
+ /**
+ * Constructor with default {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link Formula#FLETCHER_REEVES} or
+ * {@link Formula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param relativeTolerance Relative threshold for line search.
+ * @param absoluteTolerance Absolute threshold for line search.
+ * @param initialBracketingRange Extent of the initial interval used to
+ * find an interval that brackets the optimum in order to perform the
+ * line search.
+ *
+ * @see LineSearch#LineSearch(MultivariateOptimizer,double,double,double)
+ * @since 3.3
+ */
+ public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ double relativeTolerance,
+ double absoluteTolerance,
+ double initialBracketingRange) {
+ this(updateFormula,
+ checker,
+ relativeTolerance,
+ absoluteTolerance,
+ initialBracketingRange,
+ new IdentityPreconditioner());
+ }
+
+ /**
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link Formula#FLETCHER_REEVES} or
+ * {@link Formula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param lineSearchSolver Solver to use during line search.
+ * @param preconditioner Preconditioner.
+ * @deprecated as of 3.3. Please use
+ * {@link #NonLinearConjugateGradientOptimizer(Formula,ConvergenceChecker,double,double,double,Preconditioner)} instead.
+ */
+ @Deprecated
+ public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ final UnivariateSolver lineSearchSolver,
+ final Preconditioner preconditioner) {
+ this(updateFormula,
+ checker,
+ lineSearchSolver.getRelativeAccuracy(),
+ lineSearchSolver.getAbsoluteAccuracy(),
+ lineSearchSolver.getAbsoluteAccuracy(),
+ preconditioner);
+ }
+
+ /**
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link Formula#FLETCHER_REEVES} or
+ * {@link Formula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param preconditioner Preconditioner.
+ * @param relativeTolerance Relative threshold for line search.
+ * @param absoluteTolerance Absolute threshold for line search.
+ * @param initialBracketingRange Extent of the initial interval used to
+ * find an interval that brackets the optimum in order to perform the
+ * line search.
+ *
+ * @see LineSearch#LineSearch(MultivariateOptimizer,double,double,double)
+ * @since 3.3
+ */
+ public NonLinearConjugateGradientOptimizer(final Formula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ double relativeTolerance,
+ double absoluteTolerance,
+ double initialBracketingRange,
+ final Preconditioner preconditioner) {
+ super(checker);
+
+ this.updateFormula = updateFormula;
+ this.preconditioner = preconditioner;
+ line = new LineSearch(this,
+ relativeTolerance,
+ absoluteTolerance,
+ initialBracketingRange);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ public PointValuePair optimize(OptimizationData... optData)
+ throws TooManyEvaluationsException {
+ // Set up base class and perform computation.
+ return super.optimize(optData);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
+ final double[] point = getStartPoint();
+ final GoalType goal = getGoalType();
+ final int n = point.length;
+ double[] r = computeObjectiveGradient(point);
+ if (goal == GoalType.MINIMIZE) {
+ for (int i = 0; i < n; i++) {
+ r[i] = -r[i];
+ }
+ }
+
+ // Initial search direction.
+ double[] steepestDescent = preconditioner.precondition(point, r);
+ double[] searchDirection = steepestDescent.clone();
+
+ double delta = 0;
+ for (int i = 0; i < n; ++i) {
+ delta += r[i] * searchDirection[i];
+ }
+
+ PointValuePair current = null;
+ while (true) {
+ incrementIterationCount();
+
+ final double objective = computeObjectiveValue(point);
+ PointValuePair previous = current;
+ current = new PointValuePair(point, objective);
+ if (previous != null && checker.converged(getIterations(), previous, current)) {
+ // We have found an optimum.
+ return current;
+ }
+
+ final double step = line.search(point, searchDirection).getPoint();
+
+ // Validate new point.
+ for (int i = 0; i < point.length; ++i) {
+ point[i] += step * searchDirection[i];
+ }
+
+ r = computeObjectiveGradient(point);
+ if (goal == GoalType.MINIMIZE) {
+ for (int i = 0; i < n; ++i) {
+ r[i] = -r[i];
+ }
+ }
+
+ // Compute beta.
+ final double deltaOld = delta;
+ final double[] newSteepestDescent = preconditioner.precondition(point, r);
+ delta = 0;
+ for (int i = 0; i < n; ++i) {
+ delta += r[i] * newSteepestDescent[i];
+ }
+
+ final double beta;
+ switch (updateFormula) {
+ case FLETCHER_REEVES:
+ beta = delta / deltaOld;
+ break;
+ case POLAK_RIBIERE:
+ double deltaMid = 0;
+ for (int i = 0; i < r.length; ++i) {
+ deltaMid += r[i] * steepestDescent[i];
+ }
+ beta = (delta - deltaMid) / deltaOld;
+ break;
+ default:
+ // Should never happen.
+ throw new MathInternalError();
+ }
+ steepestDescent = newSteepestDescent;
+
+ // Compute conjugate search direction.
+ if (getIterations() % n == 0 ||
+ beta < 0) {
+ // Break conjugation: reset search direction.
+ searchDirection = steepestDescent.clone();
+ } else {
+ // Compute new conjugate search direction.
+ for (int i = 0; i < n; ++i) {
+ searchDirection[i] = steepestDescent[i] + beta * searchDirection[i];
+ }
+ }
+ }
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ @Override
+ protected void parseOptimizationData(OptimizationData... optData) {
+ // Allow base class to register its own data.
+ super.parseOptimizationData(optData);
+
+ checkParameters();
+ }
+
+ /** Default identity preconditioner. */
+ public static class IdentityPreconditioner implements Preconditioner {
+ /** {@inheritDoc} */
+ public double[] precondition(double[] variables, double[] r) {
+ return r.clone();
+ }
+ }
+
+ // Class is not used anymore (cf. MATH-1092). However, it might
+ // be interesting to create a class similar to "LineSearch", but
+ // that will take advantage that the model's gradient is available.
+// /**
+// * Internal class for line search.
+// * <p>
+// * The function represented by this class is the dot product of
+// * the objective function gradient and the search direction. Its
+// * value is zero when the gradient is orthogonal to the search
+// * direction, i.e. when the objective function value is a local
+// * extremum along the search direction.
+// * </p>
+// */
+// private class LineSearchFunction implements UnivariateFunction {
+// /** Current point. */
+// private final double[] currentPoint;
+// /** Search direction. */
+// private final double[] searchDirection;
+
+// /**
+// * @param point Current point.
+// * @param direction Search direction.
+// */
+// public LineSearchFunction(double[] point,
+// double[] direction) {
+// currentPoint = point.clone();
+// searchDirection = direction.clone();
+// }
+
+// /** {@inheritDoc} */
+// public double value(double x) {
+// // current point in the search direction
+// final double[] shiftedPoint = currentPoint.clone();
+// for (int i = 0; i < shiftedPoint.length; ++i) {
+// shiftedPoint[i] += x * searchDirection[i];
+// }
+
+// // gradient of the objective function
+// final double[] gradient = computeObjectiveGradient(shiftedPoint);
+
+// // dot product with the search direction
+// double dotProduct = 0;
+// for (int i = 0; i < gradient.length; ++i) {
+// dotProduct += gradient[i] * searchDirection[i];
+// }
+
+// return dotProduct;
+// }
+// }
+
+ /**
+ * @throws MathUnsupportedOperationException if bounds were passed to the
+ * {@link #optimize(OptimizationData[]) optimize} method.
+ */
+ private void checkParameters() {
+ if (getLowerBound() != null ||
+ getUpperBound() != null) {
+ throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/Preconditioner.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/Preconditioner.java
new file mode 100644
index 0000000..3c0f8fb
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/Preconditioner.java
@@ -0,0 +1,44 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optim.nonlinear.scalar.gradient;
+
+/**
+ * This interface represents a preconditioner for differentiable scalar
+ * objective function optimizers.
+ * @since 2.0
+ */
+public interface Preconditioner {
+ /**
+ * Precondition a search direction.
+ * <p>
+ * The returned preconditioned search direction must be computed fast or
+ * the algorithm performances will drop drastically. A classical approach
+ * is to compute only the diagonal elements of the hessian and to divide
+ * the raw search direction by these elements if they are all positive.
+ * If at least one of them is negative, it is safer to return a clone of
+ * the raw search direction as if the hessian was the identity matrix. The
+ * rationale for this simplified choice is that a negative diagonal element
+ * means the current point is far from the optimum and preconditioning will
+ * not be efficient anyway in this case.
+ * </p>
+ * @param point current point at which the search direction was computed
+ * @param r raw search direction (i.e. opposite of the gradient)
+ * @return approximation of H<sup>-1</sup>r where H is the objective function hessian
+ */
+ double[] precondition(double[] point, double[] r);
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/package-info.java
new file mode 100644
index 0000000..9dd9c5a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/gradient/package-info.java
@@ -0,0 +1,21 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/**
+ * This package provides optimization algorithms that require derivatives.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar.gradient;
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/AbstractSimplex.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/AbstractSimplex.java
new file mode 100644
index 0000000..e959787
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/AbstractSimplex.java
@@ -0,0 +1,345 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import java.util.Arrays;
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.MathIllegalArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.optim.OptimizationData;
+
+/**
+ * This class implements the simplex concept.
+ * It is intended to be used in conjunction with {@link SimplexOptimizer}.
+ * <br/>
+ * The initial configuration of the simplex is set by the constructors
+ * {@link #AbstractSimplex(double[])} or {@link #AbstractSimplex(double[][])}.
+ * The other {@link #AbstractSimplex(int) constructor} will set all steps
+ * to 1, thus building a default configuration from a unit hypercube.
+ * <br/>
+ * Users <em>must</em> call the {@link #build(double[]) build} method in order
+ * to create the data structure that will be acted on by the other methods of
+ * this class.
+ *
+ * @see SimplexOptimizer
+ * @since 3.0
+ */
+public abstract class AbstractSimplex implements OptimizationData {
+ /** Simplex. */
+ private PointValuePair[] simplex;
+ /** Start simplex configuration. */
+ private double[][] startConfiguration;
+ /** Simplex dimension (must be equal to {@code simplex.length - 1}). */
+ private final int dimension;
+
+ /**
+ * Build a unit hypercube simplex.
+ *
+ * @param n Dimension of the simplex.
+ */
+ protected AbstractSimplex(int n) {
+ this(n, 1d);
+ }
+
+ /**
+ * Build a hypercube simplex with the given side length.
+ *
+ * @param n Dimension of the simplex.
+ * @param sideLength Length of the sides of the hypercube.
+ */
+ protected AbstractSimplex(int n,
+ double sideLength) {
+ this(createHypercubeSteps(n, sideLength));
+ }
+
+ /**
+ * The start configuration for simplex is built from a box parallel to
+ * the canonical axes of the space. The simplex is the subset of vertices
+ * of a box parallel to the canonical axes. It is built as the path followed
+ * while traveling from one vertex of the box to the diagonally opposite
+ * vertex moving only along the box edges. The first vertex of the box will
+ * be located at the start point of the optimization.
+ * As an example, in dimension 3 a simplex has 4 vertices. Setting the
+ * steps to (1, 10, 2) and the start point to (1, 1, 1) would imply the
+ * start simplex would be: { (1, 1, 1), (2, 1, 1), (2, 11, 1), (2, 11, 3) }.
+ * The first vertex would be set to the start point at (1, 1, 1) and the
+ * last vertex would be set to the diagonally opposite vertex at (2, 11, 3).
+ *
+ * @param steps Steps along the canonical axes representing box edges. They
+ * may be negative but not zero.
+ * @throws NullArgumentException if {@code steps} is {@code null}.
+ * @throws ZeroException if one of the steps is zero.
+ */
+ protected AbstractSimplex(final double[] steps) {
+ if (steps == null) {
+ throw new NullArgumentException();
+ }
+ if (steps.length == 0) {
+ throw new ZeroException();
+ }
+ dimension = steps.length;
+
+ // Only the relative position of the n final vertices with respect
+ // to the first one are stored.
+ startConfiguration = new double[dimension][dimension];
+ for (int i = 0; i < dimension; i++) {
+ final double[] vertexI = startConfiguration[i];
+ for (int j = 0; j < i + 1; j++) {
+ if (steps[j] == 0) {
+ throw new ZeroException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX);
+ }
+ System.arraycopy(steps, 0, vertexI, 0, j + 1);
+ }
+ }
+ }
+
+ /**
+ * The real initial simplex will be set up by moving the reference
+ * simplex such that its first point is located at the start point of the
+ * optimization.
+ *
+ * @param referenceSimplex Reference simplex.
+ * @throws NotStrictlyPositiveException if the reference simplex does not
+ * contain at least one point.
+ * @throws DimensionMismatchException if there is a dimension mismatch
+ * in the reference simplex.
+ * @throws IllegalArgumentException if one of its vertices is duplicated.
+ */
+ protected AbstractSimplex(final double[][] referenceSimplex) {
+ if (referenceSimplex.length <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.SIMPLEX_NEED_ONE_POINT,
+ referenceSimplex.length);
+ }
+ dimension = referenceSimplex.length - 1;
+
+ // Only the relative position of the n final vertices with respect
+ // to the first one are stored.
+ startConfiguration = new double[dimension][dimension];
+ final double[] ref0 = referenceSimplex[0];
+
+ // Loop over vertices.
+ for (int i = 0; i < referenceSimplex.length; i++) {
+ final double[] refI = referenceSimplex[i];
+
+ // Safety checks.
+ if (refI.length != dimension) {
+ throw new DimensionMismatchException(refI.length, dimension);
+ }
+ for (int j = 0; j < i; j++) {
+ final double[] refJ = referenceSimplex[j];
+ boolean allEquals = true;
+ for (int k = 0; k < dimension; k++) {
+ if (refI[k] != refJ[k]) {
+ allEquals = false;
+ break;
+ }
+ }
+ if (allEquals) {
+ throw new MathIllegalArgumentException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX,
+ i, j);
+ }
+ }
+
+ // Store vertex i position relative to vertex 0 position.
+ if (i > 0) {
+ final double[] confI = startConfiguration[i - 1];
+ for (int k = 0; k < dimension; k++) {
+ confI[k] = refI[k] - ref0[k];
+ }
+ }
+ }
+ }
+
+ /**
+ * Get simplex dimension.
+ *
+ * @return the dimension of the simplex.
+ */
+ public int getDimension() {
+ return dimension;
+ }
+
+ /**
+ * Get simplex size.
+ * After calling the {@link #build(double[]) build} method, this method will
+ * will be equivalent to {@code getDimension() + 1}.
+ *
+ * @return the size of the simplex.
+ */
+ public int getSize() {
+ return simplex.length;
+ }
+
+ /**
+ * Compute the next simplex of the algorithm.
+ *
+ * @param evaluationFunction Evaluation function.
+ * @param comparator Comparator to use to sort simplex vertices from best
+ * to worst.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the algorithm fails to converge.
+ */
+ public abstract void iterate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator);
+
+ /**
+ * Build an initial simplex.
+ *
+ * @param startPoint First point of the simplex.
+ * @throws DimensionMismatchException if the start point does not match
+ * simplex dimension.
+ */
+ public void build(final double[] startPoint) {
+ if (dimension != startPoint.length) {
+ throw new DimensionMismatchException(dimension, startPoint.length);
+ }
+
+ // Set first vertex.
+ simplex = new PointValuePair[dimension + 1];
+ simplex[0] = new PointValuePair(startPoint, Double.NaN);
+
+ // Set remaining vertices.
+ for (int i = 0; i < dimension; i++) {
+ final double[] confI = startConfiguration[i];
+ final double[] vertexI = new double[dimension];
+ for (int k = 0; k < dimension; k++) {
+ vertexI[k] = startPoint[k] + confI[k];
+ }
+ simplex[i + 1] = new PointValuePair(vertexI, Double.NaN);
+ }
+ }
+
+ /**
+ * Evaluate all the non-evaluated points of the simplex.
+ *
+ * @param evaluationFunction Evaluation function.
+ * @param comparator Comparator to use to sort simplex vertices from best to worst.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ */
+ public void evaluate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator) {
+ // Evaluate the objective function at all non-evaluated simplex points.
+ for (int i = 0; i < simplex.length; i++) {
+ final PointValuePair vertex = simplex[i];
+ final double[] point = vertex.getPointRef();
+ if (Double.isNaN(vertex.getValue())) {
+ simplex[i] = new PointValuePair(point, evaluationFunction.value(point), false);
+ }
+ }
+
+ // Sort the simplex from best to worst.
+ Arrays.sort(simplex, comparator);
+ }
+
+ /**
+ * Replace the worst point of the simplex by a new point.
+ *
+ * @param pointValuePair Point to insert.
+ * @param comparator Comparator to use for sorting the simplex vertices
+ * from best to worst.
+ */
+ protected void replaceWorstPoint(PointValuePair pointValuePair,
+ final Comparator<PointValuePair> comparator) {
+ for (int i = 0; i < dimension; i++) {
+ if (comparator.compare(simplex[i], pointValuePair) > 0) {
+ PointValuePair tmp = simplex[i];
+ simplex[i] = pointValuePair;
+ pointValuePair = tmp;
+ }
+ }
+ simplex[dimension] = pointValuePair;
+ }
+
+ /**
+ * Get the points of the simplex.
+ *
+ * @return all the simplex points.
+ */
+ public PointValuePair[] getPoints() {
+ final PointValuePair[] copy = new PointValuePair[simplex.length];
+ System.arraycopy(simplex, 0, copy, 0, simplex.length);
+ return copy;
+ }
+
+ /**
+ * Get the simplex point stored at the requested {@code index}.
+ *
+ * @param index Location.
+ * @return the point at location {@code index}.
+ */
+ public PointValuePair getPoint(int index) {
+ if (index < 0 ||
+ index >= simplex.length) {
+ throw new OutOfRangeException(index, 0, simplex.length - 1);
+ }
+ return simplex[index];
+ }
+
+ /**
+ * Store a new point at location {@code index}.
+ * Note that no deep-copy of {@code point} is performed.
+ *
+ * @param index Location.
+ * @param point New value.
+ */
+ protected void setPoint(int index, PointValuePair point) {
+ if (index < 0 ||
+ index >= simplex.length) {
+ throw new OutOfRangeException(index, 0, simplex.length - 1);
+ }
+ simplex[index] = point;
+ }
+
+ /**
+ * Replace all points.
+ * Note that no deep-copy of {@code points} is performed.
+ *
+ * @param points New Points.
+ */
+ protected void setPoints(PointValuePair[] points) {
+ if (points.length != simplex.length) {
+ throw new DimensionMismatchException(points.length, simplex.length);
+ }
+ simplex = points;
+ }
+
+ /**
+ * Create steps for a unit hypercube.
+ *
+ * @param n Dimension of the hypercube.
+ * @param sideLength Length of the sides of the hypercube.
+ * @return the steps.
+ */
+ private static double[] createHypercubeSteps(int n,
+ double sideLength) {
+ final double[] steps = new double[n];
+ for (int i = 0; i < n; i++) {
+ steps[i] = sideLength;
+ }
+ return steps;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
new file mode 100644
index 0000000..e5bf39f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/BOBYQAOptimizer.java
@@ -0,0 +1,2475 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+// CHECKSTYLE: stop all
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.RealVector;
+import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Powell's BOBYQA algorithm. This implementation is translated and
+ * adapted from the Fortran version available
+ * <a href="http://plato.asu.edu/ftp/other_software/bobyqa.zip">here</a>.
+ * See <a href="http://www.optimization-online.org/DB_HTML/2010/05/2616.html">
+ * this paper</a> for an introduction.
+ * <br/>
+ * BOBYQA is particularly well suited for high dimensional problems
+ * where derivatives are not available. In most cases it outperforms the
+ * {@link PowellOptimizer} significantly. Stochastic algorithms like
+ * {@link CMAESOptimizer} succeed more often than BOBYQA, but are more
+ * expensive. BOBYQA could also be considered as a replacement of any
+ * derivative-based optimizer when the derivatives are approximated by
+ * finite differences.
+ *
+ * @since 3.0
+ */
+public class BOBYQAOptimizer
+ extends MultivariateOptimizer {
+ /** Minimum dimension of the problem: {@value} */
+ public static final int MINIMUM_PROBLEM_DIMENSION = 2;
+ /** Default value for {@link #initialTrustRegionRadius}: {@value} . */
+ public static final double DEFAULT_INITIAL_RADIUS = 10.0;
+ /** Default value for {@link #stoppingTrustRegionRadius}: {@value} . */
+ public static final double DEFAULT_STOPPING_RADIUS = 1E-8;
+ /** Constant 0. */
+ private static final double ZERO = 0d;
+ /** Constant 1. */
+ private static final double ONE = 1d;
+ /** Constant 2. */
+ private static final double TWO = 2d;
+ /** Constant 10. */
+ private static final double TEN = 10d;
+ /** Constant 16. */
+ private static final double SIXTEEN = 16d;
+ /** Constant 250. */
+ private static final double TWO_HUNDRED_FIFTY = 250d;
+ /** Constant -1. */
+ private static final double MINUS_ONE = -ONE;
+ /** Constant 1/2. */
+ private static final double HALF = ONE / 2;
+ /** Constant 1/4. */
+ private static final double ONE_OVER_FOUR = ONE / 4;
+ /** Constant 1/8. */
+ private static final double ONE_OVER_EIGHT = ONE / 8;
+ /** Constant 1/10. */
+ private static final double ONE_OVER_TEN = ONE / 10;
+ /** Constant 1/1000. */
+ private static final double ONE_OVER_A_THOUSAND = ONE / 1000;
+
+ /**
+ * numberOfInterpolationPoints XXX
+ */
+ private final int numberOfInterpolationPoints;
+ /**
+ * initialTrustRegionRadius XXX
+ */
+ private double initialTrustRegionRadius;
+ /**
+ * stoppingTrustRegionRadius XXX
+ */
+ private final double stoppingTrustRegionRadius;
+ /** Goal type (minimize or maximize). */
+ private boolean isMinimize;
+ /**
+ * Current best values for the variables to be optimized.
+ * The vector will be changed in-place to contain the values of the least
+ * calculated objective function values.
+ */
+ private ArrayRealVector currentBest;
+ /** Differences between the upper and lower bounds. */
+ private double[] boundDifference;
+ /**
+ * Index of the interpolation point at the trust region center.
+ */
+ private int trustRegionCenterInterpolationPointIndex;
+ /**
+ * Last <em>n</em> columns of matrix H (where <em>n</em> is the dimension
+ * of the problem).
+ * XXX "bmat" in the original code.
+ */
+ private Array2DRowRealMatrix bMatrix;
+ /**
+ * Factorization of the leading <em>npt</em> square submatrix of H, this
+ * factorization being Z Z<sup>T</sup>, which provides both the correct
+ * rank and positive semi-definiteness.
+ * XXX "zmat" in the original code.
+ */
+ private Array2DRowRealMatrix zMatrix;
+ /**
+ * Coordinates of the interpolation points relative to {@link #originShift}.
+ * XXX "xpt" in the original code.
+ */
+ private Array2DRowRealMatrix interpolationPoints;
+ /**
+ * Shift of origin that should reduce the contributions from rounding
+ * errors to values of the model and Lagrange functions.
+ * XXX "xbase" in the original code.
+ */
+ private ArrayRealVector originShift;
+ /**
+ * Values of the objective function at the interpolation points.
+ * XXX "fval" in the original code.
+ */
+ private ArrayRealVector fAtInterpolationPoints;
+ /**
+ * Displacement from {@link #originShift} of the trust region center.
+ * XXX "xopt" in the original code.
+ */
+ private ArrayRealVector trustRegionCenterOffset;
+ /**
+ * Gradient of the quadratic model at {@link #originShift} +
+ * {@link #trustRegionCenterOffset}.
+ * XXX "gopt" in the original code.
+ */
+ private ArrayRealVector gradientAtTrustRegionCenter;
+ /**
+ * Differences {@link #getLowerBound()} - {@link #originShift}.
+ * All the components of every {@link #trustRegionCenterOffset} are going
+ * to satisfy the bounds<br/>
+ * {@link #getLowerBound() lowerBound}<sub>i</sub> &le;
+ * {@link #trustRegionCenterOffset}<sub>i</sub>,<br/>
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is
+ * on a constraint boundary.
+ * XXX "sl" in the original code.
+ */
+ private ArrayRealVector lowerDifference;
+ /**
+ * Differences {@link #getUpperBound()} - {@link #originShift}
+ * All the components of every {@link #trustRegionCenterOffset} are going
+ * to satisfy the bounds<br/>
+ * {@link #trustRegionCenterOffset}<sub>i</sub> &le;
+ * {@link #getUpperBound() upperBound}<sub>i</sub>,<br/>
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is
+ * on a constraint boundary.
+ * XXX "su" in the original code.
+ */
+ private ArrayRealVector upperDifference;
+ /**
+ * Parameters of the implicit second derivatives of the quadratic model.
+ * XXX "pq" in the original code.
+ */
+ private ArrayRealVector modelSecondDerivativesParameters;
+ /**
+ * Point chosen by function {@link #trsbox(double,ArrayRealVector,
+ * ArrayRealVector, ArrayRealVector,ArrayRealVector,ArrayRealVector) trsbox}
+ * or {@link #altmov(int,double) altmov}.
+ * Usually {@link #originShift} + {@link #newPoint} is the vector of
+ * variables for the next evaluation of the objective function.
+ * It also satisfies the constraints indicated in {@link #lowerDifference}
+ * and {@link #upperDifference}.
+ * XXX "xnew" in the original code.
+ */
+ private ArrayRealVector newPoint;
+ /**
+ * Alternative to {@link #newPoint}, chosen by
+ * {@link #altmov(int,double) altmov}.
+ * It may replace {@link #newPoint} in order to increase the denominator
+ * in the {@link #update(double, double, int) updating procedure}.
+ * XXX "xalt" in the original code.
+ */
+ private ArrayRealVector alternativeNewPoint;
+ /**
+ * Trial step from {@link #trustRegionCenterOffset} which is usually
+ * {@link #newPoint} - {@link #trustRegionCenterOffset}.
+ * XXX "d__" in the original code.
+ */
+ private ArrayRealVector trialStepPoint;
+ /**
+ * Values of the Lagrange functions at a new point.
+ * XXX "vlag" in the original code.
+ */
+ private ArrayRealVector lagrangeValuesAtNewPoint;
+ /**
+ * Explicit second derivatives of the quadratic model.
+ * XXX "hq" in the original code.
+ */
+ private ArrayRealVector modelSecondDerivativesValues;
+
+ /**
+ * @param numberOfInterpolationPoints Number of interpolation conditions.
+ * For a problem of dimension {@code n}, its value must be in the interval
+ * {@code [n+2, (n+1)(n+2)/2]}.
+ * Choices that exceed {@code 2n+1} are not recommended.
+ */
+ public BOBYQAOptimizer(int numberOfInterpolationPoints) {
+ this(numberOfInterpolationPoints,
+ DEFAULT_INITIAL_RADIUS,
+ DEFAULT_STOPPING_RADIUS);
+ }
+
+ /**
+ * @param numberOfInterpolationPoints Number of interpolation conditions.
+ * For a problem of dimension {@code n}, its value must be in the interval
+ * {@code [n+2, (n+1)(n+2)/2]}.
+ * Choices that exceed {@code 2n+1} are not recommended.
+ * @param initialTrustRegionRadius Initial trust region radius.
+ * @param stoppingTrustRegionRadius Stopping trust region radius.
+ */
+ public BOBYQAOptimizer(int numberOfInterpolationPoints,
+ double initialTrustRegionRadius,
+ double stoppingTrustRegionRadius) {
+ super(null); // No custom convergence criterion.
+ this.numberOfInterpolationPoints = numberOfInterpolationPoints;
+ this.initialTrustRegionRadius = initialTrustRegionRadius;
+ this.stoppingTrustRegionRadius = stoppingTrustRegionRadius;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ final double[] lowerBound = getLowerBound();
+ final double[] upperBound = getUpperBound();
+
+ // Validity checks.
+ setup(lowerBound, upperBound);
+
+ isMinimize = (getGoalType() == GoalType.MINIMIZE);
+ currentBest = new ArrayRealVector(getStartPoint());
+
+ final double value = bobyqa(lowerBound, upperBound);
+
+ return new PointValuePair(currentBest.getDataRef(),
+ isMinimize ? value : -value);
+ }
+
+ /**
+ * This subroutine seeks the least value of a function of many variables,
+ * by applying a trust region method that forms quadratic models by
+ * interpolation. There is usually some freedom in the interpolation
+ * conditions, which is taken up by minimizing the Frobenius norm of
+ * the change to the second derivative of the model, beginning with the
+ * zero matrix. The values of the variables are constrained by upper and
+ * lower bounds. The arguments of the subroutine are as follows.
+ *
+ * N must be set to the number of variables and must be at least two.
+ * NPT is the number of interpolation conditions. Its value must be in
+ * the interval [N+2,(N+1)(N+2)/2]. Choices that exceed 2*N+1 are not
+ * recommended.
+ * Initial values of the variables must be set in X(1),X(2),...,X(N). They
+ * will be changed to the values that give the least calculated F.
+ * For I=1,2,...,N, XL(I) and XU(I) must provide the lower and upper
+ * bounds, respectively, on X(I). The construction of quadratic models
+ * requires XL(I) to be strictly less than XU(I) for each I. Further,
+ * the contribution to a model from changes to the I-th variable is
+ * damaged severely by rounding errors if XU(I)-XL(I) is too small.
+ * RHOBEG and RHOEND must be set to the initial and final values of a trust
+ * region radius, so both must be positive with RHOEND no greater than
+ * RHOBEG. Typically, RHOBEG should be about one tenth of the greatest
+ * expected change to a variable, while RHOEND should indicate the
+ * accuracy that is required in the final values of the variables. An
+ * error return occurs if any of the differences XU(I)-XL(I), I=1,...,N,
+ * is less than 2*RHOBEG.
+ * MAXFUN must be set to an upper bound on the number of calls of CALFUN.
+ * The array W will be used for working space. Its length must be at least
+ * (NPT+5)*(NPT+N)+3*N*(N+5)/2.
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ * @return the value of the objective at the optimum.
+ */
+ private double bobyqa(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+
+ // Return if there is insufficient space between the bounds. Modify the
+ // initial X if necessary in order to avoid conflicts between the bounds
+ // and the construction of the first quadratic model. The lower and upper
+ // bounds on moves from the updated X are set now, in the ISL and ISU
+ // partitions of W, in order to provide useful and exact information about
+ // components of X that become within distance RHOBEG from their bounds.
+
+ for (int j = 0; j < n; j++) {
+ final double boundDiff = boundDifference[j];
+ lowerDifference.setEntry(j, lowerBound[j] - currentBest.getEntry(j));
+ upperDifference.setEntry(j, upperBound[j] - currentBest.getEntry(j));
+ if (lowerDifference.getEntry(j) >= -initialTrustRegionRadius) {
+ if (lowerDifference.getEntry(j) >= ZERO) {
+ currentBest.setEntry(j, lowerBound[j]);
+ lowerDifference.setEntry(j, ZERO);
+ upperDifference.setEntry(j, boundDiff);
+ } else {
+ currentBest.setEntry(j, lowerBound[j] + initialTrustRegionRadius);
+ lowerDifference.setEntry(j, -initialTrustRegionRadius);
+ // Computing MAX
+ final double deltaOne = upperBound[j] - currentBest.getEntry(j);
+ upperDifference.setEntry(j, FastMath.max(deltaOne, initialTrustRegionRadius));
+ }
+ } else if (upperDifference.getEntry(j) <= initialTrustRegionRadius) {
+ if (upperDifference.getEntry(j) <= ZERO) {
+ currentBest.setEntry(j, upperBound[j]);
+ lowerDifference.setEntry(j, -boundDiff);
+ upperDifference.setEntry(j, ZERO);
+ } else {
+ currentBest.setEntry(j, upperBound[j] - initialTrustRegionRadius);
+ // Computing MIN
+ final double deltaOne = lowerBound[j] - currentBest.getEntry(j);
+ final double deltaTwo = -initialTrustRegionRadius;
+ lowerDifference.setEntry(j, FastMath.min(deltaOne, deltaTwo));
+ upperDifference.setEntry(j, initialTrustRegionRadius);
+ }
+ }
+ }
+
+ // Make the call of BOBYQB.
+
+ return bobyqb(lowerBound, upperBound);
+ } // bobyqa
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arguments N, NPT, X, XL, XU, RHOBEG, RHOEND, IPRINT and MAXFUN
+ * are identical to the corresponding arguments in SUBROUTINE BOBYQA.
+ * XBASE holds a shift of origin that should reduce the contributions
+ * from rounding errors to values of the model and Lagrange functions.
+ * XPT is a two-dimensional array that holds the coordinates of the
+ * interpolation points relative to XBASE.
+ * FVAL holds the values of F at the interpolation points.
+ * XOPT is set to the displacement from XBASE of the trust region centre.
+ * GOPT holds the gradient of the quadratic model at XBASE+XOPT.
+ * HQ holds the explicit second derivatives of the quadratic model.
+ * PQ contains the parameters of the implicit second derivatives of the
+ * quadratic model.
+ * BMAT holds the last N columns of H.
+ * ZMAT holds the factorization of the leading NPT by NPT submatrix of H,
+ * this factorization being ZMAT times ZMAT^T, which provides both the
+ * correct rank and positive semi-definiteness.
+ * NDIM is the first dimension of BMAT and has the value NPT+N.
+ * SL and SU hold the differences XL-XBASE and XU-XBASE, respectively.
+ * All the components of every XOPT are going to satisfy the bounds
+ * SL(I) .LEQ. XOPT(I) .LEQ. SU(I), with appropriate equalities when
+ * XOPT is on a constraint boundary.
+ * XNEW is chosen by SUBROUTINE TRSBOX or ALTMOV. Usually XBASE+XNEW is the
+ * vector of variables for the next call of CALFUN. XNEW also satisfies
+ * the SL and SU constraints in the way that has just been mentioned.
+ * XALT is an alternative to XNEW, chosen by ALTMOV, that may replace XNEW
+ * in order to increase the denominator in the updating of UPDATE.
+ * D is reserved for a trial step from XOPT, which is usually XNEW-XOPT.
+ * VLAG contains the values of the Lagrange functions at a new point X.
+ * They are part of a product that requires VLAG to be of length NDIM.
+ * W is a one-dimensional array that is used for working space. Its length
+ * must be at least 3*NDIM = 3*(NPT+N).
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ * @return the value of the objective at the optimum.
+ */
+ private double bobyqb(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int np = n + 1;
+ final int nptm = npt - np;
+ final int nh = n * np / 2;
+
+ final ArrayRealVector work1 = new ArrayRealVector(n);
+ final ArrayRealVector work2 = new ArrayRealVector(npt);
+ final ArrayRealVector work3 = new ArrayRealVector(npt);
+
+ double cauchy = Double.NaN;
+ double alpha = Double.NaN;
+ double dsq = Double.NaN;
+ double crvmin = Double.NaN;
+
+ // Set some constants.
+ // Parameter adjustments
+
+ // Function Body
+
+ // The call of PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
+ // BMAT and ZMAT for the first iteration, with the corresponding values of
+ // of NF and KOPT, which are the number of calls of CALFUN so far and the
+ // index of the interpolation point at the trust region centre. Then the
+ // initial XOPT is set too. The branch to label 720 occurs if MAXFUN is
+ // less than NPT. GOPT will be updated if KOPT is different from KBASE.
+
+ trustRegionCenterInterpolationPointIndex = 0;
+
+ prelim(lowerBound, upperBound);
+ double xoptsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ trustRegionCenterOffset.setEntry(i, interpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex, i));
+ // Computing 2nd power
+ final double deltaOne = trustRegionCenterOffset.getEntry(i);
+ xoptsq += deltaOne * deltaOne;
+ }
+ double fsave = fAtInterpolationPoints.getEntry(0);
+ final int kbase = 0;
+
+ // Complete the settings that are required for the iterative procedure.
+
+ int ntrits = 0;
+ int itest = 0;
+ int knew = 0;
+ int nfsav = getEvaluations();
+ double rho = initialTrustRegionRadius;
+ double delta = rho;
+ double diffa = ZERO;
+ double diffb = ZERO;
+ double diffc = ZERO;
+ double f = ZERO;
+ double beta = ZERO;
+ double adelt = ZERO;
+ double denom = ZERO;
+ double ratio = ZERO;
+ double dnorm = ZERO;
+ double scaden = ZERO;
+ double biglsq = ZERO;
+ double distsq = ZERO;
+
+ // Update GOPT if necessary before the first iteration and after each
+ // call of RESCUE that makes a call of CALFUN.
+
+ int state = 20;
+ for(;;) {
+ switch (state) {
+ case 20: {
+ printState(20); // XXX
+ if (trustRegionCenterInterpolationPointIndex != kbase) {
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(i));
+ }
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(j));
+ ih++;
+ }
+ }
+ if (getEvaluations() > npt) {
+ for (int k = 0; k < npt; k++) {
+ double temp = ZERO;
+ for (int j = 0; j < n; j++) {
+ temp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ temp *= modelSecondDerivativesParameters.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ // throw new PathIsExploredException(); // XXX
+ }
+ }
+
+ // Generate the next point in the trust region that provides a small value
+ // of the quadratic model subject to the constraints on the variables.
+ // The int NTRITS is set to the number "trust region" iterations that
+ // have occurred since the last "alternative" iteration. If the length
+ // of XNEW-XOPT is less than HALF*RHO, however, then there is a branch to
+ // label 650 or 680 with NTRITS=-1, instead of calculating F at XNEW.
+
+ }
+ case 60: {
+ printState(60); // XXX
+ final ArrayRealVector gnew = new ArrayRealVector(n);
+ final ArrayRealVector xbdi = new ArrayRealVector(n);
+ final ArrayRealVector s = new ArrayRealVector(n);
+ final ArrayRealVector hs = new ArrayRealVector(n);
+ final ArrayRealVector hred = new ArrayRealVector(n);
+
+ final double[] dsqCrvmin = trsbox(delta, gnew, xbdi, s,
+ hs, hred);
+ dsq = dsqCrvmin[0];
+ crvmin = dsqCrvmin[1];
+
+ // Computing MIN
+ double deltaOne = delta;
+ double deltaTwo = FastMath.sqrt(dsq);
+ dnorm = FastMath.min(deltaOne, deltaTwo);
+ if (dnorm < HALF * rho) {
+ ntrits = -1;
+ // Computing 2nd power
+ deltaOne = TEN * rho;
+ distsq = deltaOne * deltaOne;
+ if (getEvaluations() <= nfsav + 2) {
+ state = 650; break;
+ }
+
+ // The following choice between labels 650 and 680 depends on whether or
+ // not our work with the current RHO seems to be complete. Either RHO is
+ // decreased or termination occurs if the errors in the quadratic model at
+ // the last three interpolation points compare favourably with predictions
+ // of likely improvements to the model within distance HALF*RHO of XOPT.
+
+ // Computing MAX
+ deltaOne = FastMath.max(diffa, diffb);
+ final double errbig = FastMath.max(deltaOne, diffc);
+ final double frhosq = rho * ONE_OVER_EIGHT * rho;
+ if (crvmin > ZERO &&
+ errbig > frhosq * crvmin) {
+ state = 650; break;
+ }
+ final double bdtol = errbig / rho;
+ for (int j = 0; j < n; j++) {
+ double bdtest = bdtol;
+ if (newPoint.getEntry(j) == lowerDifference.getEntry(j)) {
+ bdtest = work1.getEntry(j);
+ }
+ if (newPoint.getEntry(j) == upperDifference.getEntry(j)) {
+ bdtest = -work1.getEntry(j);
+ }
+ if (bdtest < bdtol) {
+ double curv = modelSecondDerivativesValues.getEntry((j + j * j) / 2);
+ for (int k = 0; k < npt; k++) {
+ // Computing 2nd power
+ final double d1 = interpolationPoints.getEntry(k, j);
+ curv += modelSecondDerivativesParameters.getEntry(k) * (d1 * d1);
+ }
+ bdtest += HALF * curv * rho;
+ if (bdtest < bdtol) {
+ state = 650; break;
+ }
+ // throw new PathIsExploredException(); // XXX
+ }
+ }
+ state = 680; break;
+ }
+ ++ntrits;
+
+ // Severe cancellation is likely to occur if XOPT is too far from XBASE.
+ // If the following test holds, then XBASE is shifted so that XOPT becomes
+ // zero. The appropriate changes are made to BMAT and to the second
+ // derivatives of the current model, beginning with the changes to BMAT
+ // that do not depend on ZMAT. VLAG is used temporarily for working space.
+
+ }
+ case 90: {
+ printState(90); // XXX
+ if (dsq <= xoptsq * ONE_OVER_A_THOUSAND) {
+ final double fracsq = xoptsq * ONE_OVER_FOUR;
+ double sumpq = ZERO;
+ // final RealVector sumVector
+ // = new ArrayRealVector(npt, -HALF * xoptsq).add(interpolationPoints.operate(trustRegionCenter));
+ for (int k = 0; k < npt; k++) {
+ sumpq += modelSecondDerivativesParameters.getEntry(k);
+ double sum = -HALF * xoptsq;
+ for (int i = 0; i < n; i++) {
+ sum += interpolationPoints.getEntry(k, i) * trustRegionCenterOffset.getEntry(i);
+ }
+ // sum = sumVector.getEntry(k); // XXX "testAckley" and "testDiffPow" fail.
+ work2.setEntry(k, sum);
+ final double temp = fracsq - HALF * sum;
+ for (int i = 0; i < n; i++) {
+ work1.setEntry(i, bMatrix.getEntry(k, i));
+ lagrangeValuesAtNewPoint.setEntry(i, sum * interpolationPoints.getEntry(k, i) + temp * trustRegionCenterOffset.getEntry(i));
+ final int ip = npt + i;
+ for (int j = 0; j <= i; j++) {
+ bMatrix.setEntry(ip, j,
+ bMatrix.getEntry(ip, j)
+ + work1.getEntry(i) * lagrangeValuesAtNewPoint.getEntry(j)
+ + lagrangeValuesAtNewPoint.getEntry(i) * work1.getEntry(j));
+ }
+ }
+ }
+
+ // Then the revisions of BMAT that depend on ZMAT are calculated.
+
+ for (int m = 0; m < nptm; m++) {
+ double sumz = ZERO;
+ double sumw = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sumz += zMatrix.getEntry(k, m);
+ lagrangeValuesAtNewPoint.setEntry(k, work2.getEntry(k) * zMatrix.getEntry(k, m));
+ sumw += lagrangeValuesAtNewPoint.getEntry(k);
+ }
+ for (int j = 0; j < n; j++) {
+ double sum = (fracsq * sumz - HALF * sumw) * trustRegionCenterOffset.getEntry(j);
+ for (int k = 0; k < npt; k++) {
+ sum += lagrangeValuesAtNewPoint.getEntry(k) * interpolationPoints.getEntry(k, j);
+ }
+ work1.setEntry(j, sum);
+ for (int k = 0; k < npt; k++) {
+ bMatrix.setEntry(k, j,
+ bMatrix.getEntry(k, j)
+ + sum * zMatrix.getEntry(k, m));
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ final int ip = i + npt;
+ final double temp = work1.getEntry(i);
+ for (int j = 0; j <= i; j++) {
+ bMatrix.setEntry(ip, j,
+ bMatrix.getEntry(ip, j)
+ + temp * work1.getEntry(j));
+ }
+ }
+ }
+
+ // The following instructions complete the shift, including the changes
+ // to the second derivative parameters of the quadratic model.
+
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ work1.setEntry(j, -HALF * sumpq * trustRegionCenterOffset.getEntry(j));
+ for (int k = 0; k < npt; k++) {
+ work1.setEntry(j, work1.getEntry(j) + modelSecondDerivativesParameters.getEntry(k) * interpolationPoints.getEntry(k, j));
+ interpolationPoints.setEntry(k, j, interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j));
+ }
+ for (int i = 0; i <= j; i++) {
+ modelSecondDerivativesValues.setEntry(ih,
+ modelSecondDerivativesValues.getEntry(ih)
+ + work1.getEntry(i) * trustRegionCenterOffset.getEntry(j)
+ + trustRegionCenterOffset.getEntry(i) * work1.getEntry(j));
+ bMatrix.setEntry(npt + i, j, bMatrix.getEntry(npt + j, i));
+ ih++;
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ originShift.setEntry(i, originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i));
+ newPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ lowerDifference.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ upperDifference.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ trustRegionCenterOffset.setEntry(i, ZERO);
+ }
+ xoptsq = ZERO;
+ }
+ if (ntrits == 0) {
+ state = 210; break;
+ }
+ state = 230; break;
+
+ // XBASE is also moved to XOPT by a call of RESCUE. This calculation is
+ // more expensive than the previous shift, because new matrices BMAT and
+ // ZMAT are generated from scratch, which may include the replacement of
+ // interpolation points whose positions seem to be causing near linear
+ // dependence in the interpolation conditions. Therefore RESCUE is called
+ // only if rounding errors have reduced by at least a factor of two the
+ // denominator of the formula for updating the H matrix. It provides a
+ // useful safeguard, but is not invoked in most applications of BOBYQA.
+
+ }
+ case 210: {
+ printState(210); // XXX
+ // Pick two alternative vectors of variables, relative to XBASE, that
+ // are suitable as new positions of the KNEW-th interpolation point.
+ // Firstly, XNEW is set to the point on a line through XOPT and another
+ // interpolation point that minimizes the predicted value of the next
+ // denominator, subject to ||XNEW - XOPT|| .LEQ. ADELT and to the SL
+ // and SU bounds. Secondly, XALT is set to the best feasible point on
+ // a constrained version of the Cauchy step of the KNEW-th Lagrange
+ // function, the corresponding value of the square of this function
+ // being returned in CAUCHY. The choice between these alternatives is
+ // going to be made when the denominator is calculated.
+
+ final double[] alphaCauchy = altmov(knew, adelt);
+ alpha = alphaCauchy[0];
+ cauchy = alphaCauchy[1];
+
+ for (int i = 0; i < n; i++) {
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ }
+
+ // Calculate VLAG and BETA for the current choice of D. The scalar
+ // product of D with XPT(K,.) is going to be held in W(NPT+K) for
+ // use when VQUAD is calculated.
+
+ }
+ case 230: {
+ printState(230); // XXX
+ for (int k = 0; k < npt; k++) {
+ double suma = ZERO;
+ double sumb = ZERO;
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ suma += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
+ sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ sum += bMatrix.getEntry(k, j) * trialStepPoint.getEntry(j);
+ }
+ work3.setEntry(k, suma * (HALF * suma + sumb));
+ lagrangeValuesAtNewPoint.setEntry(k, sum);
+ work2.setEntry(k, suma);
+ }
+ beta = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += zMatrix.getEntry(k, m) * work3.getEntry(k);
+ }
+ beta -= sum * sum;
+ for (int k = 0; k < npt; k++) {
+ lagrangeValuesAtNewPoint.setEntry(k, lagrangeValuesAtNewPoint.getEntry(k) + sum * zMatrix.getEntry(k, m));
+ }
+ }
+ dsq = ZERO;
+ double bsum = ZERO;
+ double dx = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(j);
+ dsq += d1 * d1;
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += work3.getEntry(k) * bMatrix.getEntry(k, j);
+ }
+ bsum += sum * trialStepPoint.getEntry(j);
+ final int jp = npt + j;
+ for (int i = 0; i < n; i++) {
+ sum += bMatrix.getEntry(jp, i) * trialStepPoint.getEntry(i);
+ }
+ lagrangeValuesAtNewPoint.setEntry(jp, sum);
+ bsum += sum * trialStepPoint.getEntry(j);
+ dx += trialStepPoint.getEntry(j) * trustRegionCenterOffset.getEntry(j);
+ }
+
+ beta = dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) + beta - bsum; // Original
+ // beta += dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) - bsum; // XXX "testAckley" and "testDiffPow" fail.
+ // beta = dx * dx + dsq * (xoptsq + 2 * dx + HALF * dsq) + beta - bsum; // XXX "testDiffPow" fails.
+
+ lagrangeValuesAtNewPoint.setEntry(trustRegionCenterInterpolationPointIndex,
+ lagrangeValuesAtNewPoint.getEntry(trustRegionCenterInterpolationPointIndex) + ONE);
+
+ // If NTRITS is zero, the denominator may be increased by replacing
+ // the step D of ALTMOV by a Cauchy step. Then RESCUE may be called if
+ // rounding errors have damaged the chosen denominator.
+
+ if (ntrits == 0) {
+ // Computing 2nd power
+ final double d1 = lagrangeValuesAtNewPoint.getEntry(knew);
+ denom = d1 * d1 + alpha * beta;
+ if (denom < cauchy && cauchy > ZERO) {
+ for (int i = 0; i < n; i++) {
+ newPoint.setEntry(i, alternativeNewPoint.getEntry(i));
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ }
+ cauchy = ZERO; // XXX Useful statement?
+ state = 230; break;
+ }
+ // Alternatively, if NTRITS is positive, then set KNEW to the index of
+ // the next interpolation point to be deleted to make room for a trust
+ // region step. Again RESCUE may be called if rounding errors have damaged_
+ // the chosen denominator, which is the reason for attempting to select
+ // KNEW before calculating the next value of the objective function.
+
+ } else {
+ final double delsq = delta * delta;
+ scaden = ZERO;
+ biglsq = ZERO;
+ knew = 0;
+ for (int k = 0; k < npt; k++) {
+ if (k == trustRegionCenterInterpolationPointIndex) {
+ continue;
+ }
+ double hdiag = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ // Computing 2nd power
+ final double d1 = zMatrix.getEntry(k, m);
+ hdiag += d1 * d1;
+ }
+ // Computing 2nd power
+ final double d2 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double den = beta * hdiag + d2 * d2;
+ distsq = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d3 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
+ distsq += d3 * d3;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d4 = distsq / delsq;
+ final double temp = FastMath.max(ONE, d4 * d4);
+ if (temp * den > scaden) {
+ scaden = temp * den;
+ knew = k;
+ denom = den;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d5 = lagrangeValuesAtNewPoint.getEntry(k);
+ biglsq = FastMath.max(biglsq, temp * (d5 * d5));
+ }
+ }
+
+ // Put the variables for the next calculation of the objective function
+ // in XNEW, with any adjustments for the bounds.
+
+ // Calculate the value of the objective function at XBASE+XNEW, unless
+ // the limit on the number of calculations of F has been reached.
+
+ }
+ case 360: {
+ printState(360); // XXX
+ for (int i = 0; i < n; i++) {
+ // Computing MIN
+ // Computing MAX
+ final double d3 = lowerBound[i];
+ final double d4 = originShift.getEntry(i) + newPoint.getEntry(i);
+ final double d1 = FastMath.max(d3, d4);
+ final double d2 = upperBound[i];
+ currentBest.setEntry(i, FastMath.min(d1, d2));
+ if (newPoint.getEntry(i) == lowerDifference.getEntry(i)) {
+ currentBest.setEntry(i, lowerBound[i]);
+ }
+ if (newPoint.getEntry(i) == upperDifference.getEntry(i)) {
+ currentBest.setEntry(i, upperBound[i]);
+ }
+ }
+
+ f = computeObjectiveValue(currentBest.toArray());
+
+ if (!isMinimize) {
+ f = -f;
+ }
+ if (ntrits == -1) {
+ fsave = f;
+ state = 720; break;
+ }
+
+ // Use the quadratic model to predict the change in F due to the step D,
+ // and set DIFF to the error of this prediction.
+
+ final double fopt = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
+ double vquad = ZERO;
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ vquad += trialStepPoint.getEntry(j) * gradientAtTrustRegionCenter.getEntry(j);
+ for (int i = 0; i <= j; i++) {
+ double temp = trialStepPoint.getEntry(i) * trialStepPoint.getEntry(j);
+ if (i == j) {
+ temp *= HALF;
+ }
+ vquad += modelSecondDerivativesValues.getEntry(ih) * temp;
+ ih++;
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ // Computing 2nd power
+ final double d1 = work2.getEntry(k);
+ final double d2 = d1 * d1; // "d1" must be squared first to prevent test failures.
+ vquad += HALF * modelSecondDerivativesParameters.getEntry(k) * d2;
+ }
+ final double diff = f - fopt - vquad;
+ diffc = diffb;
+ diffb = diffa;
+ diffa = FastMath.abs(diff);
+ if (dnorm > rho) {
+ nfsav = getEvaluations();
+ }
+
+ // Pick the next value of DELTA after a trust region step.
+
+ if (ntrits > 0) {
+ if (vquad >= ZERO) {
+ throw new MathIllegalStateException(LocalizedFormats.TRUST_REGION_STEP_FAILED, vquad);
+ }
+ ratio = (f - fopt) / vquad;
+ final double hDelta = HALF * delta;
+ if (ratio <= ONE_OVER_TEN) {
+ // Computing MIN
+ delta = FastMath.min(hDelta, dnorm);
+ } else if (ratio <= .7) {
+ // Computing MAX
+ delta = FastMath.max(hDelta, dnorm);
+ } else {
+ // Computing MAX
+ delta = FastMath.max(hDelta, 2 * dnorm);
+ }
+ if (delta <= rho * 1.5) {
+ delta = rho;
+ }
+
+ // Recalculate KNEW and DENOM if the new F is less than FOPT.
+
+ if (f < fopt) {
+ final int ksav = knew;
+ final double densav = denom;
+ final double delsq = delta * delta;
+ scaden = ZERO;
+ biglsq = ZERO;
+ knew = 0;
+ for (int k = 0; k < npt; k++) {
+ double hdiag = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ // Computing 2nd power
+ final double d1 = zMatrix.getEntry(k, m);
+ hdiag += d1 * d1;
+ }
+ // Computing 2nd power
+ final double d1 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double den = beta * hdiag + d1 * d1;
+ distsq = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d2 = interpolationPoints.getEntry(k, j) - newPoint.getEntry(j);
+ distsq += d2 * d2;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d3 = distsq / delsq;
+ final double temp = FastMath.max(ONE, d3 * d3);
+ if (temp * den > scaden) {
+ scaden = temp * den;
+ knew = k;
+ denom = den;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d4 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double d5 = temp * (d4 * d4);
+ biglsq = FastMath.max(biglsq, d5);
+ }
+ if (scaden <= HALF * biglsq) {
+ knew = ksav;
+ denom = densav;
+ }
+ }
+ }
+
+ // Update BMAT and ZMAT, so that the KNEW-th interpolation point can be
+ // moved. Also update the second derivative terms of the model.
+
+ update(beta, denom, knew);
+
+ ih = 0;
+ final double pqold = modelSecondDerivativesParameters.getEntry(knew);
+ modelSecondDerivativesParameters.setEntry(knew, ZERO);
+ for (int i = 0; i < n; i++) {
+ final double temp = pqold * interpolationPoints.getEntry(knew, i);
+ for (int j = 0; j <= i; j++) {
+ modelSecondDerivativesValues.setEntry(ih, modelSecondDerivativesValues.getEntry(ih) + temp * interpolationPoints.getEntry(knew, j));
+ ih++;
+ }
+ }
+ for (int m = 0; m < nptm; m++) {
+ final double temp = diff * zMatrix.getEntry(knew, m);
+ for (int k = 0; k < npt; k++) {
+ modelSecondDerivativesParameters.setEntry(k, modelSecondDerivativesParameters.getEntry(k) + temp * zMatrix.getEntry(k, m));
+ }
+ }
+
+ // Include the new interpolation point, and make the changes to GOPT at
+ // the old XOPT that are caused by the updating of the quadratic model.
+
+ fAtInterpolationPoints.setEntry(knew, f);
+ for (int i = 0; i < n; i++) {
+ interpolationPoints.setEntry(knew, i, newPoint.getEntry(i));
+ work1.setEntry(i, bMatrix.getEntry(knew, i));
+ }
+ for (int k = 0; k < npt; k++) {
+ double suma = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ suma += zMatrix.getEntry(knew, m) * zMatrix.getEntry(k, m);
+ }
+ double sumb = ZERO;
+ for (int j = 0; j < n; j++) {
+ sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ final double temp = suma * sumb;
+ for (int i = 0; i < n; i++) {
+ work1.setEntry(i, work1.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + diff * work1.getEntry(i));
+ }
+
+ // Update XOPT, GOPT and KOPT if the new calculated F is less than FOPT.
+
+ if (f < fopt) {
+ trustRegionCenterInterpolationPointIndex = knew;
+ xoptsq = ZERO;
+ ih = 0;
+ for (int j = 0; j < n; j++) {
+ trustRegionCenterOffset.setEntry(j, newPoint.getEntry(j));
+ // Computing 2nd power
+ final double d1 = trustRegionCenterOffset.getEntry(j);
+ xoptsq += d1 * d1;
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(i));
+ }
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(j));
+ ih++;
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ double temp = ZERO;
+ for (int j = 0; j < n; j++) {
+ temp += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
+ }
+ temp *= modelSecondDerivativesParameters.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ }
+
+ // Calculate the parameters of the least Frobenius norm interpolant to
+ // the current data, the gradient of this interpolant at XOPT being put
+ // into VLAG(NPT+I), I=1,2,...,N.
+
+ if (ntrits > 0) {
+ for (int k = 0; k < npt; k++) {
+ lagrangeValuesAtNewPoint.setEntry(k, fAtInterpolationPoints.getEntry(k) - fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex));
+ work3.setEntry(k, ZERO);
+ }
+ for (int j = 0; j < nptm; j++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += zMatrix.getEntry(k, j) * lagrangeValuesAtNewPoint.getEntry(k);
+ }
+ for (int k = 0; k < npt; k++) {
+ work3.setEntry(k, work3.getEntry(k) + sum * zMatrix.getEntry(k, j));
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ sum += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ work2.setEntry(k, work3.getEntry(k));
+ work3.setEntry(k, sum * work3.getEntry(k));
+ }
+ double gqsq = ZERO;
+ double gisq = ZERO;
+ for (int i = 0; i < n; i++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += bMatrix.getEntry(k, i) *
+ lagrangeValuesAtNewPoint.getEntry(k) + interpolationPoints.getEntry(k, i) * work3.getEntry(k);
+ }
+ if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
+ // Computing MIN
+ // Computing 2nd power
+ final double d1 = FastMath.min(ZERO, gradientAtTrustRegionCenter.getEntry(i));
+ gqsq += d1 * d1;
+ // Computing 2nd power
+ final double d2 = FastMath.min(ZERO, sum);
+ gisq += d2 * d2;
+ } else if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
+ // Computing MAX
+ // Computing 2nd power
+ final double d1 = FastMath.max(ZERO, gradientAtTrustRegionCenter.getEntry(i));
+ gqsq += d1 * d1;
+ // Computing 2nd power
+ final double d2 = FastMath.max(ZERO, sum);
+ gisq += d2 * d2;
+ } else {
+ // Computing 2nd power
+ final double d1 = gradientAtTrustRegionCenter.getEntry(i);
+ gqsq += d1 * d1;
+ gisq += sum * sum;
+ }
+ lagrangeValuesAtNewPoint.setEntry(npt + i, sum);
+ }
+
+ // Test whether to replace the new quadratic model by the least Frobenius
+ // norm interpolant, making the replacement if the test is satisfied.
+
+ ++itest;
+ if (gqsq < TEN * gisq) {
+ itest = 0;
+ }
+ if (itest >= 3) {
+ for (int i = 0, max = FastMath.max(npt, nh); i < max; i++) {
+ if (i < n) {
+ gradientAtTrustRegionCenter.setEntry(i, lagrangeValuesAtNewPoint.getEntry(npt + i));
+ }
+ if (i < npt) {
+ modelSecondDerivativesParameters.setEntry(i, work2.getEntry(i));
+ }
+ if (i < nh) {
+ modelSecondDerivativesValues.setEntry(i, ZERO);
+ }
+ itest = 0;
+ }
+ }
+ }
+
+ // If a trust region step has provided a sufficient decrease in F, then
+ // branch for another trust region calculation. The case NTRITS=0 occurs
+ // when the new interpolation point was reached by an alternative step.
+
+ if (ntrits == 0) {
+ state = 60; break;
+ }
+ if (f <= fopt + ONE_OVER_TEN * vquad) {
+ state = 60; break;
+ }
+
+ // Alternatively, find out if the interpolation points are close enough
+ // to the best point so far.
+
+ // Computing MAX
+ // Computing 2nd power
+ final double d1 = TWO * delta;
+ // Computing 2nd power
+ final double d2 = TEN * rho;
+ distsq = FastMath.max(d1 * d1, d2 * d2);
+ }
+ case 650: {
+ printState(650); // XXX
+ knew = -1;
+ for (int k = 0; k < npt; k++) {
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d1 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
+ sum += d1 * d1;
+ }
+ if (sum > distsq) {
+ knew = k;
+ distsq = sum;
+ }
+ }
+
+ // If KNEW is positive, then ALTMOV finds alternative new positions for
+ // the KNEW-th interpolation point within distance ADELT of XOPT. It is
+ // reached via label 90. Otherwise, there is a branch to label 60 for
+ // another trust region iteration, unless the calculations with the
+ // current RHO are complete.
+
+ if (knew >= 0) {
+ final double dist = FastMath.sqrt(distsq);
+ if (ntrits == -1) {
+ // Computing MIN
+ delta = FastMath.min(ONE_OVER_TEN * delta, HALF * dist);
+ if (delta <= rho * 1.5) {
+ delta = rho;
+ }
+ }
+ ntrits = 0;
+ // Computing MAX
+ // Computing MIN
+ final double d1 = FastMath.min(ONE_OVER_TEN * dist, delta);
+ adelt = FastMath.max(d1, rho);
+ dsq = adelt * adelt;
+ state = 90; break;
+ }
+ if (ntrits == -1) {
+ state = 680; break;
+ }
+ if (ratio > ZERO) {
+ state = 60; break;
+ }
+ if (FastMath.max(delta, dnorm) > rho) {
+ state = 60; break;
+ }
+
+ // The calculations with the current value of RHO are complete. Pick the
+ // next values of RHO and DELTA.
+ }
+ case 680: {
+ printState(680); // XXX
+ if (rho > stoppingTrustRegionRadius) {
+ delta = HALF * rho;
+ ratio = rho / stoppingTrustRegionRadius;
+ if (ratio <= SIXTEEN) {
+ rho = stoppingTrustRegionRadius;
+ } else if (ratio <= TWO_HUNDRED_FIFTY) {
+ rho = FastMath.sqrt(ratio) * stoppingTrustRegionRadius;
+ } else {
+ rho *= ONE_OVER_TEN;
+ }
+ delta = FastMath.max(delta, rho);
+ ntrits = 0;
+ nfsav = getEvaluations();
+ state = 60; break;
+ }
+
+ // Return from the calculation, after another Newton-Raphson step, if
+ // it is too short to have been tried before.
+
+ if (ntrits == -1) {
+ state = 360; break;
+ }
+ }
+ case 720: {
+ printState(720); // XXX
+ if (fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex) <= fsave) {
+ for (int i = 0; i < n; i++) {
+ // Computing MIN
+ // Computing MAX
+ final double d3 = lowerBound[i];
+ final double d4 = originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i);
+ final double d1 = FastMath.max(d3, d4);
+ final double d2 = upperBound[i];
+ currentBest.setEntry(i, FastMath.min(d1, d2));
+ if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
+ currentBest.setEntry(i, lowerBound[i]);
+ }
+ if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
+ currentBest.setEntry(i, upperBound[i]);
+ }
+ }
+ f = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
+ }
+ return f;
+ }
+ default: {
+ throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "bobyqb");
+ }}}
+ } // bobyqb
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arguments N, NPT, XPT, XOPT, BMAT, ZMAT, NDIM, SL and SU all have
+ * the same meanings as the corresponding arguments of BOBYQB.
+ * KOPT is the index of the optimal interpolation point.
+ * KNEW is the index of the interpolation point that is going to be moved.
+ * ADELT is the current trust region bound.
+ * XNEW will be set to a suitable new position for the interpolation point
+ * XPT(KNEW,.). Specifically, it satisfies the SL, SU and trust region
+ * bounds and it should provide a large denominator in the next call of
+ * UPDATE. The step XNEW-XOPT from XOPT is restricted to moves along the
+ * straight lines through XOPT and another interpolation point.
+ * XALT also provides a large value of the modulus of the KNEW-th Lagrange
+ * function subject to the constraints that have been mentioned, its main
+ * difference from XNEW being that XALT-XOPT is a constrained version of
+ * the Cauchy step within the trust region. An exception is that XALT is
+ * not calculated if all components of GLAG (see below) are zero.
+ * ALPHA will be set to the KNEW-th diagonal element of the H matrix.
+ * CAUCHY will be set to the square of the KNEW-th Lagrange function at
+ * the step XALT-XOPT from XOPT for the vector XALT that is returned,
+ * except that CAUCHY is set to zero if XALT is not calculated.
+ * GLAG is a working space vector of length N for the gradient of the
+ * KNEW-th Lagrange function at XOPT.
+ * HCOL is a working space vector of length NPT for the second derivative
+ * coefficients of the KNEW-th Lagrange function.
+ * W is a working space vector of length 2N that is going to hold the
+ * constrained Cauchy step from XOPT of the Lagrange function, followed
+ * by the downhill version of XALT when the uphill step is calculated.
+ *
+ * Set the first NPT components of W to the leading elements of the
+ * KNEW-th column of the H matrix.
+ * @param knew
+ * @param adelt
+ */
+ private double[] altmov(
+ int knew,
+ double adelt
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+
+ final ArrayRealVector glag = new ArrayRealVector(n);
+ final ArrayRealVector hcol = new ArrayRealVector(npt);
+
+ final ArrayRealVector work1 = new ArrayRealVector(n);
+ final ArrayRealVector work2 = new ArrayRealVector(n);
+
+ for (int k = 0; k < npt; k++) {
+ hcol.setEntry(k, ZERO);
+ }
+ for (int j = 0, max = npt - n - 1; j < max; j++) {
+ final double tmp = zMatrix.getEntry(knew, j);
+ for (int k = 0; k < npt; k++) {
+ hcol.setEntry(k, hcol.getEntry(k) + tmp * zMatrix.getEntry(k, j));
+ }
+ }
+ final double alpha = hcol.getEntry(knew);
+ final double ha = HALF * alpha;
+
+ // Calculate the gradient of the KNEW-th Lagrange function at XOPT.
+
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, bMatrix.getEntry(knew, i));
+ }
+ for (int k = 0; k < npt; k++) {
+ double tmp = ZERO;
+ for (int j = 0; j < n; j++) {
+ tmp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ tmp *= hcol.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, glag.getEntry(i) + tmp * interpolationPoints.getEntry(k, i));
+ }
+ }
+
+ // Search for a large denominator along the straight lines through XOPT
+ // and another interpolation point. SLBD and SUBD will be lower and upper
+ // bounds on the step along each of these lines in turn. PREDSQ will be
+ // set to the square of the predicted denominator for each line. PRESAV
+ // will be set to the largest admissible value of PREDSQ that occurs.
+
+ double presav = ZERO;
+ double step = Double.NaN;
+ int ksav = 0;
+ int ibdsav = 0;
+ double stpsav = 0;
+ for (int k = 0; k < npt; k++) {
+ if (k == trustRegionCenterInterpolationPointIndex) {
+ continue;
+ }
+ double dderiv = ZERO;
+ double distsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
+ dderiv += glag.getEntry(i) * tmp;
+ distsq += tmp * tmp;
+ }
+ double subd = adelt / FastMath.sqrt(distsq);
+ double slbd = -subd;
+ int ilbd = 0;
+ int iubd = 0;
+ final double sumin = FastMath.min(ONE, subd);
+
+ // Revise SLBD and SUBD if necessary because of the bounds in SL and SU.
+
+ for (int i = 0; i < n; i++) {
+ final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
+ if (tmp > ZERO) {
+ if (slbd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ slbd = (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
+ ilbd = -i - 1;
+ }
+ if (subd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ // Computing MAX
+ subd = FastMath.max(sumin,
+ (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
+ iubd = i + 1;
+ }
+ } else if (tmp < ZERO) {
+ if (slbd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ slbd = (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
+ ilbd = i + 1;
+ }
+ if (subd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ // Computing MAX
+ subd = FastMath.max(sumin,
+ (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
+ iubd = -i - 1;
+ }
+ }
+ }
+
+ // Seek a large modulus of the KNEW-th Lagrange function when the index
+ // of the other interpolation point on the line through XOPT is KNEW.
+
+ step = slbd;
+ int isbd = ilbd;
+ double vlag = Double.NaN;
+ if (k == knew) {
+ final double diff = dderiv - ONE;
+ vlag = slbd * (dderiv - slbd * diff);
+ final double d1 = subd * (dderiv - subd * diff);
+ if (FastMath.abs(d1) > FastMath.abs(vlag)) {
+ step = subd;
+ vlag = d1;
+ isbd = iubd;
+ }
+ final double d2 = HALF * dderiv;
+ final double d3 = d2 - diff * slbd;
+ final double d4 = d2 - diff * subd;
+ if (d3 * d4 < ZERO) {
+ final double d5 = d2 * d2 / diff;
+ if (FastMath.abs(d5) > FastMath.abs(vlag)) {
+ step = d2 / diff;
+ vlag = d5;
+ isbd = 0;
+ }
+ }
+
+ // Search along each of the other lines through XOPT and another point.
+
+ } else {
+ vlag = slbd * (ONE - slbd);
+ final double tmp = subd * (ONE - subd);
+ if (FastMath.abs(tmp) > FastMath.abs(vlag)) {
+ step = subd;
+ vlag = tmp;
+ isbd = iubd;
+ }
+ if (subd > HALF && FastMath.abs(vlag) < ONE_OVER_FOUR) {
+ step = HALF;
+ vlag = ONE_OVER_FOUR;
+ isbd = 0;
+ }
+ vlag *= dderiv;
+ }
+
+ // Calculate PREDSQ for the current line search and maintain PRESAV.
+
+ final double tmp = step * (ONE - step) * distsq;
+ final double predsq = vlag * vlag * (vlag * vlag + ha * tmp * tmp);
+ if (predsq > presav) {
+ presav = predsq;
+ ksav = k;
+ stpsav = step;
+ ibdsav = isbd;
+ }
+ }
+
+ // Construct XNEW in a way that satisfies the bound constraints exactly.
+
+ for (int i = 0; i < n; i++) {
+ final double tmp = trustRegionCenterOffset.getEntry(i) + stpsav * (interpolationPoints.getEntry(ksav, i) - trustRegionCenterOffset.getEntry(i));
+ newPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i),
+ FastMath.min(upperDifference.getEntry(i), tmp)));
+ }
+ if (ibdsav < 0) {
+ newPoint.setEntry(-ibdsav - 1, lowerDifference.getEntry(-ibdsav - 1));
+ }
+ if (ibdsav > 0) {
+ newPoint.setEntry(ibdsav - 1, upperDifference.getEntry(ibdsav - 1));
+ }
+
+ // Prepare for the iterative method that assembles the constrained Cauchy
+ // step in W. The sum of squares of the fixed components of W is formed in
+ // WFIXSQ, and the free components of W are set to BIGSTP.
+
+ final double bigstp = adelt + adelt;
+ int iflag = 0;
+ double cauchy = Double.NaN;
+ double csave = ZERO;
+ while (true) {
+ double wfixsq = ZERO;
+ double ggfree = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double glagValue = glag.getEntry(i);
+ work1.setEntry(i, ZERO);
+ if (FastMath.min(trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i), glagValue) > ZERO ||
+ FastMath.max(trustRegionCenterOffset.getEntry(i) - upperDifference.getEntry(i), glagValue) < ZERO) {
+ work1.setEntry(i, bigstp);
+ // Computing 2nd power
+ ggfree += glagValue * glagValue;
+ }
+ }
+ if (ggfree == ZERO) {
+ return new double[] { alpha, ZERO };
+ }
+
+ // Investigate whether more components of W can be fixed.
+ final double tmp1 = adelt * adelt - wfixsq;
+ if (tmp1 > ZERO) {
+ step = FastMath.sqrt(tmp1 / ggfree);
+ ggfree = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (work1.getEntry(i) == bigstp) {
+ final double tmp2 = trustRegionCenterOffset.getEntry(i) - step * glag.getEntry(i);
+ if (tmp2 <= lowerDifference.getEntry(i)) {
+ work1.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = work1.getEntry(i);
+ wfixsq += d1 * d1;
+ } else if (tmp2 >= upperDifference.getEntry(i)) {
+ work1.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = work1.getEntry(i);
+ wfixsq += d1 * d1;
+ } else {
+ // Computing 2nd power
+ final double d1 = glag.getEntry(i);
+ ggfree += d1 * d1;
+ }
+ }
+ }
+ }
+
+ // Set the remaining free components of W and all components of XALT,
+ // except that W may be scaled later.
+
+ double gw = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double glagValue = glag.getEntry(i);
+ if (work1.getEntry(i) == bigstp) {
+ work1.setEntry(i, -step * glagValue);
+ final double min = FastMath.min(upperDifference.getEntry(i),
+ trustRegionCenterOffset.getEntry(i) + work1.getEntry(i));
+ alternativeNewPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i), min));
+ } else if (work1.getEntry(i) == ZERO) {
+ alternativeNewPoint.setEntry(i, trustRegionCenterOffset.getEntry(i));
+ } else if (glagValue > ZERO) {
+ alternativeNewPoint.setEntry(i, lowerDifference.getEntry(i));
+ } else {
+ alternativeNewPoint.setEntry(i, upperDifference.getEntry(i));
+ }
+ gw += glagValue * work1.getEntry(i);
+ }
+
+ // Set CURV to the curvature of the KNEW-th Lagrange function along W.
+ // Scale W by a factor less than one if that can reduce the modulus of
+ // the Lagrange function at XOPT+W. Set CAUCHY to the final value of
+ // the square of this function.
+
+ double curv = ZERO;
+ for (int k = 0; k < npt; k++) {
+ double tmp = ZERO;
+ for (int j = 0; j < n; j++) {
+ tmp += interpolationPoints.getEntry(k, j) * work1.getEntry(j);
+ }
+ curv += hcol.getEntry(k) * tmp * tmp;
+ }
+ if (iflag == 1) {
+ curv = -curv;
+ }
+ if (curv > -gw &&
+ curv < -gw * (ONE + FastMath.sqrt(TWO))) {
+ final double scale = -gw / curv;
+ for (int i = 0; i < n; i++) {
+ final double tmp = trustRegionCenterOffset.getEntry(i) + scale * work1.getEntry(i);
+ alternativeNewPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i),
+ FastMath.min(upperDifference.getEntry(i), tmp)));
+ }
+ // Computing 2nd power
+ final double d1 = HALF * gw * scale;
+ cauchy = d1 * d1;
+ } else {
+ // Computing 2nd power
+ final double d1 = gw + HALF * curv;
+ cauchy = d1 * d1;
+ }
+
+ // If IFLAG is zero, then XALT is calculated as before after reversing
+ // the sign of GLAG. Thus two XALT vectors become available. The one that
+ // is chosen is the one that gives the larger value of CAUCHY.
+
+ if (iflag == 0) {
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, -glag.getEntry(i));
+ work2.setEntry(i, alternativeNewPoint.getEntry(i));
+ }
+ csave = cauchy;
+ iflag = 1;
+ } else {
+ break;
+ }
+ }
+ if (csave > cauchy) {
+ for (int i = 0; i < n; i++) {
+ alternativeNewPoint.setEntry(i, work2.getEntry(i));
+ }
+ cauchy = csave;
+ }
+
+ return new double[] { alpha, cauchy };
+ } // altmov
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
+ * BMAT and ZMAT for the first iteration, and it maintains the values of
+ * NF and KOPT. The vector X is also changed by PRELIM.
+ *
+ * The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the
+ * same as the corresponding arguments in SUBROUTINE BOBYQA.
+ * The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU
+ * are the same as the corresponding arguments in BOBYQB, the elements
+ * of SL and SU being set in BOBYQA.
+ * GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but
+ * it is set by PRELIM to the gradient of the quadratic model at XBASE.
+ * If XOPT is nonzero, BOBYQB will change it to its usual value later.
+ * NF is maintaned as the number of calls of CALFUN so far.
+ * KOPT will be such that the least calculated value of F so far is at
+ * the point XPT(KOPT,.)+XBASE in the space of the variables.
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ */
+ private void prelim(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int ndim = bMatrix.getRowDimension();
+
+ final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius;
+ final double recip = 1d / rhosq;
+ final int np = n + 1;
+
+ // Set XBASE to the initial vector of variables, and set the initial
+ // elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
+
+ for (int j = 0; j < n; j++) {
+ originShift.setEntry(j, currentBest.getEntry(j));
+ for (int k = 0; k < npt; k++) {
+ interpolationPoints.setEntry(k, j, ZERO);
+ }
+ for (int i = 0; i < ndim; i++) {
+ bMatrix.setEntry(i, j, ZERO);
+ }
+ }
+ for (int i = 0, max = n * np / 2; i < max; i++) {
+ modelSecondDerivativesValues.setEntry(i, ZERO);
+ }
+ for (int k = 0; k < npt; k++) {
+ modelSecondDerivativesParameters.setEntry(k, ZERO);
+ for (int j = 0, max = npt - np; j < max; j++) {
+ zMatrix.setEntry(k, j, ZERO);
+ }
+ }
+
+ // Begin the initialization procedure. NF becomes one more than the number
+ // of function values so far. The coordinates of the displacement of the
+ // next initial interpolation point from XBASE are set in XPT(NF+1,.).
+
+ int ipt = 0;
+ int jpt = 0;
+ double fbeg = Double.NaN;
+ do {
+ final int nfm = getEvaluations();
+ final int nfx = nfm - n;
+ final int nfmm = nfm - 1;
+ final int nfxm = nfx - 1;
+ double stepa = 0;
+ double stepb = 0;
+ if (nfm <= 2 * n) {
+ if (nfm >= 1 &&
+ nfm <= n) {
+ stepa = initialTrustRegionRadius;
+ if (upperDifference.getEntry(nfmm) == ZERO) {
+ stepa = -stepa;
+ // throw new PathIsExploredException(); // XXX
+ }
+ interpolationPoints.setEntry(nfm, nfmm, stepa);
+ } else if (nfm > n) {
+ stepa = interpolationPoints.getEntry(nfx, nfxm);
+ stepb = -initialTrustRegionRadius;
+ if (lowerDifference.getEntry(nfxm) == ZERO) {
+ stepb = FastMath.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm));
+ // throw new PathIsExploredException(); // XXX
+ }
+ if (upperDifference.getEntry(nfxm) == ZERO) {
+ stepb = FastMath.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm));
+ // throw new PathIsExploredException(); // XXX
+ }
+ interpolationPoints.setEntry(nfm, nfxm, stepb);
+ }
+ } else {
+ final int tmp1 = (nfm - np) / n;
+ jpt = nfm - tmp1 * n - n;
+ ipt = jpt + tmp1;
+ if (ipt > n) {
+ final int tmp2 = jpt;
+ jpt = ipt - n;
+ ipt = tmp2;
+// throw new PathIsExploredException(); // XXX
+ }
+ final int iptMinus1 = ipt - 1;
+ final int jptMinus1 = jpt - 1;
+ interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1));
+ interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1));
+ }
+
+ // Calculate the next value of F. The least function value so far and
+ // its index are required.
+
+ for (int j = 0; j < n; j++) {
+ currentBest.setEntry(j, FastMath.min(FastMath.max(lowerBound[j],
+ originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)),
+ upperBound[j]));
+ if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) {
+ currentBest.setEntry(j, lowerBound[j]);
+ }
+ if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) {
+ currentBest.setEntry(j, upperBound[j]);
+ }
+ }
+
+ final double objectiveValue = computeObjectiveValue(currentBest.toArray());
+ final double f = isMinimize ? objectiveValue : -objectiveValue;
+ final int numEval = getEvaluations(); // nfm + 1
+ fAtInterpolationPoints.setEntry(nfm, f);
+
+ if (numEval == 1) {
+ fbeg = f;
+ trustRegionCenterInterpolationPointIndex = 0;
+ } else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) {
+ trustRegionCenterInterpolationPointIndex = nfm;
+ }
+
+ // Set the nonzero initial elements of BMAT and the quadratic model in the
+ // cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions
+ // of the NF-th and (NF-N)-th interpolation points may be switched, in
+ // order that the function value at the first of them contributes to the
+ // off-diagonal second derivative terms of the initial quadratic model.
+
+ if (numEval <= 2 * n + 1) {
+ if (numEval >= 2 &&
+ numEval <= n + 1) {
+ gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa);
+ if (npt < numEval + n) {
+ final double oneOverStepA = ONE / stepa;
+ bMatrix.setEntry(0, nfmm, -oneOverStepA);
+ bMatrix.setEntry(nfm, nfmm, oneOverStepA);
+ bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq);
+ // throw new PathIsExploredException(); // XXX
+ }
+ } else if (numEval >= n + 2) {
+ final int ih = nfx * (nfx + 1) / 2 - 1;
+ final double tmp = (f - fbeg) / stepb;
+ final double diff = stepb - stepa;
+ modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff);
+ gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff);
+ if (stepa * stepb < ZERO && f < fAtInterpolationPoints.getEntry(nfm - n)) {
+ fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n));
+ fAtInterpolationPoints.setEntry(nfm - n, f);
+ if (trustRegionCenterInterpolationPointIndex == nfm) {
+ trustRegionCenterInterpolationPointIndex = nfm - n;
+ }
+ interpolationPoints.setEntry(nfm - n, nfxm, stepb);
+ interpolationPoints.setEntry(nfm, nfxm, stepa);
+ }
+ bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb));
+ bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm));
+ bMatrix.setEntry(nfm - n, nfxm,
+ -bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm));
+ zMatrix.setEntry(0, nfxm, FastMath.sqrt(TWO) / (stepa * stepb));
+ zMatrix.setEntry(nfm, nfxm, FastMath.sqrt(HALF) / rhosq);
+ // zMatrix.setEntry(nfm, nfxm, FastMath.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail.
+ zMatrix.setEntry(nfm - n, nfxm,
+ -zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm));
+ }
+
+ // Set the off-diagonal second derivatives of the Lagrange functions and
+ // the initial quadratic model.
+
+ } else {
+ zMatrix.setEntry(0, nfxm, recip);
+ zMatrix.setEntry(nfm, nfxm, recip);
+ zMatrix.setEntry(ipt, nfxm, -recip);
+ zMatrix.setEntry(jpt, nfxm, -recip);
+
+ final int ih = ipt * (ipt - 1) / 2 + jpt - 1;
+ final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1);
+ modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp);
+// throw new PathIsExploredException(); // XXX
+ }
+ } while (getEvaluations() < npt);
+ } // prelim
+
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * A version of the truncated conjugate gradient is applied. If a line
+ * search is restricted by a constraint, then the procedure is restarted,
+ * the values of the variables that are at their bounds being fixed. If
+ * the trust region boundary is reached, then further changes may be made
+ * to D, each one being in the two dimensional space that is spanned
+ * by the current D and the gradient of Q at XOPT+D, staying on the trust
+ * region boundary. Termination occurs when the reduction in Q seems to
+ * be close to the greatest reduction that can be achieved.
+ * The arguments N, NPT, XPT, XOPT, GOPT, HQ, PQ, SL and SU have the same
+ * meanings as the corresponding arguments of BOBYQB.
+ * DELTA is the trust region radius for the present calculation, which
+ * seeks a small value of the quadratic model within distance DELTA of
+ * XOPT subject to the bounds on the variables.
+ * XNEW will be set to a new vector of variables that is approximately
+ * the one that minimizes the quadratic model within the trust region
+ * subject to the SL and SU constraints on the variables. It satisfies
+ * as equations the bounds that become active during the calculation.
+ * D is the calculated trial step from XOPT, generated iteratively from an
+ * initial value of zero. Thus XNEW is XOPT+D after the final iteration.
+ * GNEW holds the gradient of the quadratic model at XOPT+D. It is updated
+ * when D is updated.
+ * xbdi.get( is a working space vector. For I=1,2,...,N, the element xbdi.get((I) is
+ * set to -1.0, 0.0, or 1.0, the value being nonzero if and only if the
+ * I-th variable has become fixed at a bound, the bound being SL(I) or
+ * SU(I) in the case xbdi.get((I)=-1.0 or xbdi.get((I)=1.0, respectively. This
+ * information is accumulated during the construction of XNEW.
+ * The arrays S, HS and HRED are also used for working space. They hold the
+ * current search direction, and the changes in the gradient of Q along S
+ * and the reduced D, respectively, where the reduced D is the same as D,
+ * except that the components of the fixed variables are zero.
+ * DSQ will be set to the square of the length of XNEW-XOPT.
+ * CRVMIN is set to zero if D reaches the trust region boundary. Otherwise
+ * it is set to the least curvature of H that occurs in the conjugate
+ * gradient searches that are not restricted by any constraints. The
+ * value CRVMIN=-1.0D0 is set, however, if all of these searches are
+ * constrained.
+ * @param delta
+ * @param gnew
+ * @param xbdi
+ * @param s
+ * @param hs
+ * @param hred
+ */
+ private double[] trsbox(
+ double delta,
+ ArrayRealVector gnew,
+ ArrayRealVector xbdi,
+ ArrayRealVector s,
+ ArrayRealVector hs,
+ ArrayRealVector hred
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+
+ double dsq = Double.NaN;
+ double crvmin = Double.NaN;
+
+ // Local variables
+ double ds;
+ int iu;
+ double dhd, dhs, cth, shs, sth, ssq, beta=0, sdec, blen;
+ int iact = -1;
+ int nact = 0;
+ double angt = 0, qred;
+ int isav;
+ double temp = 0, xsav = 0, xsum = 0, angbd = 0, dredg = 0, sredg = 0;
+ int iterc;
+ double resid = 0, delsq = 0, ggsav = 0, tempa = 0, tempb = 0,
+ redmax = 0, dredsq = 0, redsav = 0, gredsq = 0, rednew = 0;
+ int itcsav = 0;
+ double rdprev = 0, rdnext = 0, stplen = 0, stepsq = 0;
+ int itermax = 0;
+
+ // Set some constants.
+
+ // Function Body
+
+ // The sign of GOPT(I) gives the sign of the change to the I-th variable
+ // that will reduce Q from its value at XOPT. Thus xbdi.get((I) shows whether
+ // or not to fix the I-th variable at one of its bounds initially, with
+ // NACT being set to the number of fixed variables. D and GNEW are also
+ // set for the first iteration. DELSQ is the upper bound on the sum of
+ // squares of the free variables. QRED is the reduction in Q so far.
+
+ iterc = 0;
+ nact = 0;
+ for (int i = 0; i < n; i++) {
+ xbdi.setEntry(i, ZERO);
+ if (trustRegionCenterOffset.getEntry(i) <= lowerDifference.getEntry(i)) {
+ if (gradientAtTrustRegionCenter.getEntry(i) >= ZERO) {
+ xbdi.setEntry(i, MINUS_ONE);
+ }
+ } else if (trustRegionCenterOffset.getEntry(i) >= upperDifference.getEntry(i) &&
+ gradientAtTrustRegionCenter.getEntry(i) <= ZERO) {
+ xbdi.setEntry(i, ONE);
+ }
+ if (xbdi.getEntry(i) != ZERO) {
+ ++nact;
+ }
+ trialStepPoint.setEntry(i, ZERO);
+ gnew.setEntry(i, gradientAtTrustRegionCenter.getEntry(i));
+ }
+ delsq = delta * delta;
+ qred = ZERO;
+ crvmin = MINUS_ONE;
+
+ // Set the next search direction of the conjugate gradient method. It is
+ // the steepest descent direction initially and when the iterations are
+ // restarted because a variable has just been fixed by a bound, and of
+ // course the components of the fixed variables are zero. ITERMAX is an
+ // upper bound on the indices of the conjugate gradient iterations.
+
+ int state = 20;
+ for(;;) {
+ switch (state) {
+ case 20: {
+ printState(20); // XXX
+ beta = ZERO;
+ }
+ case 30: {
+ printState(30); // XXX
+ stepsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) != ZERO) {
+ s.setEntry(i, ZERO);
+ } else if (beta == ZERO) {
+ s.setEntry(i, -gnew.getEntry(i));
+ } else {
+ s.setEntry(i, beta * s.getEntry(i) - gnew.getEntry(i));
+ }
+ // Computing 2nd power
+ final double d1 = s.getEntry(i);
+ stepsq += d1 * d1;
+ }
+ if (stepsq == ZERO) {
+ state = 190; break;
+ }
+ if (beta == ZERO) {
+ gredsq = stepsq;
+ itermax = iterc + n - nact;
+ }
+ if (gredsq * delsq <= qred * 1e-4 * qred) {
+ state = 190; break;
+ }
+
+ // Multiply the search direction by the second derivative matrix of Q and
+ // calculate some scalars for the choice of steplength. Then set BLEN to
+ // the length of the the step to the trust region boundary and STPLEN to
+ // the steplength, ignoring the simple bounds.
+
+ state = 210; break;
+ }
+ case 50: {
+ printState(50); // XXX
+ resid = delsq;
+ ds = ZERO;
+ shs = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(i);
+ resid -= d1 * d1;
+ ds += s.getEntry(i) * trialStepPoint.getEntry(i);
+ shs += s.getEntry(i) * hs.getEntry(i);
+ }
+ }
+ if (resid <= ZERO) {
+ state = 90; break;
+ }
+ temp = FastMath.sqrt(stepsq * resid + ds * ds);
+ if (ds < ZERO) {
+ blen = (temp - ds) / stepsq;
+ } else {
+ blen = resid / (temp + ds);
+ }
+ stplen = blen;
+ if (shs > ZERO) {
+ // Computing MIN
+ stplen = FastMath.min(blen, gredsq / shs);
+ }
+
+ // Reduce STPLEN if necessary in order to preserve the simple bounds,
+ // letting IACT be the index of the new constrained variable.
+
+ iact = -1;
+ for (int i = 0; i < n; i++) {
+ if (s.getEntry(i) != ZERO) {
+ xsum = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i);
+ if (s.getEntry(i) > ZERO) {
+ temp = (upperDifference.getEntry(i) - xsum) / s.getEntry(i);
+ } else {
+ temp = (lowerDifference.getEntry(i) - xsum) / s.getEntry(i);
+ }
+ if (temp < stplen) {
+ stplen = temp;
+ iact = i;
+ }
+ }
+ }
+
+ // Update CRVMIN, GNEW and D. Set SDEC to the decrease that occurs in Q.
+
+ sdec = ZERO;
+ if (stplen > ZERO) {
+ ++iterc;
+ temp = shs / stepsq;
+ if (iact == -1 && temp > ZERO) {
+ crvmin = FastMath.min(crvmin,temp);
+ if (crvmin == MINUS_ONE) {
+ crvmin = temp;
+ }
+ }
+ ggsav = gredsq;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ gnew.setEntry(i, gnew.getEntry(i) + stplen * hs.getEntry(i));
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ final double d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ }
+ trialStepPoint.setEntry(i, trialStepPoint.getEntry(i) + stplen * s.getEntry(i));
+ }
+ // Computing MAX
+ final double d1 = stplen * (ggsav - HALF * stplen * shs);
+ sdec = FastMath.max(d1, ZERO);
+ qred += sdec;
+ }
+
+ // Restart the conjugate gradient method if it has hit a new bound.
+
+ if (iact >= 0) {
+ ++nact;
+ xbdi.setEntry(iact, ONE);
+ if (s.getEntry(iact) < ZERO) {
+ xbdi.setEntry(iact, MINUS_ONE);
+ }
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(iact);
+ delsq -= d1 * d1;
+ if (delsq <= ZERO) {
+ state = 190; break;
+ }
+ state = 20; break;
+ }
+
+ // If STPLEN is less than BLEN, then either apply another conjugate
+ // gradient iteration or RETURN.
+
+ if (stplen < blen) {
+ if (iterc == itermax) {
+ state = 190; break;
+ }
+ if (sdec <= qred * .01) {
+ state = 190; break;
+ }
+ beta = gredsq / ggsav;
+ state = 30; break;
+ }
+ }
+ case 90: {
+ printState(90); // XXX
+ crvmin = ZERO;
+
+ // Prepare for the alternative iteration by calculating some scalars
+ // and by multiplying the reduced D by the second derivative matrix of
+ // Q, where S holds the reduced D in the call of GGMULT.
+
+ }
+ case 100: {
+ printState(100); // XXX
+ if (nact >= n - 1) {
+ state = 190; break;
+ }
+ dredsq = ZERO;
+ dredg = ZERO;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ double d1 = trialStepPoint.getEntry(i);
+ dredsq += d1 * d1;
+ dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
+ // Computing 2nd power
+ d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ s.setEntry(i, trialStepPoint.getEntry(i));
+ } else {
+ s.setEntry(i, ZERO);
+ }
+ }
+ itcsav = iterc;
+ state = 210; break;
+ // Let the search direction S be a linear combination of the reduced D
+ // and the reduced G that is orthogonal to the reduced D.
+ }
+ case 120: {
+ printState(120); // XXX
+ ++iterc;
+ temp = gredsq * dredsq - dredg * dredg;
+ if (temp <= qred * 1e-4 * qred) {
+ state = 190; break;
+ }
+ temp = FastMath.sqrt(temp);
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ s.setEntry(i, (dredg * trialStepPoint.getEntry(i) - dredsq * gnew.getEntry(i)) / temp);
+ } else {
+ s.setEntry(i, ZERO);
+ }
+ }
+ sredg = -temp;
+
+ // By considering the simple bounds on the variables, calculate an upper
+ // bound on the tangent of half the angle of the alternative iteration,
+ // namely ANGBD, except that, if already a free variable has reached a
+ // bound, there is a branch back to label 100 after fixing that variable.
+
+ angbd = ONE;
+ iact = -1;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ tempa = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i) - lowerDifference.getEntry(i);
+ tempb = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i) - trialStepPoint.getEntry(i);
+ if (tempa <= ZERO) {
+ ++nact;
+ xbdi.setEntry(i, MINUS_ONE);
+ state = 100; break;
+ } else if (tempb <= ZERO) {
+ ++nact;
+ xbdi.setEntry(i, ONE);
+ state = 100; break;
+ }
+ // Computing 2nd power
+ double d1 = trialStepPoint.getEntry(i);
+ // Computing 2nd power
+ double d2 = s.getEntry(i);
+ ssq = d1 * d1 + d2 * d2;
+ // Computing 2nd power
+ d1 = trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i);
+ temp = ssq - d1 * d1;
+ if (temp > ZERO) {
+ temp = FastMath.sqrt(temp) - s.getEntry(i);
+ if (angbd * temp > tempa) {
+ angbd = tempa / temp;
+ iact = i;
+ xsav = MINUS_ONE;
+ }
+ }
+ // Computing 2nd power
+ d1 = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i);
+ temp = ssq - d1 * d1;
+ if (temp > ZERO) {
+ temp = FastMath.sqrt(temp) + s.getEntry(i);
+ if (angbd * temp > tempb) {
+ angbd = tempb / temp;
+ iact = i;
+ xsav = ONE;
+ }
+ }
+ }
+ }
+
+ // Calculate HHD and some curvatures for the alternative iteration.
+
+ state = 210; break;
+ }
+ case 150: {
+ printState(150); // XXX
+ shs = ZERO;
+ dhs = ZERO;
+ dhd = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ shs += s.getEntry(i) * hs.getEntry(i);
+ dhs += trialStepPoint.getEntry(i) * hs.getEntry(i);
+ dhd += trialStepPoint.getEntry(i) * hred.getEntry(i);
+ }
+ }
+
+ // Seek the greatest reduction in Q for a range of equally spaced values
+ // of ANGT in [0,ANGBD], where ANGT is the tangent of half the angle of
+ // the alternative iteration.
+
+ redmax = ZERO;
+ isav = -1;
+ redsav = ZERO;
+ iu = (int) (angbd * 17. + 3.1);
+ for (int i = 0; i < iu; i++) {
+ angt = angbd * i / iu;
+ sth = (angt + angt) / (ONE + angt * angt);
+ temp = shs + angt * (angt * dhd - dhs - dhs);
+ rednew = sth * (angt * dredg - sredg - HALF * sth * temp);
+ if (rednew > redmax) {
+ redmax = rednew;
+ isav = i;
+ rdprev = redsav;
+ } else if (i == isav + 1) {
+ rdnext = rednew;
+ }
+ redsav = rednew;
+ }
+
+ // Return if the reduction is zero. Otherwise, set the sine and cosine
+ // of the angle of the alternative iteration, and calculate SDEC.
+
+ if (isav < 0) {
+ state = 190; break;
+ }
+ if (isav < iu) {
+ temp = (rdnext - rdprev) / (redmax + redmax - rdprev - rdnext);
+ angt = angbd * (isav + HALF * temp) / iu;
+ }
+ cth = (ONE - angt * angt) / (ONE + angt * angt);
+ sth = (angt + angt) / (ONE + angt * angt);
+ temp = shs + angt * (angt * dhd - dhs - dhs);
+ sdec = sth * (angt * dredg - sredg - HALF * sth * temp);
+ if (sdec <= ZERO) {
+ state = 190; break;
+ }
+
+ // Update GNEW, D and HRED. If the angle of the alternative iteration
+ // is restricted by a bound on a free variable, that variable is fixed
+ // at the bound.
+
+ dredg = ZERO;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ gnew.setEntry(i, gnew.getEntry(i) + (cth - ONE) * hred.getEntry(i) + sth * hs.getEntry(i));
+ if (xbdi.getEntry(i) == ZERO) {
+ trialStepPoint.setEntry(i, cth * trialStepPoint.getEntry(i) + sth * s.getEntry(i));
+ dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
+ // Computing 2nd power
+ final double d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ }
+ hred.setEntry(i, cth * hred.getEntry(i) + sth * hs.getEntry(i));
+ }
+ qred += sdec;
+ if (iact >= 0 && isav == iu) {
+ ++nact;
+ xbdi.setEntry(iact, xsav);
+ state = 100; break;
+ }
+
+ // If SDEC is sufficiently small, then RETURN after setting XNEW to
+ // XOPT+D, giving careful attention to the bounds.
+
+ if (sdec > qred * .01) {
+ state = 120; break;
+ }
+ }
+ case 190: {
+ printState(190); // XXX
+ dsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ // Computing MAX
+ // Computing MIN
+ final double min = FastMath.min(trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i),
+ upperDifference.getEntry(i));
+ newPoint.setEntry(i, FastMath.max(min, lowerDifference.getEntry(i)));
+ if (xbdi.getEntry(i) == MINUS_ONE) {
+ newPoint.setEntry(i, lowerDifference.getEntry(i));
+ }
+ if (xbdi.getEntry(i) == ONE) {
+ newPoint.setEntry(i, upperDifference.getEntry(i));
+ }
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(i);
+ dsq += d1 * d1;
+ }
+ return new double[] { dsq, crvmin };
+ // The following instructions multiply the current S-vector by the second
+ // derivative matrix of the quadratic model, putting the product in HS.
+ // They are reached from three different parts of the software above and
+ // they can be regarded as an external subroutine.
+ }
+ case 210: {
+ printState(210); // XXX
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ hs.setEntry(j, ZERO);
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ hs.setEntry(j, hs.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(i));
+ }
+ hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
+ ih++;
+ }
+ }
+ final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
+ for (int k = 0; k < npt; k++) {
+ if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
+ for (int i = 0; i < n; i++) {
+ hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
+ }
+ }
+ }
+ if (crvmin != ZERO) {
+ state = 50; break;
+ }
+ if (iterc > itcsav) {
+ state = 150; break;
+ }
+ for (int i = 0; i < n; i++) {
+ hred.setEntry(i, hs.getEntry(i));
+ }
+ state = 120; break;
+ }
+ default: {
+ throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "trsbox");
+ }}
+ }
+ } // trsbox
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arrays BMAT and ZMAT are updated, as required by the new position
+ * of the interpolation point that has the index KNEW. The vector VLAG has
+ * N+NPT components, set on entry to the first NPT and last N components
+ * of the product Hw in equation (4.11) of the Powell (2006) paper on
+ * NEWUOA. Further, BETA is set on entry to the value of the parameter
+ * with that name, and DENOM is set to the denominator of the updating
+ * formula. Elements of ZMAT may be treated as zero if their moduli are
+ * at most ZTEST. The first NDIM elements of W are used for working space.
+ * @param beta
+ * @param denom
+ * @param knew
+ */
+ private void update(
+ double beta,
+ double denom,
+ int knew
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int nptm = npt - n - 1;
+
+ // XXX Should probably be split into two arrays.
+ final ArrayRealVector work = new ArrayRealVector(npt + n);
+
+ double ztest = ZERO;
+ for (int k = 0; k < npt; k++) {
+ for (int j = 0; j < nptm; j++) {
+ // Computing MAX
+ ztest = FastMath.max(ztest, FastMath.abs(zMatrix.getEntry(k, j)));
+ }
+ }
+ ztest *= 1e-20;
+
+ // Apply the rotations that put zeros in the KNEW-th row of ZMAT.
+
+ for (int j = 1; j < nptm; j++) {
+ final double d1 = zMatrix.getEntry(knew, j);
+ if (FastMath.abs(d1) > ztest) {
+ // Computing 2nd power
+ final double d2 = zMatrix.getEntry(knew, 0);
+ // Computing 2nd power
+ final double d3 = zMatrix.getEntry(knew, j);
+ final double d4 = FastMath.sqrt(d2 * d2 + d3 * d3);
+ final double d5 = zMatrix.getEntry(knew, 0) / d4;
+ final double d6 = zMatrix.getEntry(knew, j) / d4;
+ for (int i = 0; i < npt; i++) {
+ final double d7 = d5 * zMatrix.getEntry(i, 0) + d6 * zMatrix.getEntry(i, j);
+ zMatrix.setEntry(i, j, d5 * zMatrix.getEntry(i, j) - d6 * zMatrix.getEntry(i, 0));
+ zMatrix.setEntry(i, 0, d7);
+ }
+ }
+ zMatrix.setEntry(knew, j, ZERO);
+ }
+
+ // Put the first NPT components of the KNEW-th column of HLAG into W,
+ // and calculate the parameters of the updating formula.
+
+ for (int i = 0; i < npt; i++) {
+ work.setEntry(i, zMatrix.getEntry(knew, 0) * zMatrix.getEntry(i, 0));
+ }
+ final double alpha = work.getEntry(knew);
+ final double tau = lagrangeValuesAtNewPoint.getEntry(knew);
+ lagrangeValuesAtNewPoint.setEntry(knew, lagrangeValuesAtNewPoint.getEntry(knew) - ONE);
+
+ // Complete the updating of ZMAT.
+
+ final double sqrtDenom = FastMath.sqrt(denom);
+ final double d1 = tau / sqrtDenom;
+ final double d2 = zMatrix.getEntry(knew, 0) / sqrtDenom;
+ for (int i = 0; i < npt; i++) {
+ zMatrix.setEntry(i, 0,
+ d1 * zMatrix.getEntry(i, 0) - d2 * lagrangeValuesAtNewPoint.getEntry(i));
+ }
+
+ // Finally, update the matrix BMAT.
+
+ for (int j = 0; j < n; j++) {
+ final int jp = npt + j;
+ work.setEntry(jp, bMatrix.getEntry(knew, j));
+ final double d3 = (alpha * lagrangeValuesAtNewPoint.getEntry(jp) - tau * work.getEntry(jp)) / denom;
+ final double d4 = (-beta * work.getEntry(jp) - tau * lagrangeValuesAtNewPoint.getEntry(jp)) / denom;
+ for (int i = 0; i <= jp; i++) {
+ bMatrix.setEntry(i, j,
+ bMatrix.getEntry(i, j) + d3 * lagrangeValuesAtNewPoint.getEntry(i) + d4 * work.getEntry(i));
+ if (i >= npt) {
+ bMatrix.setEntry(jp, (i - npt), bMatrix.getEntry(i, j));
+ }
+ }
+ }
+ } // update
+
+ /**
+ * Performs validity checks.
+ *
+ * @param lowerBound Lower bounds (constraints) of the objective variables.
+ * @param upperBound Upperer bounds (constraints) of the objective variables.
+ */
+ private void setup(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ double[] init = getStartPoint();
+ final int dimension = init.length;
+
+ // Check problem dimension.
+ if (dimension < MINIMUM_PROBLEM_DIMENSION) {
+ throw new NumberIsTooSmallException(dimension, MINIMUM_PROBLEM_DIMENSION, true);
+ }
+ // Check number of interpolation points.
+ final int[] nPointsInterval = { dimension + 2, (dimension + 2) * (dimension + 1) / 2 };
+ if (numberOfInterpolationPoints < nPointsInterval[0] ||
+ numberOfInterpolationPoints > nPointsInterval[1]) {
+ throw new OutOfRangeException(LocalizedFormats.NUMBER_OF_INTERPOLATION_POINTS,
+ numberOfInterpolationPoints,
+ nPointsInterval[0],
+ nPointsInterval[1]);
+ }
+
+ // Initialize bound differences.
+ boundDifference = new double[dimension];
+
+ double requiredMinDiff = 2 * initialTrustRegionRadius;
+ double minDiff = Double.POSITIVE_INFINITY;
+ for (int i = 0; i < dimension; i++) {
+ boundDifference[i] = upperBound[i] - lowerBound[i];
+ minDiff = FastMath.min(minDiff, boundDifference[i]);
+ }
+ if (minDiff < requiredMinDiff) {
+ initialTrustRegionRadius = minDiff / 3.0;
+ }
+
+ // Initialize the data structures used by the "bobyqa" method.
+ bMatrix = new Array2DRowRealMatrix(dimension + numberOfInterpolationPoints,
+ dimension);
+ zMatrix = new Array2DRowRealMatrix(numberOfInterpolationPoints,
+ numberOfInterpolationPoints - dimension - 1);
+ interpolationPoints = new Array2DRowRealMatrix(numberOfInterpolationPoints,
+ dimension);
+ originShift = new ArrayRealVector(dimension);
+ fAtInterpolationPoints = new ArrayRealVector(numberOfInterpolationPoints);
+ trustRegionCenterOffset = new ArrayRealVector(dimension);
+ gradientAtTrustRegionCenter = new ArrayRealVector(dimension);
+ lowerDifference = new ArrayRealVector(dimension);
+ upperDifference = new ArrayRealVector(dimension);
+ modelSecondDerivativesParameters = new ArrayRealVector(numberOfInterpolationPoints);
+ newPoint = new ArrayRealVector(dimension);
+ alternativeNewPoint = new ArrayRealVector(dimension);
+ trialStepPoint = new ArrayRealVector(dimension);
+ lagrangeValuesAtNewPoint = new ArrayRealVector(dimension + numberOfInterpolationPoints);
+ modelSecondDerivativesValues = new ArrayRealVector(dimension * (dimension + 1) / 2);
+ }
+
+ // XXX utility for figuring out call sequence.
+ private static String caller(int n) {
+ final Throwable t = new Throwable();
+ final StackTraceElement[] elements = t.getStackTrace();
+ final StackTraceElement e = elements[n];
+ return e.getMethodName() + " (at line " + e.getLineNumber() + ")";
+ }
+ // XXX utility for figuring out call sequence.
+ private static void printState(int s) {
+ // System.out.println(caller(2) + ": state " + s);
+ }
+ // XXX utility for figuring out call sequence.
+ private static void printMethod() {
+ // System.out.println(caller(2));
+ }
+
+ /**
+ * Marker for code paths that are not explored with the current unit tests.
+ * If the path becomes explored, it should just be removed from the code.
+ */
+ private static class PathIsExploredException extends RuntimeException {
+ /** Serializable UID. */
+ private static final long serialVersionUID = 745350979634801853L;
+
+ /** Message string. */
+ private static final String PATH_IS_EXPLORED
+ = "If this exception is thrown, just remove it from the code";
+
+ PathIsExploredException() {
+ super(PATH_IS_EXPLORED + " " + BOBYQAOptimizer.caller(3));
+ }
+ }
+}
+//CHECKSTYLE: resume all
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java
new file mode 100644
index 0000000..13566be
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/CMAESOptimizer.java
@@ -0,0 +1,1354 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.List;
+
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NotPositiveException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.linear.EigenDecomposition;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.optim.OptimizationData;
+import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
+import org.apache.commons.math3.random.RandomGenerator;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+
+/**
+ * An implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
+ * for non-linear, non-convex, non-smooth, global function minimization.
+ * <p>
+ * The CMA-Evolution Strategy (CMA-ES) is a reliable stochastic optimization method
+ * which should be applied if derivative-based methods, e.g. quasi-Newton BFGS or
+ * conjugate gradient, fail due to a rugged search landscape (e.g. noise, local
+ * optima, outlier, etc.) of the objective function. Like a
+ * quasi-Newton method, the CMA-ES learns and applies a variable metric
+ * on the underlying search space. Unlike a quasi-Newton method, the
+ * CMA-ES neither estimates nor uses gradients, making it considerably more
+ * reliable in terms of finding a good, or even close to optimal, solution.
+ * <p>
+ * In general, on smooth objective functions the CMA-ES is roughly ten times
+ * slower than BFGS (counting objective function evaluations, no gradients provided).
+ * For up to <math>N=10</math> variables also the derivative-free simplex
+ * direct search method (Nelder and Mead) can be faster, but it is
+ * far less reliable than CMA-ES.
+ * <p>
+ * The CMA-ES is particularly well suited for non-separable
+ * and/or badly conditioned problems. To observe the advantage of CMA compared
+ * to a conventional evolution strategy, it will usually take about
+ * <math>30 N</math> function evaluations. On difficult problems the complete
+ * optimization (a single run) is expected to take <em>roughly</em> between
+ * <math>30 N</math> and <math>300 N<sup>2</sup></math>
+ * function evaluations.
+ * <p>
+ * This implementation is translated and adapted from the Matlab version
+ * of the CMA-ES algorithm as implemented in module {@code cmaes.m} version 3.51.
+ * <p>
+ * For more information, please refer to the following links:
+ * <ul>
+ * <li><a href="http://www.lri.fr/~hansen/cmaes.m">Matlab code</a></li>
+ * <li><a href="http://www.lri.fr/~hansen/cmaesintro.html">Introduction to CMA-ES</a></li>
+ * <li><a href="http://en.wikipedia.org/wiki/CMA-ES">Wikipedia</a></li>
+ * </ul>
+ *
+ * @since 3.0
+ */
+public class CMAESOptimizer
+ extends MultivariateOptimizer {
+ // global search parameters
+ /**
+ * Population size, offspring number. The primary strategy parameter to play
+ * with, which can be increased from its default value. Increasing the
+ * population size improves global search properties in exchange to speed.
+ * Speed decreases, as a rule, at most linearly with increasing population
+ * size. It is advisable to begin with the default small population size.
+ */
+ private int lambda; // population size
+ /**
+ * Covariance update mechanism, default is active CMA. isActiveCMA = true
+ * turns on "active CMA" with a negative update of the covariance matrix and
+ * checks for positive definiteness. OPTS.CMA.active = 2 does not check for
+ * pos. def. and is numerically faster. Active CMA usually speeds up the
+ * adaptation.
+ */
+ private final boolean isActiveCMA;
+ /**
+ * Determines how often a new random offspring is generated in case it is
+ * not feasible / beyond the defined limits, default is 0.
+ */
+ private final int checkFeasableCount;
+ /**
+ * @see Sigma
+ */
+ private double[] inputSigma;
+ /** Number of objective variables/problem dimension */
+ private int dimension;
+ /**
+ * Defines the number of initial iterations, where the covariance matrix
+ * remains diagonal and the algorithm has internally linear time complexity.
+ * diagonalOnly = 1 means keeping the covariance matrix always diagonal and
+ * this setting also exhibits linear space complexity. This can be
+ * particularly useful for dimension > 100.
+ * @see <a href="http://hal.archives-ouvertes.fr/inria-00287367/en">A Simple Modification in CMA-ES</a>
+ */
+ private int diagonalOnly;
+ /** Number of objective variables/problem dimension */
+ private boolean isMinimize = true;
+ /** Indicates whether statistic data is collected. */
+ private final boolean generateStatistics;
+
+ // termination criteria
+ /** Maximal number of iterations allowed. */
+ private final int maxIterations;
+ /** Limit for fitness value. */
+ private final double stopFitness;
+ /** Stop if x-changes larger stopTolUpX. */
+ private double stopTolUpX;
+ /** Stop if x-change smaller stopTolX. */
+ private double stopTolX;
+ /** Stop if fun-changes smaller stopTolFun. */
+ private double stopTolFun;
+ /** Stop if back fun-changes smaller stopTolHistFun. */
+ private double stopTolHistFun;
+
+ // selection strategy parameters
+ /** Number of parents/points for recombination. */
+ private int mu; //
+ /** log(mu + 0.5), stored for efficiency. */
+ private double logMu2;
+ /** Array for weighted recombination. */
+ private RealMatrix weights;
+ /** Variance-effectiveness of sum w_i x_i. */
+ private double mueff; //
+
+ // dynamic strategy parameters and constants
+ /** Overall standard deviation - search volume. */
+ private double sigma;
+ /** Cumulation constant. */
+ private double cc;
+ /** Cumulation constant for step-size. */
+ private double cs;
+ /** Damping for step-size. */
+ private double damps;
+ /** Learning rate for rank-one update. */
+ private double ccov1;
+ /** Learning rate for rank-mu update' */
+ private double ccovmu;
+ /** Expectation of ||N(0,I)|| == norm(randn(N,1)). */
+ private double chiN;
+ /** Learning rate for rank-one update - diagonalOnly */
+ private double ccov1Sep;
+ /** Learning rate for rank-mu update - diagonalOnly */
+ private double ccovmuSep;
+
+ // CMA internal values - updated each generation
+ /** Objective variables. */
+ private RealMatrix xmean;
+ /** Evolution path. */
+ private RealMatrix pc;
+ /** Evolution path for sigma. */
+ private RealMatrix ps;
+ /** Norm of ps, stored for efficiency. */
+ private double normps;
+ /** Coordinate system. */
+ private RealMatrix B;
+ /** Scaling. */
+ private RealMatrix D;
+ /** B*D, stored for efficiency. */
+ private RealMatrix BD;
+ /** Diagonal of sqrt(D), stored for efficiency. */
+ private RealMatrix diagD;
+ /** Covariance matrix. */
+ private RealMatrix C;
+ /** Diagonal of C, used for diagonalOnly. */
+ private RealMatrix diagC;
+ /** Number of iterations already performed. */
+ private int iterations;
+
+ /** History queue of best values. */
+ private double[] fitnessHistory;
+ /** Size of history queue of best values. */
+ private int historySize;
+
+ /** Random generator. */
+ private final RandomGenerator random;
+
+ /** History of sigma values. */
+ private final List<Double> statisticsSigmaHistory = new ArrayList<Double>();
+ /** History of mean matrix. */
+ private final List<RealMatrix> statisticsMeanHistory = new ArrayList<RealMatrix>();
+ /** History of fitness values. */
+ private final List<Double> statisticsFitnessHistory = new ArrayList<Double>();
+ /** History of D matrix. */
+ private final List<RealMatrix> statisticsDHistory = new ArrayList<RealMatrix>();
+
+ /**
+ * @param maxIterations Maximal number of iterations.
+ * @param stopFitness Whether to stop if objective function value is smaller than
+ * {@code stopFitness}.
+ * @param isActiveCMA Chooses the covariance matrix update method.
+ * @param diagonalOnly Number of initial iterations, where the covariance matrix
+ * remains diagonal.
+ * @param checkFeasableCount Determines how often new random objective variables are
+ * generated in case they are out of bounds.
+ * @param random Random generator.
+ * @param generateStatistics Whether statistic data is collected.
+ * @param checker Convergence checker.
+ *
+ * @since 3.1
+ */
+ public CMAESOptimizer(int maxIterations,
+ double stopFitness,
+ boolean isActiveCMA,
+ int diagonalOnly,
+ int checkFeasableCount,
+ RandomGenerator random,
+ boolean generateStatistics,
+ ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ this.maxIterations = maxIterations;
+ this.stopFitness = stopFitness;
+ this.isActiveCMA = isActiveCMA;
+ this.diagonalOnly = diagonalOnly;
+ this.checkFeasableCount = checkFeasableCount;
+ this.random = random;
+ this.generateStatistics = generateStatistics;
+ }
+
+ /**
+ * @return History of sigma values.
+ */
+ public List<Double> getStatisticsSigmaHistory() {
+ return statisticsSigmaHistory;
+ }
+
+ /**
+ * @return History of mean matrix.
+ */
+ public List<RealMatrix> getStatisticsMeanHistory() {
+ return statisticsMeanHistory;
+ }
+
+ /**
+ * @return History of fitness values.
+ */
+ public List<Double> getStatisticsFitnessHistory() {
+ return statisticsFitnessHistory;
+ }
+
+ /**
+ * @return History of D matrix.
+ */
+ public List<RealMatrix> getStatisticsDHistory() {
+ return statisticsDHistory;
+ }
+
+ /**
+ * Input sigma values.
+ * They define the initial coordinate-wise standard deviations for
+ * sampling new search points around the initial guess.
+ * It is suggested to set them to the estimated distance from the
+ * initial to the desired optimum.
+ * Small values induce the search to be more local (and very small
+ * values are more likely to find a local optimum close to the initial
+ * guess).
+ * Too small values might however lead to early termination.
+ */
+ public static class Sigma implements OptimizationData {
+ /** Sigma values. */
+ private final double[] sigma;
+
+ /**
+ * @param s Sigma values.
+ * @throws NotPositiveException if any of the array entries is smaller
+ * than zero.
+ */
+ public Sigma(double[] s)
+ throws NotPositiveException {
+ for (int i = 0; i < s.length; i++) {
+ if (s[i] < 0) {
+ throw new NotPositiveException(s[i]);
+ }
+ }
+
+ sigma = s.clone();
+ }
+
+ /**
+ * @return the sigma values.
+ */
+ public double[] getSigma() {
+ return sigma.clone();
+ }
+ }
+
+ /**
+ * Population size.
+ * The number of offspring is the primary strategy parameter.
+ * In the absence of better clues, a good default could be an
+ * integer close to {@code 4 + 3 ln(n)}, where {@code n} is the
+ * number of optimized parameters.
+ * Increasing the population size improves global search properties
+ * at the expense of speed (which in general decreases at most
+ * linearly with increasing population size).
+ */
+ public static class PopulationSize implements OptimizationData {
+ /** Population size. */
+ private final int lambda;
+
+ /**
+ * @param size Population size.
+ * @throws NotStrictlyPositiveException if {@code size <= 0}.
+ */
+ public PopulationSize(int size)
+ throws NotStrictlyPositiveException {
+ if (size <= 0) {
+ throw new NotStrictlyPositiveException(size);
+ }
+ lambda = size;
+ }
+
+ /**
+ * @return the population size.
+ */
+ public int getPopulationSize() {
+ return lambda;
+ }
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @param optData Optimization data. In addition to those documented in
+ * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
+ * MultivariateOptimizer}, this method will register the following data:
+ * <ul>
+ * <li>{@link Sigma}</li>
+ * <li>{@link PopulationSize}</li>
+ * </ul>
+ * @return {@inheritDoc}
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations is exceeded.
+ * @throws DimensionMismatchException if the initial guess, target, and weight
+ * arguments have inconsistent dimensions.
+ */
+ @Override
+ public PointValuePair optimize(OptimizationData... optData)
+ throws TooManyEvaluationsException,
+ DimensionMismatchException {
+ // Set up base class and perform computation.
+ return super.optimize(optData);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ // -------------------- Initialization --------------------------------
+ isMinimize = getGoalType().equals(GoalType.MINIMIZE);
+ final FitnessFunction fitfun = new FitnessFunction();
+ final double[] guess = getStartPoint();
+ // number of objective variables/problem dimension
+ dimension = guess.length;
+ initializeCMA(guess);
+ iterations = 0;
+ ValuePenaltyPair valuePenalty = fitfun.value(guess);
+ double bestValue = valuePenalty.value+valuePenalty.penalty;
+ push(fitnessHistory, bestValue);
+ PointValuePair optimum
+ = new PointValuePair(getStartPoint(),
+ isMinimize ? bestValue : -bestValue);
+ PointValuePair lastResult = null;
+
+ // -------------------- Generation Loop --------------------------------
+
+ generationLoop:
+ for (iterations = 1; iterations <= maxIterations; iterations++) {
+ incrementIterationCount();
+
+ // Generate and evaluate lambda offspring
+ final RealMatrix arz = randn1(dimension, lambda);
+ final RealMatrix arx = zeros(dimension, lambda);
+ final double[] fitness = new double[lambda];
+ final ValuePenaltyPair[] valuePenaltyPairs = new ValuePenaltyPair[lambda];
+ // generate random offspring
+ for (int k = 0; k < lambda; k++) {
+ RealMatrix arxk = null;
+ for (int i = 0; i < checkFeasableCount + 1; i++) {
+ if (diagonalOnly <= 0) {
+ arxk = xmean.add(BD.multiply(arz.getColumnMatrix(k))
+ .scalarMultiply(sigma)); // m + sig * Normal(0,C)
+ } else {
+ arxk = xmean.add(times(diagD,arz.getColumnMatrix(k))
+ .scalarMultiply(sigma));
+ }
+ if (i >= checkFeasableCount ||
+ fitfun.isFeasible(arxk.getColumn(0))) {
+ break;
+ }
+ // regenerate random arguments for row
+ arz.setColumn(k, randn(dimension));
+ }
+ copyColumn(arxk, 0, arx, k);
+ try {
+ valuePenaltyPairs[k] = fitfun.value(arx.getColumn(k)); // compute fitness
+ } catch (TooManyEvaluationsException e) {
+ break generationLoop;
+ }
+ }
+
+ // Compute fitnesses by adding value and penalty after scaling by value range.
+ double valueRange = valueRange(valuePenaltyPairs);
+ for (int iValue=0;iValue<valuePenaltyPairs.length;iValue++) {
+ fitness[iValue] = valuePenaltyPairs[iValue].value + valuePenaltyPairs[iValue].penalty*valueRange;
+ }
+
+ // Sort by fitness and compute weighted mean into xmean
+ final int[] arindex = sortedIndices(fitness);
+ // Calculate new xmean, this is selection and recombination
+ final RealMatrix xold = xmean; // for speed up of Eq. (2) and (3)
+ final RealMatrix bestArx = selectColumns(arx, MathArrays.copyOf(arindex, mu));
+ xmean = bestArx.multiply(weights);
+ final RealMatrix bestArz = selectColumns(arz, MathArrays.copyOf(arindex, mu));
+ final RealMatrix zmean = bestArz.multiply(weights);
+ final boolean hsig = updateEvolutionPaths(zmean, xold);
+ if (diagonalOnly <= 0) {
+ updateCovariance(hsig, bestArx, arz, arindex, xold);
+ } else {
+ updateCovarianceDiagonalOnly(hsig, bestArz);
+ }
+ // Adapt step size sigma - Eq. (5)
+ sigma *= FastMath.exp(FastMath.min(1, (normps/chiN - 1) * cs / damps));
+ final double bestFitness = fitness[arindex[0]];
+ final double worstFitness = fitness[arindex[arindex.length - 1]];
+ if (bestValue > bestFitness) {
+ bestValue = bestFitness;
+ lastResult = optimum;
+ optimum = new PointValuePair(fitfun.repair(bestArx.getColumn(0)),
+ isMinimize ? bestFitness : -bestFitness);
+ if (getConvergenceChecker() != null && lastResult != null &&
+ getConvergenceChecker().converged(iterations, optimum, lastResult)) {
+ break generationLoop;
+ }
+ }
+ // handle termination criteria
+ // Break, if fitness is good enough
+ if (stopFitness != 0 && bestFitness < (isMinimize ? stopFitness : -stopFitness)) {
+ break generationLoop;
+ }
+ final double[] sqrtDiagC = sqrt(diagC).getColumn(0);
+ final double[] pcCol = pc.getColumn(0);
+ for (int i = 0; i < dimension; i++) {
+ if (sigma * FastMath.max(FastMath.abs(pcCol[i]), sqrtDiagC[i]) > stopTolX) {
+ break;
+ }
+ if (i >= dimension - 1) {
+ break generationLoop;
+ }
+ }
+ for (int i = 0; i < dimension; i++) {
+ if (sigma * sqrtDiagC[i] > stopTolUpX) {
+ break generationLoop;
+ }
+ }
+ final double historyBest = min(fitnessHistory);
+ final double historyWorst = max(fitnessHistory);
+ if (iterations > 2 &&
+ FastMath.max(historyWorst, worstFitness) -
+ FastMath.min(historyBest, bestFitness) < stopTolFun) {
+ break generationLoop;
+ }
+ if (iterations > fitnessHistory.length &&
+ historyWorst - historyBest < stopTolHistFun) {
+ break generationLoop;
+ }
+ // condition number of the covariance matrix exceeds 1e14
+ if (max(diagD) / min(diagD) > 1e7) {
+ break generationLoop;
+ }
+ // user defined termination
+ if (getConvergenceChecker() != null) {
+ final PointValuePair current
+ = new PointValuePair(bestArx.getColumn(0),
+ isMinimize ? bestFitness : -bestFitness);
+ if (lastResult != null &&
+ getConvergenceChecker().converged(iterations, current, lastResult)) {
+ break generationLoop;
+ }
+ lastResult = current;
+ }
+ // Adjust step size in case of equal function values (flat fitness)
+ if (bestValue == fitness[arindex[(int)(0.1+lambda/4.)]]) {
+ sigma *= FastMath.exp(0.2 + cs / damps);
+ }
+ if (iterations > 2 && FastMath.max(historyWorst, bestFitness) -
+ FastMath.min(historyBest, bestFitness) == 0) {
+ sigma *= FastMath.exp(0.2 + cs / damps);
+ }
+ // store best in history
+ push(fitnessHistory,bestFitness);
+ if (generateStatistics) {
+ statisticsSigmaHistory.add(sigma);
+ statisticsFitnessHistory.add(bestFitness);
+ statisticsMeanHistory.add(xmean.transpose());
+ statisticsDHistory.add(diagD.transpose().scalarMultiply(1E5));
+ }
+ }
+ return optimum;
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link Sigma}</li>
+ * <li>{@link PopulationSize}</li>
+ * </ul>
+ */
+ @Override
+ protected void parseOptimizationData(OptimizationData... optData) {
+ // Allow base class to register its own data.
+ super.parseOptimizationData(optData);
+
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof Sigma) {
+ inputSigma = ((Sigma) data).getSigma();
+ continue;
+ }
+ if (data instanceof PopulationSize) {
+ lambda = ((PopulationSize) data).getPopulationSize();
+ continue;
+ }
+ }
+
+ checkParameters();
+ }
+
+ /**
+ * Checks dimensions and values of boundaries and inputSigma if defined.
+ */
+ private void checkParameters() {
+ final double[] init = getStartPoint();
+ final double[] lB = getLowerBound();
+ final double[] uB = getUpperBound();
+
+ if (inputSigma != null) {
+ if (inputSigma.length != init.length) {
+ throw new DimensionMismatchException(inputSigma.length, init.length);
+ }
+ for (int i = 0; i < init.length; i++) {
+ if (inputSigma[i] > uB[i] - lB[i]) {
+ throw new OutOfRangeException(inputSigma[i], 0, uB[i] - lB[i]);
+ }
+ }
+ }
+ }
+
+ /**
+ * Initialization of the dynamic search parameters
+ *
+ * @param guess Initial guess for the arguments of the fitness function.
+ */
+ private void initializeCMA(double[] guess) {
+ if (lambda <= 0) {
+ throw new NotStrictlyPositiveException(lambda);
+ }
+ // initialize sigma
+ final double[][] sigmaArray = new double[guess.length][1];
+ for (int i = 0; i < guess.length; i++) {
+ sigmaArray[i][0] = inputSigma[i];
+ }
+ final RealMatrix insigma = new Array2DRowRealMatrix(sigmaArray, false);
+ sigma = max(insigma); // overall standard deviation
+
+ // initialize termination criteria
+ stopTolUpX = 1e3 * max(insigma);
+ stopTolX = 1e-11 * max(insigma);
+ stopTolFun = 1e-12;
+ stopTolHistFun = 1e-13;
+
+ // initialize selection strategy parameters
+ mu = lambda / 2; // number of parents/points for recombination
+ logMu2 = FastMath.log(mu + 0.5);
+ weights = log(sequence(1, mu, 1)).scalarMultiply(-1).scalarAdd(logMu2);
+ double sumw = 0;
+ double sumwq = 0;
+ for (int i = 0; i < mu; i++) {
+ double w = weights.getEntry(i, 0);
+ sumw += w;
+ sumwq += w * w;
+ }
+ weights = weights.scalarMultiply(1 / sumw);
+ mueff = sumw * sumw / sumwq; // variance-effectiveness of sum w_i x_i
+
+ // initialize dynamic strategy parameters and constants
+ cc = (4 + mueff / dimension) /
+ (dimension + 4 + 2 * mueff / dimension);
+ cs = (mueff + 2) / (dimension + mueff + 3.);
+ damps = (1 + 2 * FastMath.max(0, FastMath.sqrt((mueff - 1) /
+ (dimension + 1)) - 1)) *
+ FastMath.max(0.3,
+ 1 - dimension / (1e-6 + maxIterations)) + cs; // minor increment
+ ccov1 = 2 / ((dimension + 1.3) * (dimension + 1.3) + mueff);
+ ccovmu = FastMath.min(1 - ccov1, 2 * (mueff - 2 + 1 / mueff) /
+ ((dimension + 2) * (dimension + 2) + mueff));
+ ccov1Sep = FastMath.min(1, ccov1 * (dimension + 1.5) / 3);
+ ccovmuSep = FastMath.min(1 - ccov1, ccovmu * (dimension + 1.5) / 3);
+ chiN = FastMath.sqrt(dimension) *
+ (1 - 1 / ((double) 4 * dimension) + 1 / ((double) 21 * dimension * dimension));
+ // intialize CMA internal values - updated each generation
+ xmean = MatrixUtils.createColumnRealMatrix(guess); // objective variables
+ diagD = insigma.scalarMultiply(1 / sigma);
+ diagC = square(diagD);
+ pc = zeros(dimension, 1); // evolution paths for C and sigma
+ ps = zeros(dimension, 1); // B defines the coordinate system
+ normps = ps.getFrobeniusNorm();
+
+ B = eye(dimension, dimension);
+ D = ones(dimension, 1); // diagonal D defines the scaling
+ BD = times(B, repmat(diagD.transpose(), dimension, 1));
+ C = B.multiply(diag(square(D)).multiply(B.transpose())); // covariance
+ historySize = 10 + (int) (3 * 10 * dimension / (double) lambda);
+ fitnessHistory = new double[historySize]; // history of fitness values
+ for (int i = 0; i < historySize; i++) {
+ fitnessHistory[i] = Double.MAX_VALUE;
+ }
+ }
+
+ /**
+ * Update of the evolution paths ps and pc.
+ *
+ * @param zmean Weighted row matrix of the gaussian random numbers generating
+ * the current offspring.
+ * @param xold xmean matrix of the previous generation.
+ * @return hsig flag indicating a small correction.
+ */
+ private boolean updateEvolutionPaths(RealMatrix zmean, RealMatrix xold) {
+ ps = ps.scalarMultiply(1 - cs).add(
+ B.multiply(zmean).scalarMultiply(
+ FastMath.sqrt(cs * (2 - cs) * mueff)));
+ normps = ps.getFrobeniusNorm();
+ final boolean hsig = normps /
+ FastMath.sqrt(1 - FastMath.pow(1 - cs, 2 * iterations)) /
+ chiN < 1.4 + 2 / ((double) dimension + 1);
+ pc = pc.scalarMultiply(1 - cc);
+ if (hsig) {
+ pc = pc.add(xmean.subtract(xold).scalarMultiply(FastMath.sqrt(cc * (2 - cc) * mueff) / sigma));
+ }
+ return hsig;
+ }
+
+ /**
+ * Update of the covariance matrix C for diagonalOnly > 0
+ *
+ * @param hsig Flag indicating a small correction.
+ * @param bestArz Fitness-sorted matrix of the gaussian random values of the
+ * current offspring.
+ */
+ private void updateCovarianceDiagonalOnly(boolean hsig,
+ final RealMatrix bestArz) {
+ // minor correction if hsig==false
+ double oldFac = hsig ? 0 : ccov1Sep * cc * (2 - cc);
+ oldFac += 1 - ccov1Sep - ccovmuSep;
+ diagC = diagC.scalarMultiply(oldFac) // regard old matrix
+ .add(square(pc).scalarMultiply(ccov1Sep)) // plus rank one update
+ .add((times(diagC, square(bestArz).multiply(weights))) // plus rank mu update
+ .scalarMultiply(ccovmuSep));
+ diagD = sqrt(diagC); // replaces eig(C)
+ if (diagonalOnly > 1 &&
+ iterations > diagonalOnly) {
+ // full covariance matrix from now on
+ diagonalOnly = 0;
+ B = eye(dimension, dimension);
+ BD = diag(diagD);
+ C = diag(diagC);
+ }
+ }
+
+ /**
+ * Update of the covariance matrix C.
+ *
+ * @param hsig Flag indicating a small correction.
+ * @param bestArx Fitness-sorted matrix of the argument vectors producing the
+ * current offspring.
+ * @param arz Unsorted matrix containing the gaussian random values of the
+ * current offspring.
+ * @param arindex Indices indicating the fitness-order of the current offspring.
+ * @param xold xmean matrix of the previous generation.
+ */
+ private void updateCovariance(boolean hsig, final RealMatrix bestArx,
+ final RealMatrix arz, final int[] arindex,
+ final RealMatrix xold) {
+ double negccov = 0;
+ if (ccov1 + ccovmu > 0) {
+ final RealMatrix arpos = bestArx.subtract(repmat(xold, 1, mu))
+ .scalarMultiply(1 / sigma); // mu difference vectors
+ final RealMatrix roneu = pc.multiply(pc.transpose())
+ .scalarMultiply(ccov1); // rank one update
+ // minor correction if hsig==false
+ double oldFac = hsig ? 0 : ccov1 * cc * (2 - cc);
+ oldFac += 1 - ccov1 - ccovmu;
+ if (isActiveCMA) {
+ // Adapt covariance matrix C active CMA
+ negccov = (1 - ccovmu) * 0.25 * mueff /
+ (FastMath.pow(dimension + 2, 1.5) + 2 * mueff);
+ // keep at least 0.66 in all directions, small popsize are most
+ // critical
+ final double negminresidualvariance = 0.66;
+ // where to make up for the variance loss
+ final double negalphaold = 0.5;
+ // prepare vectors, compute negative updating matrix Cneg
+ final int[] arReverseIndex = reverse(arindex);
+ RealMatrix arzneg = selectColumns(arz, MathArrays.copyOf(arReverseIndex, mu));
+ RealMatrix arnorms = sqrt(sumRows(square(arzneg)));
+ final int[] idxnorms = sortedIndices(arnorms.getRow(0));
+ final RealMatrix arnormsSorted = selectColumns(arnorms, idxnorms);
+ final int[] idxReverse = reverse(idxnorms);
+ final RealMatrix arnormsReverse = selectColumns(arnorms, idxReverse);
+ arnorms = divide(arnormsReverse, arnormsSorted);
+ final int[] idxInv = inverse(idxnorms);
+ final RealMatrix arnormsInv = selectColumns(arnorms, idxInv);
+ // check and set learning rate negccov
+ final double negcovMax = (1 - negminresidualvariance) /
+ square(arnormsInv).multiply(weights).getEntry(0, 0);
+ if (negccov > negcovMax) {
+ negccov = negcovMax;
+ }
+ arzneg = times(arzneg, repmat(arnormsInv, dimension, 1));
+ final RealMatrix artmp = BD.multiply(arzneg);
+ final RealMatrix Cneg = artmp.multiply(diag(weights)).multiply(artmp.transpose());
+ oldFac += negalphaold * negccov;
+ C = C.scalarMultiply(oldFac)
+ .add(roneu) // regard old matrix
+ .add(arpos.scalarMultiply( // plus rank one update
+ ccovmu + (1 - negalphaold) * negccov) // plus rank mu update
+ .multiply(times(repmat(weights, 1, dimension),
+ arpos.transpose())))
+ .subtract(Cneg.scalarMultiply(negccov));
+ } else {
+ // Adapt covariance matrix C - nonactive
+ C = C.scalarMultiply(oldFac) // regard old matrix
+ .add(roneu) // plus rank one update
+ .add(arpos.scalarMultiply(ccovmu) // plus rank mu update
+ .multiply(times(repmat(weights, 1, dimension),
+ arpos.transpose())));
+ }
+ }
+ updateBD(negccov);
+ }
+
+ /**
+ * Update B and D from C.
+ *
+ * @param negccov Negative covariance factor.
+ */
+ private void updateBD(double negccov) {
+ if (ccov1 + ccovmu + negccov > 0 &&
+ (iterations % 1. / (ccov1 + ccovmu + negccov) / dimension / 10.) < 1) {
+ // to achieve O(N^2)
+ C = triu(C, 0).add(triu(C, 1).transpose());
+ // enforce symmetry to prevent complex numbers
+ final EigenDecomposition eig = new EigenDecomposition(C);
+ B = eig.getV(); // eigen decomposition, B==normalized eigenvectors
+ D = eig.getD();
+ diagD = diag(D);
+ if (min(diagD) <= 0) {
+ for (int i = 0; i < dimension; i++) {
+ if (diagD.getEntry(i, 0) < 0) {
+ diagD.setEntry(i, 0, 0);
+ }
+ }
+ final double tfac = max(diagD) / 1e14;
+ C = C.add(eye(dimension, dimension).scalarMultiply(tfac));
+ diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac));
+ }
+ if (max(diagD) > 1e14 * min(diagD)) {
+ final double tfac = max(diagD) / 1e14 - min(diagD);
+ C = C.add(eye(dimension, dimension).scalarMultiply(tfac));
+ diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac));
+ }
+ diagC = diag(C);
+ diagD = sqrt(diagD); // D contains standard deviations now
+ BD = times(B, repmat(diagD.transpose(), dimension, 1)); // O(n^2)
+ }
+ }
+
+ /**
+ * Pushes the current best fitness value in a history queue.
+ *
+ * @param vals History queue.
+ * @param val Current best fitness value.
+ */
+ private static void push(double[] vals, double val) {
+ for (int i = vals.length-1; i > 0; i--) {
+ vals[i] = vals[i-1];
+ }
+ vals[0] = val;
+ }
+
+ /**
+ * Sorts fitness values.
+ *
+ * @param doubles Array of values to be sorted.
+ * @return a sorted array of indices pointing into doubles.
+ */
+ private int[] sortedIndices(final double[] doubles) {
+ final DoubleIndex[] dis = new DoubleIndex[doubles.length];
+ for (int i = 0; i < doubles.length; i++) {
+ dis[i] = new DoubleIndex(doubles[i], i);
+ }
+ Arrays.sort(dis);
+ final int[] indices = new int[doubles.length];
+ for (int i = 0; i < doubles.length; i++) {
+ indices[i] = dis[i].index;
+ }
+ return indices;
+ }
+ /**
+ * Get range of values.
+ *
+ * @param vpPairs Array of valuePenaltyPairs to get range from.
+ * @return a double equal to maximum value minus minimum value.
+ */
+ private double valueRange(final ValuePenaltyPair[] vpPairs) {
+ double max = Double.NEGATIVE_INFINITY;
+ double min = Double.MAX_VALUE;
+ for (ValuePenaltyPair vpPair:vpPairs) {
+ if (vpPair.value > max) {
+ max = vpPair.value;
+ }
+ if (vpPair.value < min) {
+ min = vpPair.value;
+ }
+ }
+ return max-min;
+ }
+
+ /**
+ * Used to sort fitness values. Sorting is always in lower value first
+ * order.
+ */
+ private static class DoubleIndex implements Comparable<DoubleIndex> {
+ /** Value to compare. */
+ private final double value;
+ /** Index into sorted array. */
+ private final int index;
+
+ /**
+ * @param value Value to compare.
+ * @param index Index into sorted array.
+ */
+ DoubleIndex(double value, int index) {
+ this.value = value;
+ this.index = index;
+ }
+
+ /** {@inheritDoc} */
+ public int compareTo(DoubleIndex o) {
+ return Double.compare(value, o.value);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof DoubleIndex) {
+ return Double.compare(value, ((DoubleIndex) other).value) == 0;
+ }
+
+ return false;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public int hashCode() {
+ long bits = Double.doubleToLongBits(value);
+ return (int) ((1438542 ^ (bits >>> 32) ^ bits) & 0xffffffff);
+ }
+ }
+ /**
+ * Stores the value and penalty (for repair of out of bounds point).
+ */
+ private static class ValuePenaltyPair {
+ /** Objective function value. */
+ private double value;
+ /** Penalty value for repair of out out of bounds points. */
+ private double penalty;
+
+ /**
+ * @param value Function value.
+ * @param penalty Out-of-bounds penalty.
+ */
+ ValuePenaltyPair(final double value, final double penalty) {
+ this.value = value;
+ this.penalty = penalty;
+ }
+ }
+
+
+ /**
+ * Normalizes fitness values to the range [0,1]. Adds a penalty to the
+ * fitness value if out of range.
+ */
+ private class FitnessFunction {
+ /**
+ * Flag indicating whether the objective variables are forced into their
+ * bounds if defined
+ */
+ private final boolean isRepairMode;
+
+ /** Simple constructor.
+ */
+ FitnessFunction() {
+ isRepairMode = true;
+ }
+
+ /**
+ * @param point Normalized objective variables.
+ * @return the objective value + penalty for violated bounds.
+ */
+ public ValuePenaltyPair value(final double[] point) {
+ double value;
+ double penalty=0.0;
+ if (isRepairMode) {
+ double[] repaired = repair(point);
+ value = CMAESOptimizer.this.computeObjectiveValue(repaired);
+ penalty = penalty(point, repaired);
+ } else {
+ value = CMAESOptimizer.this.computeObjectiveValue(point);
+ }
+ value = isMinimize ? value : -value;
+ penalty = isMinimize ? penalty : -penalty;
+ return new ValuePenaltyPair(value,penalty);
+ }
+
+ /**
+ * @param x Normalized objective variables.
+ * @return {@code true} if in bounds.
+ */
+ public boolean isFeasible(final double[] x) {
+ final double[] lB = CMAESOptimizer.this.getLowerBound();
+ final double[] uB = CMAESOptimizer.this.getUpperBound();
+
+ for (int i = 0; i < x.length; i++) {
+ if (x[i] < lB[i]) {
+ return false;
+ }
+ if (x[i] > uB[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * @param x Normalized objective variables.
+ * @return the repaired (i.e. all in bounds) objective variables.
+ */
+ private double[] repair(final double[] x) {
+ final double[] lB = CMAESOptimizer.this.getLowerBound();
+ final double[] uB = CMAESOptimizer.this.getUpperBound();
+
+ final double[] repaired = new double[x.length];
+ for (int i = 0; i < x.length; i++) {
+ if (x[i] < lB[i]) {
+ repaired[i] = lB[i];
+ } else if (x[i] > uB[i]) {
+ repaired[i] = uB[i];
+ } else {
+ repaired[i] = x[i];
+ }
+ }
+ return repaired;
+ }
+
+ /**
+ * @param x Normalized objective variables.
+ * @param repaired Repaired objective variables.
+ * @return Penalty value according to the violation of the bounds.
+ */
+ private double penalty(final double[] x, final double[] repaired) {
+ double penalty = 0;
+ for (int i = 0; i < x.length; i++) {
+ double diff = FastMath.abs(x[i] - repaired[i]);
+ penalty += diff;
+ }
+ return isMinimize ? penalty : -penalty;
+ }
+ }
+
+ // -----Matrix utility functions similar to the Matlab build in functions------
+
+ /**
+ * @param m Input matrix
+ * @return Matrix representing the element-wise logarithm of m.
+ */
+ private static RealMatrix log(final RealMatrix m) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = FastMath.log(m.getEntry(r, c));
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return Matrix representing the element-wise square root of m.
+ */
+ private static RealMatrix sqrt(final RealMatrix m) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = FastMath.sqrt(m.getEntry(r, c));
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return Matrix representing the element-wise square of m.
+ */
+ private static RealMatrix square(final RealMatrix m) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double e = m.getEntry(r, c);
+ d[r][c] = e * e;
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix 1.
+ * @param n Input matrix 2.
+ * @return the matrix where the elements of m and n are element-wise multiplied.
+ */
+ private static RealMatrix times(final RealMatrix m, final RealMatrix n) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = m.getEntry(r, c) * n.getEntry(r, c);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix 1.
+ * @param n Input matrix 2.
+ * @return Matrix where the elements of m and n are element-wise divided.
+ */
+ private static RealMatrix divide(final RealMatrix m, final RealMatrix n) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = m.getEntry(r, c) / n.getEntry(r, c);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @param cols Columns to select.
+ * @return Matrix representing the selected columns.
+ */
+ private static RealMatrix selectColumns(final RealMatrix m, final int[] cols) {
+ final double[][] d = new double[m.getRowDimension()][cols.length];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < cols.length; c++) {
+ d[r][c] = m.getEntry(r, cols[c]);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @param k Diagonal position.
+ * @return Upper triangular part of matrix.
+ */
+ private static RealMatrix triu(final RealMatrix m, int k) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = r <= c - k ? m.getEntry(r, c) : 0;
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return Row matrix representing the sums of the rows.
+ */
+ private static RealMatrix sumRows(final RealMatrix m) {
+ final double[][] d = new double[1][m.getColumnDimension()];
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double sum = 0;
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ sum += m.getEntry(r, c);
+ }
+ d[0][c] = sum;
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return the diagonal n-by-n matrix if m is a column matrix or the column
+ * matrix representing the diagonal if m is a n-by-n matrix.
+ */
+ private static RealMatrix diag(final RealMatrix m) {
+ if (m.getColumnDimension() == 1) {
+ final double[][] d = new double[m.getRowDimension()][m.getRowDimension()];
+ for (int i = 0; i < m.getRowDimension(); i++) {
+ d[i][i] = m.getEntry(i, 0);
+ }
+ return new Array2DRowRealMatrix(d, false);
+ } else {
+ final double[][] d = new double[m.getRowDimension()][1];
+ for (int i = 0; i < m.getColumnDimension(); i++) {
+ d[i][0] = m.getEntry(i, i);
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+ }
+
+ /**
+ * Copies a column from m1 to m2.
+ *
+ * @param m1 Source matrix.
+ * @param col1 Source column.
+ * @param m2 Target matrix.
+ * @param col2 Target column.
+ */
+ private static void copyColumn(final RealMatrix m1, int col1,
+ RealMatrix m2, int col2) {
+ for (int i = 0; i < m1.getRowDimension(); i++) {
+ m2.setEntry(i, col2, m1.getEntry(i, col1));
+ }
+ }
+
+ /**
+ * @param n Number of rows.
+ * @param m Number of columns.
+ * @return n-by-m matrix filled with 1.
+ */
+ private static RealMatrix ones(int n, int m) {
+ final double[][] d = new double[n][m];
+ for (int r = 0; r < n; r++) {
+ Arrays.fill(d[r], 1);
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param n Number of rows.
+ * @param m Number of columns.
+ * @return n-by-m matrix of 0 values out of diagonal, and 1 values on
+ * the diagonal.
+ */
+ private static RealMatrix eye(int n, int m) {
+ final double[][] d = new double[n][m];
+ for (int r = 0; r < n; r++) {
+ if (r < m) {
+ d[r][r] = 1;
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param n Number of rows.
+ * @param m Number of columns.
+ * @return n-by-m matrix of zero values.
+ */
+ private static RealMatrix zeros(int n, int m) {
+ return new Array2DRowRealMatrix(n, m);
+ }
+
+ /**
+ * @param mat Input matrix.
+ * @param n Number of row replicates.
+ * @param m Number of column replicates.
+ * @return a matrix which replicates the input matrix in both directions.
+ */
+ private static RealMatrix repmat(final RealMatrix mat, int n, int m) {
+ final int rd = mat.getRowDimension();
+ final int cd = mat.getColumnDimension();
+ final double[][] d = new double[n * rd][m * cd];
+ for (int r = 0; r < n * rd; r++) {
+ for (int c = 0; c < m * cd; c++) {
+ d[r][c] = mat.getEntry(r % rd, c % cd);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param start Start value.
+ * @param end End value.
+ * @param step Step size.
+ * @return a sequence as column matrix.
+ */
+ private static RealMatrix sequence(double start, double end, double step) {
+ final int size = (int) ((end - start) / step + 1);
+ final double[][] d = new double[size][1];
+ double value = start;
+ for (int r = 0; r < size; r++) {
+ d[r][0] = value;
+ value += step;
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return the maximum of the matrix element values.
+ */
+ private static double max(final RealMatrix m) {
+ double max = -Double.MAX_VALUE;
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double e = m.getEntry(r, c);
+ if (max < e) {
+ max = e;
+ }
+ }
+ }
+ return max;
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return the minimum of the matrix element values.
+ */
+ private static double min(final RealMatrix m) {
+ double min = Double.MAX_VALUE;
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double e = m.getEntry(r, c);
+ if (min > e) {
+ min = e;
+ }
+ }
+ }
+ return min;
+ }
+
+ /**
+ * @param m Input array.
+ * @return the maximum of the array values.
+ */
+ private static double max(final double[] m) {
+ double max = -Double.MAX_VALUE;
+ for (int r = 0; r < m.length; r++) {
+ if (max < m[r]) {
+ max = m[r];
+ }
+ }
+ return max;
+ }
+
+ /**
+ * @param m Input array.
+ * @return the minimum of the array values.
+ */
+ private static double min(final double[] m) {
+ double min = Double.MAX_VALUE;
+ for (int r = 0; r < m.length; r++) {
+ if (min > m[r]) {
+ min = m[r];
+ }
+ }
+ return min;
+ }
+
+ /**
+ * @param indices Input index array.
+ * @return the inverse of the mapping defined by indices.
+ */
+ private static int[] inverse(final int[] indices) {
+ final int[] inverse = new int[indices.length];
+ for (int i = 0; i < indices.length; i++) {
+ inverse[indices[i]] = i;
+ }
+ return inverse;
+ }
+
+ /**
+ * @param indices Input index array.
+ * @return the indices in inverse order (last is first).
+ */
+ private static int[] reverse(final int[] indices) {
+ final int[] reverse = new int[indices.length];
+ for (int i = 0; i < indices.length; i++) {
+ reverse[i] = indices[indices.length - i - 1];
+ }
+ return reverse;
+ }
+
+ /**
+ * @param size Length of random array.
+ * @return an array of Gaussian random numbers.
+ */
+ private double[] randn(int size) {
+ final double[] randn = new double[size];
+ for (int i = 0; i < size; i++) {
+ randn[i] = random.nextGaussian();
+ }
+ return randn;
+ }
+
+ /**
+ * @param size Number of rows.
+ * @param popSize Population size.
+ * @return a 2-dimensional matrix of Gaussian random numbers.
+ */
+ private RealMatrix randn1(int size, int popSize) {
+ final double[][] d = new double[size][popSize];
+ for (int r = 0; r < size; r++) {
+ for (int c = 0; c < popSize; c++) {
+ d[r][c] = random.nextGaussian();
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/MultiDirectionalSimplex.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/MultiDirectionalSimplex.java
new file mode 100644
index 0000000..7ee3acf
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/MultiDirectionalSimplex.java
@@ -0,0 +1,215 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.optim.PointValuePair;
+
+/**
+ * This class implements the multi-directional direct search method.
+ *
+ * @since 3.0
+ */
+public class MultiDirectionalSimplex extends AbstractSimplex {
+ /** Default value for {@link #khi}: {@value}. */
+ private static final double DEFAULT_KHI = 2;
+ /** Default value for {@link #gamma}: {@value}. */
+ private static final double DEFAULT_GAMMA = 0.5;
+ /** Expansion coefficient. */
+ private final double khi;
+ /** Contraction coefficient. */
+ private final double gamma;
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param n Dimension of the simplex.
+ */
+ public MultiDirectionalSimplex(final int n) {
+ this(n, 1d);
+ }
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param n Dimension of the simplex.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ */
+ public MultiDirectionalSimplex(final int n, double sideLength) {
+ this(n, sideLength, DEFAULT_KHI, DEFAULT_GAMMA);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ */
+ public MultiDirectionalSimplex(final int n,
+ final double khi, final double gamma) {
+ this(n, 1d, khi, gamma);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ */
+ public MultiDirectionalSimplex(final int n, double sideLength,
+ final double khi, final double gamma) {
+ super(n, sideLength);
+
+ this.khi = khi;
+ this.gamma = gamma;
+ }
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ */
+ public MultiDirectionalSimplex(final double[] steps) {
+ this(steps, DEFAULT_KHI, DEFAULT_GAMMA);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ * {@link AbstractSimplex#AbstractSimplex(double[])}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ */
+ public MultiDirectionalSimplex(final double[] steps,
+ final double khi, final double gamma) {
+ super(steps);
+
+ this.khi = khi;
+ this.gamma = gamma;
+ }
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ */
+ public MultiDirectionalSimplex(final double[][] referenceSimplex) {
+ this(referenceSimplex, DEFAULT_KHI, DEFAULT_GAMMA);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
+ * if the reference simplex does not contain at least one point.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if there is a dimension mismatch in the reference simplex.
+ */
+ public MultiDirectionalSimplex(final double[][] referenceSimplex,
+ final double khi, final double gamma) {
+ super(referenceSimplex);
+
+ this.khi = khi;
+ this.gamma = gamma;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void iterate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator) {
+ // Save the original simplex.
+ final PointValuePair[] original = getPoints();
+ final PointValuePair best = original[0];
+
+ // Perform a reflection step.
+ final PointValuePair reflected = evaluateNewSimplex(evaluationFunction,
+ original, 1, comparator);
+ if (comparator.compare(reflected, best) < 0) {
+ // Compute the expanded simplex.
+ final PointValuePair[] reflectedSimplex = getPoints();
+ final PointValuePair expanded = evaluateNewSimplex(evaluationFunction,
+ original, khi, comparator);
+ if (comparator.compare(reflected, expanded) <= 0) {
+ // Keep the reflected simplex.
+ setPoints(reflectedSimplex);
+ }
+ // Keep the expanded simplex.
+ return;
+ }
+
+ // Compute the contracted simplex.
+ evaluateNewSimplex(evaluationFunction, original, gamma, comparator);
+
+ }
+
+ /**
+ * Compute and evaluate a new simplex.
+ *
+ * @param evaluationFunction Evaluation function.
+ * @param original Original simplex (to be preserved).
+ * @param coeff Linear coefficient.
+ * @param comparator Comparator to use to sort simplex vertices from best
+ * to poorest.
+ * @return the best point in the transformed simplex.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ */
+ private PointValuePair evaluateNewSimplex(final MultivariateFunction evaluationFunction,
+ final PointValuePair[] original,
+ final double coeff,
+ final Comparator<PointValuePair> comparator) {
+ final double[] xSmallest = original[0].getPointRef();
+ // Perform a linear transformation on all the simplex points,
+ // except the first one.
+ setPoint(0, original[0]);
+ final int dim = getDimension();
+ for (int i = 1; i < getSize(); i++) {
+ final double[] xOriginal = original[i].getPointRef();
+ final double[] xTransformed = new double[dim];
+ for (int j = 0; j < dim; j++) {
+ xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]);
+ }
+ setPoint(i, new PointValuePair(xTransformed, Double.NaN, false));
+ }
+
+ // Evaluate the simplex.
+ evaluate(evaluationFunction, comparator);
+
+ return getPoint(0);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/NelderMeadSimplex.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/NelderMeadSimplex.java
new file mode 100644
index 0000000..f7015ed
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/NelderMeadSimplex.java
@@ -0,0 +1,280 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import java.util.Comparator;
+
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.analysis.MultivariateFunction;
+
+/**
+ * This class implements the Nelder-Mead simplex algorithm.
+ *
+ * @since 3.0
+ */
+public class NelderMeadSimplex extends AbstractSimplex {
+ /** Default value for {@link #rho}: {@value}. */
+ private static final double DEFAULT_RHO = 1;
+ /** Default value for {@link #khi}: {@value}. */
+ private static final double DEFAULT_KHI = 2;
+ /** Default value for {@link #gamma}: {@value}. */
+ private static final double DEFAULT_GAMMA = 0.5;
+ /** Default value for {@link #sigma}: {@value}. */
+ private static final double DEFAULT_SIGMA = 0.5;
+ /** Reflection coefficient. */
+ private final double rho;
+ /** Expansion coefficient. */
+ private final double khi;
+ /** Contraction coefficient. */
+ private final double gamma;
+ /** Shrinkage coefficient. */
+ private final double sigma;
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param n Dimension of the simplex.
+ */
+ public NelderMeadSimplex(final int n) {
+ this(n, 1d);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param n Dimension of the simplex.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ */
+ public NelderMeadSimplex(final int n, double sideLength) {
+ this(n, sideLength,
+ DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ */
+ public NelderMeadSimplex(final int n, double sideLength,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ super(n, sideLength);
+
+ this.rho = rho;
+ this.khi = khi;
+ this.gamma = gamma;
+ this.sigma = sigma;
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int)}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ */
+ public NelderMeadSimplex(final int n,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ this(n, 1d, rho, khi, gamma, sigma);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ */
+ public NelderMeadSimplex(final double[] steps) {
+ this(steps, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ * {@link AbstractSimplex#AbstractSimplex(double[])}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ * @throws IllegalArgumentException if one of the steps is zero.
+ */
+ public NelderMeadSimplex(final double[] steps,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ super(steps);
+
+ this.rho = rho;
+ this.khi = khi;
+ this.gamma = gamma;
+ this.sigma = sigma;
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ */
+ public NelderMeadSimplex(final double[][] referenceSimplex) {
+ this(referenceSimplex, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
+ * if the reference simplex does not contain at least one point.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if there is a dimension mismatch in the reference simplex.
+ */
+ public NelderMeadSimplex(final double[][] referenceSimplex,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ super(referenceSimplex);
+
+ this.rho = rho;
+ this.khi = khi;
+ this.gamma = gamma;
+ this.sigma = sigma;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void iterate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator) {
+ // The simplex has n + 1 points if dimension is n.
+ final int n = getDimension();
+
+ // Interesting values.
+ final PointValuePair best = getPoint(0);
+ final PointValuePair secondBest = getPoint(n - 1);
+ final PointValuePair worst = getPoint(n);
+ final double[] xWorst = worst.getPointRef();
+
+ // Compute the centroid of the best vertices (dismissing the worst
+ // point at index n).
+ final double[] centroid = new double[n];
+ for (int i = 0; i < n; i++) {
+ final double[] x = getPoint(i).getPointRef();
+ for (int j = 0; j < n; j++) {
+ centroid[j] += x[j];
+ }
+ }
+ final double scaling = 1.0 / n;
+ for (int j = 0; j < n; j++) {
+ centroid[j] *= scaling;
+ }
+
+ // compute the reflection point
+ final double[] xR = new double[n];
+ for (int j = 0; j < n; j++) {
+ xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]);
+ }
+ final PointValuePair reflected
+ = new PointValuePair(xR, evaluationFunction.value(xR), false);
+
+ if (comparator.compare(best, reflected) <= 0 &&
+ comparator.compare(reflected, secondBest) < 0) {
+ // Accept the reflected point.
+ replaceWorstPoint(reflected, comparator);
+ } else if (comparator.compare(reflected, best) < 0) {
+ // Compute the expansion point.
+ final double[] xE = new double[n];
+ for (int j = 0; j < n; j++) {
+ xE[j] = centroid[j] + khi * (xR[j] - centroid[j]);
+ }
+ final PointValuePair expanded
+ = new PointValuePair(xE, evaluationFunction.value(xE), false);
+
+ if (comparator.compare(expanded, reflected) < 0) {
+ // Accept the expansion point.
+ replaceWorstPoint(expanded, comparator);
+ } else {
+ // Accept the reflected point.
+ replaceWorstPoint(reflected, comparator);
+ }
+ } else {
+ if (comparator.compare(reflected, worst) < 0) {
+ // Perform an outside contraction.
+ final double[] xC = new double[n];
+ for (int j = 0; j < n; j++) {
+ xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]);
+ }
+ final PointValuePair outContracted
+ = new PointValuePair(xC, evaluationFunction.value(xC), false);
+ if (comparator.compare(outContracted, reflected) <= 0) {
+ // Accept the contraction point.
+ replaceWorstPoint(outContracted, comparator);
+ return;
+ }
+ } else {
+ // Perform an inside contraction.
+ final double[] xC = new double[n];
+ for (int j = 0; j < n; j++) {
+ xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]);
+ }
+ final PointValuePair inContracted
+ = new PointValuePair(xC, evaluationFunction.value(xC), false);
+
+ if (comparator.compare(inContracted, worst) < 0) {
+ // Accept the contraction point.
+ replaceWorstPoint(inContracted, comparator);
+ return;
+ }
+ }
+
+ // Perform a shrink.
+ final double[] xSmallest = getPoint(0).getPointRef();
+ for (int i = 1; i <= n; i++) {
+ final double[] x = getPoint(i).getPoint();
+ for (int j = 0; j < n; j++) {
+ x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]);
+ }
+ setPoint(i, new PointValuePair(x, Double.NaN, false));
+ }
+ evaluate(evaluationFunction, comparator);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizer.java
new file mode 100644
index 0000000..afa8426
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/PowellOptimizer.java
@@ -0,0 +1,299 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.MathUnsupportedOperationException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
+import org.apache.commons.math3.optim.nonlinear.scalar.LineSearch;
+import org.apache.commons.math3.optim.univariate.UnivariatePointValuePair;
+
+/**
+ * Powell's algorithm.
+ * This code is translated and adapted from the Python version of this
+ * algorithm (as implemented in module {@code optimize.py} v0.5 of
+ * <em>SciPy</em>).
+ * <br/>
+ * The default stopping criterion is based on the differences of the
+ * function value between two successive iterations. It is however possible
+ * to define a custom convergence checker that might terminate the algorithm
+ * earlier.
+ * <br/>
+ * Line search is performed by the {@link LineSearch} class.
+ * <br/>
+ * Constraints are not supported: the call to
+ * {@link #optimize(OptimizationData[]) optimize} will throw
+ * {@link MathUnsupportedOperationException} if bounds are passed to it.
+ * In order to impose simple constraints, the objective function must be
+ * wrapped in an adapter like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
+ * MultivariateFunctionMappingAdapter} or
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
+ * MultivariateFunctionPenaltyAdapter}.
+ *
+ * @since 2.2
+ */
+public class PowellOptimizer
+ extends MultivariateOptimizer {
+ /**
+ * Minimum relative tolerance.
+ */
+ private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d);
+ /**
+ * Relative threshold.
+ */
+ private final double relativeThreshold;
+ /**
+ * Absolute threshold.
+ */
+ private final double absoluteThreshold;
+ /**
+ * Line search.
+ */
+ private final LineSearch line;
+
+ /**
+ * This constructor allows to specify a user-defined convergence checker,
+ * in addition to the parameters that control the default convergence
+ * checking procedure.
+ * <br/>
+ * The internal line search tolerances are set to the square-root of their
+ * corresponding value in the multivariate optimizer.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @param checker Convergence checker.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public PowellOptimizer(double rel,
+ double abs,
+ ConvergenceChecker<PointValuePair> checker) {
+ this(rel, abs, FastMath.sqrt(rel), FastMath.sqrt(abs), checker);
+ }
+
+ /**
+ * This constructor allows to specify a user-defined convergence checker,
+ * in addition to the parameters that control the default convergence
+ * checking procedure and the line search tolerances.
+ *
+ * @param rel Relative threshold for this optimizer.
+ * @param abs Absolute threshold for this optimizer.
+ * @param lineRel Relative threshold for the internal line search optimizer.
+ * @param lineAbs Absolute threshold for the internal line search optimizer.
+ * @param checker Convergence checker.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public PowellOptimizer(double rel,
+ double abs,
+ double lineRel,
+ double lineAbs,
+ ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+
+ if (rel < MIN_RELATIVE_TOLERANCE) {
+ throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true);
+ }
+ if (abs <= 0) {
+ throw new NotStrictlyPositiveException(abs);
+ }
+ relativeThreshold = rel;
+ absoluteThreshold = abs;
+
+ // Create the line search optimizer.
+ line = new LineSearch(this,
+ lineRel,
+ lineAbs,
+ 1d);
+ }
+
+ /**
+ * The parameters control the default convergence checking procedure.
+ * <br/>
+ * The internal line search tolerances are set to the square-root of their
+ * corresponding value in the multivariate optimizer.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public PowellOptimizer(double rel,
+ double abs) {
+ this(rel, abs, null);
+ }
+
+ /**
+ * Builds an instance with the default convergence checking procedure.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @param lineRel Relative threshold for the internal line search optimizer.
+ * @param lineAbs Absolute threshold for the internal line search optimizer.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public PowellOptimizer(double rel,
+ double abs,
+ double lineRel,
+ double lineAbs) {
+ this(rel, abs, lineRel, lineAbs, null);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ checkParameters();
+
+ final GoalType goal = getGoalType();
+ final double[] guess = getStartPoint();
+ final int n = guess.length;
+
+ final double[][] direc = new double[n][n];
+ for (int i = 0; i < n; i++) {
+ direc[i][i] = 1;
+ }
+
+ final ConvergenceChecker<PointValuePair> checker
+ = getConvergenceChecker();
+
+ double[] x = guess;
+ double fVal = computeObjectiveValue(x);
+ double[] x1 = x.clone();
+ while (true) {
+ incrementIterationCount();
+
+ double fX = fVal;
+ double fX2 = 0;
+ double delta = 0;
+ int bigInd = 0;
+ double alphaMin = 0;
+
+ for (int i = 0; i < n; i++) {
+ final double[] d = MathArrays.copyOf(direc[i]);
+
+ fX2 = fVal;
+
+ final UnivariatePointValuePair optimum = line.search(x, d);
+ fVal = optimum.getValue();
+ alphaMin = optimum.getPoint();
+ final double[][] result = newPointAndDirection(x, d, alphaMin);
+ x = result[0];
+
+ if ((fX2 - fVal) > delta) {
+ delta = fX2 - fVal;
+ bigInd = i;
+ }
+ }
+
+ // Default convergence check.
+ boolean stop = 2 * (fX - fVal) <=
+ (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) +
+ absoluteThreshold);
+
+ final PointValuePair previous = new PointValuePair(x1, fX);
+ final PointValuePair current = new PointValuePair(x, fVal);
+ if (!stop && checker != null) { // User-defined stopping criteria.
+ stop = checker.converged(getIterations(), previous, current);
+ }
+ if (stop) {
+ if (goal == GoalType.MINIMIZE) {
+ return (fVal < fX) ? current : previous;
+ } else {
+ return (fVal > fX) ? current : previous;
+ }
+ }
+
+ final double[] d = new double[n];
+ final double[] x2 = new double[n];
+ for (int i = 0; i < n; i++) {
+ d[i] = x[i] - x1[i];
+ x2[i] = 2 * x[i] - x1[i];
+ }
+
+ x1 = x.clone();
+ fX2 = computeObjectiveValue(x2);
+
+ if (fX > fX2) {
+ double t = 2 * (fX + fX2 - 2 * fVal);
+ double temp = fX - fVal - delta;
+ t *= temp * temp;
+ temp = fX - fX2;
+ t -= delta * temp * temp;
+
+ if (t < 0.0) {
+ final UnivariatePointValuePair optimum = line.search(x, d);
+ fVal = optimum.getValue();
+ alphaMin = optimum.getPoint();
+ final double[][] result = newPointAndDirection(x, d, alphaMin);
+ x = result[0];
+
+ final int lastInd = n - 1;
+ direc[bigInd] = direc[lastInd];
+ direc[lastInd] = result[1];
+ }
+ }
+ }
+ }
+
+ /**
+ * Compute a new point (in the original space) and a new direction
+ * vector, resulting from the line search.
+ *
+ * @param p Point used in the line search.
+ * @param d Direction used in the line search.
+ * @param optimum Optimum found by the line search.
+ * @return a 2-element array containing the new point (at index 0) and
+ * the new direction (at index 1).
+ */
+ private double[][] newPointAndDirection(double[] p,
+ double[] d,
+ double optimum) {
+ final int n = p.length;
+ final double[] nP = new double[n];
+ final double[] nD = new double[n];
+ for (int i = 0; i < n; i++) {
+ nD[i] = d[i] * optimum;
+ nP[i] = p[i] + nD[i];
+ }
+
+ final double[][] result = new double[2][];
+ result[0] = nP;
+ result[1] = nD;
+
+ return result;
+ }
+
+ /**
+ * @throws MathUnsupportedOperationException if bounds were passed to the
+ * {@link #optimize(OptimizationData[]) optimize} method.
+ */
+ private void checkParameters() {
+ if (getLowerBound() != null ||
+ getUpperBound() != null) {
+ throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java
new file mode 100644
index 0000000..4bb6b64
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java
@@ -0,0 +1,222 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
+
+import java.util.Comparator;
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.MathUnsupportedOperationException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
+import org.apache.commons.math3.optim.ConvergenceChecker;
+import org.apache.commons.math3.optim.PointValuePair;
+import org.apache.commons.math3.optim.SimpleValueChecker;
+import org.apache.commons.math3.optim.OptimizationData;
+import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
+
+/**
+ * This class implements simplex-based direct search optimization.
+ *
+ * <p>
+ * Direct search methods only use objective function values, they do
+ * not need derivatives and don't either try to compute approximation
+ * of the derivatives. According to a 1996 paper by Margaret H. Wright
+ * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
+ * Search Methods: Once Scorned, Now Respectable</a>), they are used
+ * when either the computation of the derivative is impossible (noisy
+ * functions, unpredictable discontinuities) or difficult (complexity,
+ * computation cost). In the first cases, rather than an optimum, a
+ * <em>not too bad</em> point is desired. In the latter cases, an
+ * optimum is desired but cannot be reasonably found. In all cases
+ * direct search methods can be useful.
+ * </p>
+ * <p>
+ * Simplex-based direct search methods are based on comparison of
+ * the objective function values at the vertices of a simplex (which is a
+ * set of n+1 points in dimension n) that is updated by the algorithms
+ * steps.
+ * <p>
+ * <p>
+ * The simplex update procedure ({@link NelderMeadSimplex} or
+ * {@link MultiDirectionalSimplex}) must be passed to the
+ * {@code optimize} method.
+ * </p>
+ * <p>
+ * Each call to {@code optimize} will re-use the start configuration of
+ * the current simplex and move it such that its first vertex is at the
+ * provided start point of the optimization.
+ * If the {@code optimize} method is called to solve a different problem
+ * and the number of parameters change, the simplex must be re-initialized
+ * to one with the appropriate dimensions.
+ * </p>
+ * <p>
+ * Convergence is checked by providing the <em>worst</em> points of
+ * previous and current simplex to the convergence checker, not the best
+ * ones.
+ * </p>
+ * <p>
+ * This simplex optimizer implementation does not directly support constrained
+ * optimization with simple bounds; so, for such optimizations, either a more
+ * dedicated algorithm must be used like
+ * {@link CMAESOptimizer} or {@link BOBYQAOptimizer}, or the objective
+ * function must be wrapped in an adapter like
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
+ * MultivariateFunctionMappingAdapter} or
+ * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
+ * MultivariateFunctionPenaltyAdapter}.
+ * <br/>
+ * The call to {@link #optimize(OptimizationData[]) optimize} will throw
+ * {@link MathUnsupportedOperationException} if bounds are passed to it.
+ * </p>
+ *
+ * @since 3.0
+ */
+public class SimplexOptimizer extends MultivariateOptimizer {
+ /** Simplex update rule. */
+ private AbstractSimplex simplex;
+
+ /**
+ * @param checker Convergence checker.
+ */
+ public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ */
+ public SimplexOptimizer(double rel, double abs) {
+ this(new SimpleValueChecker(rel, abs));
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @param optData Optimization data. In addition to those documented in
+ * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
+ * MultivariateOptimizer}, this method will register the following data:
+ * <ul>
+ * <li>{@link AbstractSimplex}</li>
+ * </ul>
+ * @return {@inheritDoc}
+ */
+ @Override
+ public PointValuePair optimize(OptimizationData... optData) {
+ // Set up base class and perform computation.
+ return super.optimize(optData);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ checkParameters();
+
+ // Indirect call to "computeObjectiveValue" in order to update the
+ // evaluations counter.
+ final MultivariateFunction evalFunc
+ = new MultivariateFunction() {
+ /** {@inheritDoc} */
+ public double value(double[] point) {
+ return computeObjectiveValue(point);
+ }
+ };
+
+ final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
+ final Comparator<PointValuePair> comparator
+ = new Comparator<PointValuePair>() {
+ /** {@inheritDoc} */
+ public int compare(final PointValuePair o1,
+ final PointValuePair o2) {
+ final double v1 = o1.getValue();
+ final double v2 = o2.getValue();
+ return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
+ }
+ };
+
+ // Initialize search.
+ simplex.build(getStartPoint());
+ simplex.evaluate(evalFunc, comparator);
+
+ PointValuePair[] previous = null;
+ int iteration = 0;
+ final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
+ while (true) {
+ if (getIterations() > 0) {
+ boolean converged = true;
+ for (int i = 0; i < simplex.getSize(); i++) {
+ PointValuePair prev = previous[i];
+ converged = converged &&
+ checker.converged(iteration, prev, simplex.getPoint(i));
+ }
+ if (converged) {
+ // We have found an optimum.
+ return simplex.getPoint(0);
+ }
+ }
+
+ // We still need to search.
+ previous = simplex.getPoints();
+ simplex.iterate(evalFunc, comparator);
+
+ incrementIterationCount();
+ }
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data.
+ * The following data will be looked for:
+ * <ul>
+ * <li>{@link AbstractSimplex}</li>
+ * </ul>
+ */
+ @Override
+ protected void parseOptimizationData(OptimizationData... optData) {
+ // Allow base class to register its own data.
+ super.parseOptimizationData(optData);
+
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof AbstractSimplex) {
+ simplex = (AbstractSimplex) data;
+ // If more data must be parsed, this statement _must_ be
+ // changed to "continue".
+ break;
+ }
+ }
+ }
+
+ /**
+ * @throws MathUnsupportedOperationException if bounds were passed to the
+ * {@link #optimize(OptimizationData[]) optimize} method.
+ * @throws NullArgumentException if no initial simplex was passed to the
+ * {@link #optimize(OptimizationData[]) optimize} method.
+ */
+ private void checkParameters() {
+ if (simplex == null) {
+ throw new NullArgumentException();
+ }
+ if (getLowerBound() != null ||
+ getUpperBound() != null) {
+ throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/package-info.java
new file mode 100644
index 0000000..4afeb50
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/noderiv/package-info.java
@@ -0,0 +1,21 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/**
+ * This package provides optimization algorithms that do not require derivatives.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
diff --git a/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/package-info.java b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/package-info.java
new file mode 100644
index 0000000..d65533a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optim/nonlinear/scalar/package-info.java
@@ -0,0 +1,21 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/**
+ * Algorithms for optimizing a scalar function.
+ */
+package org.apache.commons.math3.optim.nonlinear.scalar;