summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java')
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java371
1 files changed, 371 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java b/src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java
new file mode 100644
index 0000000..375f12e
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java
@@ -0,0 +1,371 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.fitting;
+
+import java.util.Arrays;
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.function.Gaussian;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Fits points to a {@link
+ * org.apache.commons.math3.analysis.function.Gaussian.Parametric Gaussian} function.
+ * <p>
+ * Usage example:
+ * <pre>
+ * GaussianFitter fitter = new GaussianFitter(
+ * new LevenbergMarquardtOptimizer());
+ * fitter.addObservedPoint(4.0254623, 531026.0);
+ * fitter.addObservedPoint(4.03128248, 984167.0);
+ * fitter.addObservedPoint(4.03839603, 1887233.0);
+ * fitter.addObservedPoint(4.04421621, 2687152.0);
+ * fitter.addObservedPoint(4.05132976, 3461228.0);
+ * fitter.addObservedPoint(4.05326982, 3580526.0);
+ * fitter.addObservedPoint(4.05779662, 3439750.0);
+ * fitter.addObservedPoint(4.0636168, 2877648.0);
+ * fitter.addObservedPoint(4.06943698, 2175960.0);
+ * fitter.addObservedPoint(4.07525716, 1447024.0);
+ * fitter.addObservedPoint(4.08237071, 717104.0);
+ * fitter.addObservedPoint(4.08366408, 620014.0);
+ * double[] parameters = fitter.fit();
+ * </pre>
+ *
+ * @since 2.2
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ */
+@Deprecated
+public class GaussianFitter extends CurveFitter<Gaussian.Parametric> {
+ /**
+ * Constructs an instance using the specified optimizer.
+ *
+ * @param optimizer Optimizer to use for the fitting.
+ */
+ public GaussianFitter(DifferentiableMultivariateVectorOptimizer optimizer) {
+ super(optimizer);
+ }
+
+ /**
+ * Fits a Gaussian function to the observed points.
+ *
+ * @param initialGuess First guess values in the following order:
+ * <ul>
+ * <li>Norm</li>
+ * <li>Mean</li>
+ * <li>Sigma</li>
+ * </ul>
+ * @return the parameters of the Gaussian function that best fits the
+ * observed points (in the same order as above).
+ * @since 3.0
+ */
+ public double[] fit(double[] initialGuess) {
+ final Gaussian.Parametric f = new Gaussian.Parametric() {
+ /** {@inheritDoc} */
+ @Override
+ public double value(double x, double ... p) {
+ double v = Double.POSITIVE_INFINITY;
+ try {
+ v = super.value(x, p);
+ } catch (NotStrictlyPositiveException e) { // NOPMD
+ // Do nothing.
+ }
+ return v;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public double[] gradient(double x, double ... p) {
+ double[] v = { Double.POSITIVE_INFINITY,
+ Double.POSITIVE_INFINITY,
+ Double.POSITIVE_INFINITY };
+ try {
+ v = super.gradient(x, p);
+ } catch (NotStrictlyPositiveException e) { // NOPMD
+ // Do nothing.
+ }
+ return v;
+ }
+ };
+
+ return fit(f, initialGuess);
+ }
+
+ /**
+ * Fits a Gaussian function to the observed points.
+ *
+ * @return the parameters of the Gaussian function that best fits the
+ * observed points (in the same order as above).
+ */
+ public double[] fit() {
+ final double[] guess = (new ParameterGuesser(getObservations())).guess();
+ return fit(guess);
+ }
+
+ /**
+ * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
+ * of a {@link org.apache.commons.math3.analysis.function.Gaussian.Parametric}
+ * based on the specified observed points.
+ */
+ public static class ParameterGuesser {
+ /** Normalization factor. */
+ private final double norm;
+ /** Mean. */
+ private final double mean;
+ /** Standard deviation. */
+ private final double sigma;
+
+ /**
+ * Constructs instance with the specified observed points.
+ *
+ * @param observations Observed points from which to guess the
+ * parameters of the Gaussian.
+ * @throws NullArgumentException if {@code observations} is
+ * {@code null}.
+ * @throws NumberIsTooSmallException if there are less than 3
+ * observations.
+ */
+ public ParameterGuesser(WeightedObservedPoint[] observations) {
+ if (observations == null) {
+ throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
+ }
+ if (observations.length < 3) {
+ throw new NumberIsTooSmallException(observations.length, 3, true);
+ }
+
+ final WeightedObservedPoint[] sorted = sortObservations(observations);
+ final double[] params = basicGuess(sorted);
+
+ norm = params[0];
+ mean = params[1];
+ sigma = params[2];
+ }
+
+ /**
+ * Gets an estimation of the parameters.
+ *
+ * @return the guessed parameters, in the following order:
+ * <ul>
+ * <li>Normalization factor</li>
+ * <li>Mean</li>
+ * <li>Standard deviation</li>
+ * </ul>
+ */
+ public double[] guess() {
+ return new double[] { norm, mean, sigma };
+ }
+
+ /**
+ * Sort the observations.
+ *
+ * @param unsorted Input observations.
+ * @return the input observations, sorted.
+ */
+ private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
+ final WeightedObservedPoint[] observations = unsorted.clone();
+ final Comparator<WeightedObservedPoint> cmp
+ = new Comparator<WeightedObservedPoint>() {
+ /** {@inheritDoc} */
+ public int compare(WeightedObservedPoint p1,
+ WeightedObservedPoint p2) {
+ if (p1 == null && p2 == null) {
+ return 0;
+ }
+ if (p1 == null) {
+ return -1;
+ }
+ if (p2 == null) {
+ return 1;
+ }
+ final int cmpX = Double.compare(p1.getX(), p2.getX());
+ if (cmpX < 0) {
+ return -1;
+ }
+ if (cmpX > 0) {
+ return 1;
+ }
+ final int cmpY = Double.compare(p1.getY(), p2.getY());
+ if (cmpY < 0) {
+ return -1;
+ }
+ if (cmpY > 0) {
+ return 1;
+ }
+ final int cmpW = Double.compare(p1.getWeight(), p2.getWeight());
+ if (cmpW < 0) {
+ return -1;
+ }
+ if (cmpW > 0) {
+ return 1;
+ }
+ return 0;
+ }
+ };
+
+ Arrays.sort(observations, cmp);
+ return observations;
+ }
+
+ /**
+ * Guesses the parameters based on the specified observed points.
+ *
+ * @param points Observed points, sorted.
+ * @return the guessed parameters (normalization factor, mean and
+ * sigma).
+ */
+ private double[] basicGuess(WeightedObservedPoint[] points) {
+ final int maxYIdx = findMaxY(points);
+ final double n = points[maxYIdx].getY();
+ final double m = points[maxYIdx].getX();
+
+ double fwhmApprox;
+ try {
+ final double halfY = n + ((m - n) / 2);
+ final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
+ final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
+ fwhmApprox = fwhmX2 - fwhmX1;
+ } catch (OutOfRangeException e) {
+ // TODO: Exceptions should not be used for flow control.
+ fwhmApprox = points[points.length - 1].getX() - points[0].getX();
+ }
+ final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2)));
+
+ return new double[] { n, m, s };
+ }
+
+ /**
+ * Finds index of point in specified points with the largest Y.
+ *
+ * @param points Points to search.
+ * @return the index in specified points array.
+ */
+ private int findMaxY(WeightedObservedPoint[] points) {
+ int maxYIdx = 0;
+ for (int i = 1; i < points.length; i++) {
+ if (points[i].getY() > points[maxYIdx].getY()) {
+ maxYIdx = i;
+ }
+ }
+ return maxYIdx;
+ }
+
+ /**
+ * Interpolates using the specified points to determine X at the
+ * specified Y.
+ *
+ * @param points Points to use for interpolation.
+ * @param startIdx Index within points from which to start the search for
+ * interpolation bounds points.
+ * @param idxStep Index step for searching interpolation bounds points.
+ * @param y Y value for which X should be determined.
+ * @return the value of X for the specified Y.
+ * @throws ZeroException if {@code idxStep} is 0.
+ * @throws OutOfRangeException if specified {@code y} is not within the
+ * range of the specified {@code points}.
+ */
+ private double interpolateXAtY(WeightedObservedPoint[] points,
+ int startIdx,
+ int idxStep,
+ double y)
+ throws OutOfRangeException {
+ if (idxStep == 0) {
+ throw new ZeroException();
+ }
+ final WeightedObservedPoint[] twoPoints
+ = getInterpolationPointsForY(points, startIdx, idxStep, y);
+ final WeightedObservedPoint p1 = twoPoints[0];
+ final WeightedObservedPoint p2 = twoPoints[1];
+ if (p1.getY() == y) {
+ return p1.getX();
+ }
+ if (p2.getY() == y) {
+ return p2.getX();
+ }
+ return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
+ (p2.getY() - p1.getY()));
+ }
+
+ /**
+ * Gets the two bounding interpolation points from the specified points
+ * suitable for determining X at the specified Y.
+ *
+ * @param points Points to use for interpolation.
+ * @param startIdx Index within points from which to start search for
+ * interpolation bounds points.
+ * @param idxStep Index step for search for interpolation bounds points.
+ * @param y Y value for which X should be determined.
+ * @return the array containing two points suitable for determining X at
+ * the specified Y.
+ * @throws ZeroException if {@code idxStep} is 0.
+ * @throws OutOfRangeException if specified {@code y} is not within the
+ * range of the specified {@code points}.
+ */
+ private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
+ int startIdx,
+ int idxStep,
+ double y)
+ throws OutOfRangeException {
+ if (idxStep == 0) {
+ throw new ZeroException();
+ }
+ for (int i = startIdx;
+ idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
+ i += idxStep) {
+ final WeightedObservedPoint p1 = points[i];
+ final WeightedObservedPoint p2 = points[i + idxStep];
+ if (isBetween(y, p1.getY(), p2.getY())) {
+ if (idxStep < 0) {
+ return new WeightedObservedPoint[] { p2, p1 };
+ } else {
+ return new WeightedObservedPoint[] { p1, p2 };
+ }
+ }
+ }
+
+ // Boundaries are replaced by dummy values because the raised
+ // exception is caught and the message never displayed.
+ // TODO: Exceptions should not be used for flow control.
+ throw new OutOfRangeException(y,
+ Double.NEGATIVE_INFINITY,
+ Double.POSITIVE_INFINITY);
+ }
+
+ /**
+ * Determines whether a value is between two other values.
+ *
+ * @param value Value to test whether it is between {@code boundary1}
+ * and {@code boundary2}.
+ * @param boundary1 One end of the range.
+ * @param boundary2 Other end of the range.
+ * @return {@code true} if {@code value} is between {@code boundary1} and
+ * {@code boundary2} (inclusive), {@code false} otherwise.
+ */
+ private boolean isBetween(double value,
+ double boundary1,
+ double boundary2) {
+ return (value >= boundary1 && value <= boundary2) ||
+ (value >= boundary2 && value <= boundary1);
+ }
+ }
+}