summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java')
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java238
1 files changed, 238 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java b/src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java
new file mode 100644
index 0000000..1e5dbda
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java
@@ -0,0 +1,238 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.util.Precision;
+
+
+/**
+ * Solves a linear problem using the Two-Phase Simplex Method.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class SimplexSolver extends AbstractLinearOptimizer {
+
+ /** Default amount of error to accept for algorithm convergence. */
+ private static final double DEFAULT_EPSILON = 1.0e-6;
+
+ /** Default amount of error to accept in floating point comparisons (as ulps). */
+ private static final int DEFAULT_ULPS = 10;
+
+ /** Amount of error to accept for algorithm convergence. */
+ private final double epsilon;
+
+ /** Amount of error to accept in floating point comparisons (as ulps). */
+ private final int maxUlps;
+
+ /**
+ * Build a simplex solver with default settings.
+ */
+ public SimplexSolver() {
+ this(DEFAULT_EPSILON, DEFAULT_ULPS);
+ }
+
+ /**
+ * Build a simplex solver with a specified accepted amount of error
+ * @param epsilon the amount of error to accept for algorithm convergence
+ * @param maxUlps amount of error to accept in floating point comparisons
+ */
+ public SimplexSolver(final double epsilon, final int maxUlps) {
+ this.epsilon = epsilon;
+ this.maxUlps = maxUlps;
+ }
+
+ /**
+ * Returns the column with the most negative coefficient in the objective function row.
+ * @param tableau simple tableau for the problem
+ * @return column with the most negative coefficient
+ */
+ private Integer getPivotColumn(SimplexTableau tableau) {
+ double minValue = 0;
+ Integer minPos = null;
+ for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) {
+ final double entry = tableau.getEntry(0, i);
+ // check if the entry is strictly smaller than the current minimum
+ // do not use a ulp/epsilon check
+ if (entry < minValue) {
+ minValue = entry;
+ minPos = i;
+ }
+ }
+ return minPos;
+ }
+
+ /**
+ * Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
+ * @param tableau simple tableau for the problem
+ * @param col the column to test the ratio of. See {@link #getPivotColumn(SimplexTableau)}
+ * @return row with the minimum ratio
+ */
+ private Integer getPivotRow(SimplexTableau tableau, final int col) {
+ // create a list of all the rows that tie for the lowest score in the minimum ratio test
+ List<Integer> minRatioPositions = new ArrayList<Integer>();
+ double minRatio = Double.MAX_VALUE;
+ for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
+ final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
+ final double entry = tableau.getEntry(i, col);
+
+ if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
+ final double ratio = rhs / entry;
+ // check if the entry is strictly equal to the current min ratio
+ // do not use a ulp/epsilon check
+ final int cmp = Double.compare(ratio, minRatio);
+ if (cmp == 0) {
+ minRatioPositions.add(i);
+ } else if (cmp < 0) {
+ minRatio = ratio;
+ minRatioPositions = new ArrayList<Integer>();
+ minRatioPositions.add(i);
+ }
+ }
+ }
+
+ if (minRatioPositions.size() == 0) {
+ return null;
+ } else if (minRatioPositions.size() > 1) {
+ // there's a degeneracy as indicated by a tie in the minimum ratio test
+
+ // 1. check if there's an artificial variable that can be forced out of the basis
+ if (tableau.getNumArtificialVariables() > 0) {
+ for (Integer row : minRatioPositions) {
+ for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
+ int column = i + tableau.getArtificialVariableOffset();
+ final double entry = tableau.getEntry(row, column);
+ if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
+ return row;
+ }
+ }
+ }
+ }
+
+ // 2. apply Bland's rule to prevent cycling:
+ // take the row for which the corresponding basic variable has the smallest index
+ //
+ // see http://www.stanford.edu/class/msande310/blandrule.pdf
+ // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
+ //
+ // Additional heuristic: if we did not get a solution after half of maxIterations
+ // revert to the simple case of just returning the top-most row
+ // This heuristic is based on empirical data gathered while investigating MATH-828.
+ if (getIterations() < getMaxIterations() / 2) {
+ Integer minRow = null;
+ int minIndex = tableau.getWidth();
+ final int varStart = tableau.getNumObjectiveFunctions();
+ final int varEnd = tableau.getWidth() - 1;
+ for (Integer row : minRatioPositions) {
+ for (int i = varStart; i < varEnd && !row.equals(minRow); i++) {
+ final Integer basicRow = tableau.getBasicRow(i);
+ if (basicRow != null && basicRow.equals(row) && i < minIndex) {
+ minIndex = i;
+ minRow = row;
+ }
+ }
+ }
+ return minRow;
+ }
+ }
+ return minRatioPositions.get(0);
+ }
+
+ /**
+ * Runs one iteration of the Simplex method on the given model.
+ * @param tableau simple tableau for the problem
+ * @throws MaxCountExceededException if the maximal iteration count has been exceeded
+ * @throws UnboundedSolutionException if the model is found not to have a bounded solution
+ */
+ protected void doIteration(final SimplexTableau tableau)
+ throws MaxCountExceededException, UnboundedSolutionException {
+
+ incrementIterationsCounter();
+
+ Integer pivotCol = getPivotColumn(tableau);
+ Integer pivotRow = getPivotRow(tableau, pivotCol);
+ if (pivotRow == null) {
+ throw new UnboundedSolutionException();
+ }
+
+ // set the pivot element to 1
+ double pivotVal = tableau.getEntry(pivotRow, pivotCol);
+ tableau.divideRow(pivotRow, pivotVal);
+
+ // set the rest of the pivot column to 0
+ for (int i = 0; i < tableau.getHeight(); i++) {
+ if (i != pivotRow) {
+ final double multiplier = tableau.getEntry(i, pivotCol);
+ tableau.subtractRow(i, pivotRow, multiplier);
+ }
+ }
+ }
+
+ /**
+ * Solves Phase 1 of the Simplex method.
+ * @param tableau simple tableau for the problem
+ * @throws MaxCountExceededException if the maximal iteration count has been exceeded
+ * @throws UnboundedSolutionException if the model is found not to have a bounded solution
+ * @throws NoFeasibleSolutionException if there is no feasible solution
+ */
+ protected void solvePhase1(final SimplexTableau tableau)
+ throws MaxCountExceededException, UnboundedSolutionException, NoFeasibleSolutionException {
+
+ // make sure we're in Phase 1
+ if (tableau.getNumArtificialVariables() == 0) {
+ return;
+ }
+
+ while (!tableau.isOptimal()) {
+ doIteration(tableau);
+ }
+
+ // if W is not zero then we have no feasible solution
+ if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) {
+ throw new NoFeasibleSolutionException();
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public PointValuePair doOptimize()
+ throws MaxCountExceededException, UnboundedSolutionException, NoFeasibleSolutionException {
+ final SimplexTableau tableau =
+ new SimplexTableau(getFunction(),
+ getConstraints(),
+ getGoalType(),
+ restrictToNonNegative(),
+ epsilon,
+ maxUlps);
+
+ solvePhase1(tableau);
+ tableau.dropPhase1Objective();
+
+ while (!tableau.isOptimal()) {
+ doIteration(tableau);
+ }
+ return tableau.getSolution();
+ }
+
+}