summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java311
1 files changed, 311 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java
new file mode 100644
index 0000000..ee16472
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java
@@ -0,0 +1,311 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.analysis.solvers.BrentSolver;
+import org.apache.commons.math3.analysis.solvers.UnivariateSolver;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.SimpleValueChecker;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Non-linear conjugate gradient optimizer.
+ * <p>
+ * This class supports both the Fletcher-Reeves and the Polak-Ribi&egrave;re
+ * update formulas for the conjugate search directions. It also supports
+ * optional preconditioning.
+ * </p>
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ *
+ */
+@Deprecated
+public class NonLinearConjugateGradientOptimizer
+ extends AbstractScalarDifferentiableOptimizer {
+ /** Update formula for the beta parameter. */
+ private final ConjugateGradientFormula updateFormula;
+ /** Preconditioner (may be null). */
+ private final Preconditioner preconditioner;
+ /** solver to use in the line search (may be null). */
+ private final UnivariateSolver solver;
+ /** Initial step used to bracket the optimum in line search. */
+ private double initialStep;
+ /** Current point. */
+ private double[] point;
+
+ /**
+ * Constructor with default {@link SimpleValueChecker checker},
+ * {@link BrentSolver line search solver} and
+ * {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula) {
+ this(updateFormula,
+ new SimpleValueChecker());
+ }
+
+ /**
+ * Constructor with default {@link BrentSolver line search solver} and
+ * {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ */
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
+ ConvergenceChecker<PointValuePair> checker) {
+ this(updateFormula,
+ checker,
+ new BrentSolver(),
+ new IdentityPreconditioner());
+ }
+
+
+ /**
+ * Constructor with default {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param lineSearchSolver Solver to use during line search.
+ */
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ final UnivariateSolver lineSearchSolver) {
+ this(updateFormula,
+ checker,
+ lineSearchSolver,
+ new IdentityPreconditioner());
+ }
+
+ /**
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param lineSearchSolver Solver to use during line search.
+ * @param preconditioner Preconditioner.
+ */
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ final UnivariateSolver lineSearchSolver,
+ final Preconditioner preconditioner) {
+ super(checker);
+
+ this.updateFormula = updateFormula;
+ solver = lineSearchSolver;
+ this.preconditioner = preconditioner;
+ initialStep = 1.0;
+ }
+
+ /**
+ * Set the initial step used to bracket the optimum in line search.
+ * <p>
+ * The initial step is a factor with respect to the search direction,
+ * which itself is roughly related to the gradient of the function
+ * </p>
+ * @param initialStep initial step used to bracket the optimum in line search,
+ * if a non-positive value is used, the initial step is reset to its
+ * default value of 1.0
+ */
+ public void setInitialStep(final double initialStep) {
+ if (initialStep <= 0) {
+ this.initialStep = 1.0;
+ } else {
+ this.initialStep = initialStep;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
+ point = getStartPoint();
+ final GoalType goal = getGoalType();
+ final int n = point.length;
+ double[] r = computeObjectiveGradient(point);
+ if (goal == GoalType.MINIMIZE) {
+ for (int i = 0; i < n; ++i) {
+ r[i] = -r[i];
+ }
+ }
+
+ // Initial search direction.
+ double[] steepestDescent = preconditioner.precondition(point, r);
+ double[] searchDirection = steepestDescent.clone();
+
+ double delta = 0;
+ for (int i = 0; i < n; ++i) {
+ delta += r[i] * searchDirection[i];
+ }
+
+ PointValuePair current = null;
+ int iter = 0;
+ int maxEval = getMaxEvaluations();
+ while (true) {
+ ++iter;
+
+ final double objective = computeObjectiveValue(point);
+ PointValuePair previous = current;
+ current = new PointValuePair(point, objective);
+ if (previous != null && checker.converged(iter, previous, current)) {
+ // We have found an optimum.
+ return current;
+ }
+
+ // Find the optimal step in the search direction.
+ final UnivariateFunction lsf = new LineSearchFunction(searchDirection);
+ final double uB = findUpperBound(lsf, 0, initialStep);
+ // XXX Last parameters is set to a value close to zero in order to
+ // work around the divergence problem in the "testCircleFitting"
+ // unit test (see MATH-439).
+ final double step = solver.solve(maxEval, lsf, 0, uB, 1e-15);
+ maxEval -= solver.getEvaluations(); // Subtract used up evaluations.
+
+ // Validate new point.
+ for (int i = 0; i < point.length; ++i) {
+ point[i] += step * searchDirection[i];
+ }
+
+ r = computeObjectiveGradient(point);
+ if (goal == GoalType.MINIMIZE) {
+ for (int i = 0; i < n; ++i) {
+ r[i] = -r[i];
+ }
+ }
+
+ // Compute beta.
+ final double deltaOld = delta;
+ final double[] newSteepestDescent = preconditioner.precondition(point, r);
+ delta = 0;
+ for (int i = 0; i < n; ++i) {
+ delta += r[i] * newSteepestDescent[i];
+ }
+
+ final double beta;
+ if (updateFormula == ConjugateGradientFormula.FLETCHER_REEVES) {
+ beta = delta / deltaOld;
+ } else {
+ double deltaMid = 0;
+ for (int i = 0; i < r.length; ++i) {
+ deltaMid += r[i] * steepestDescent[i];
+ }
+ beta = (delta - deltaMid) / deltaOld;
+ }
+ steepestDescent = newSteepestDescent;
+
+ // Compute conjugate search direction.
+ if (iter % n == 0 ||
+ beta < 0) {
+ // Break conjugation: reset search direction.
+ searchDirection = steepestDescent.clone();
+ } else {
+ // Compute new conjugate search direction.
+ for (int i = 0; i < n; ++i) {
+ searchDirection[i] = steepestDescent[i] + beta * searchDirection[i];
+ }
+ }
+ }
+ }
+
+ /**
+ * Find the upper bound b ensuring bracketing of a root between a and b.
+ *
+ * @param f function whose root must be bracketed.
+ * @param a lower bound of the interval.
+ * @param h initial step to try.
+ * @return b such that f(a) and f(b) have opposite signs.
+ * @throws MathIllegalStateException if no bracket can be found.
+ */
+ private double findUpperBound(final UnivariateFunction f,
+ final double a, final double h) {
+ final double yA = f.value(a);
+ double yB = yA;
+ for (double step = h; step < Double.MAX_VALUE; step *= FastMath.max(2, yA / yB)) {
+ final double b = a + step;
+ yB = f.value(b);
+ if (yA * yB <= 0) {
+ return b;
+ }
+ }
+ throw new MathIllegalStateException(LocalizedFormats.UNABLE_TO_BRACKET_OPTIMUM_IN_LINE_SEARCH);
+ }
+
+ /** Default identity preconditioner. */
+ public static class IdentityPreconditioner implements Preconditioner {
+
+ /** {@inheritDoc} */
+ public double[] precondition(double[] variables, double[] r) {
+ return r.clone();
+ }
+ }
+
+ /** Internal class for line search.
+ * <p>
+ * The function represented by this class is the dot product of
+ * the objective function gradient and the search direction. Its
+ * value is zero when the gradient is orthogonal to the search
+ * direction, i.e. when the objective function value is a local
+ * extremum along the search direction.
+ * </p>
+ */
+ private class LineSearchFunction implements UnivariateFunction {
+ /** Search direction. */
+ private final double[] searchDirection;
+
+ /** Simple constructor.
+ * @param searchDirection search direction
+ */
+ LineSearchFunction(final double[] searchDirection) {
+ this.searchDirection = searchDirection;
+ }
+
+ /** {@inheritDoc} */
+ public double value(double x) {
+ // current point in the search direction
+ final double[] shiftedPoint = point.clone();
+ for (int i = 0; i < shiftedPoint.length; ++i) {
+ shiftedPoint[i] += x * searchDirection[i];
+ }
+
+ // gradient of the objective function
+ final double[] gradient = computeObjectiveGradient(shiftedPoint);
+
+ // dot product with the search direction
+ double dotProduct = 0;
+ for (int i = 0; i < gradient.length; ++i) {
+ dotProduct += gradient[i] * searchDirection[i];
+ }
+
+ return dotProduct;
+ }
+ }
+}