summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optimization
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optimization')
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/AbstractConvergenceChecker.java95
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/BaseMultivariateMultiStartOptimizer.java192
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/BaseMultivariateOptimizer.java60
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/BaseMultivariateSimpleBoundsOptimizer.java67
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorMultiStartOptimizer.java207
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorOptimizer.java62
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/BaseOptimizer.java59
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/ConvergenceChecker.java50
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateMultiStartOptimizer.java51
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateOptimizer.java34
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorMultiStartOptimizer.java51
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorOptimizer.java31
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/GoalType.java36
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/InitialGuess.java47
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/LeastSquaresConverter.java181
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableMultiStartOptimizer.java51
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableOptimizer.java34
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorMultiStartOptimizer.java51
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorOptimizer.java31
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/MultivariateMultiStartOptimizer.java51
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/MultivariateOptimizer.java35
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/OptimizationData.java28
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/PointValuePair.java120
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/PointVectorValuePair.java143
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/SimpleBounds.java62
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/SimplePointChecker.java130
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/SimpleValueChecker.java125
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/SimpleVectorValueChecker.java137
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/Target.java48
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/Weight.java66
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/AbstractSimplex.java347
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/BOBYQAOptimizer.java2480
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateOptimizer.java318
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateSimpleBoundsOptimizer.java82
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateVectorOptimizer.java370
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/CMAESOptimizer.java1441
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/MultiDirectionalSimplex.java218
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionMappingAdapter.java301
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionPenaltyAdapter.java190
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/NelderMeadSimplex.java283
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/PowellOptimizer.java353
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/SimplexOptimizer.java235
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/direct/package-info.java24
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/fitting/CurveFitter.java299
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java371
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/fitting/HarmonicFitter.java384
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/fitting/PolynomialFitter.java111
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/fitting/WeightedObservedPoint.java76
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/fitting/package-info.java30
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/AbstractDifferentiableOptimizer.java90
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java577
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/AbstractScalarDifferentiableOptimizer.java114
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/ConjugateGradientFormula.java50
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/GaussNewtonOptimizer.java194
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/LevenbergMarquardtOptimizer.java943
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java311
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/Preconditioner.java46
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/package-info.java22
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/AbstractLinearOptimizer.java162
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/LinearConstraint.java236
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/LinearObjectiveFunction.java150
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/LinearOptimizer.java92
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/NoFeasibleSolutionException.java42
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/Relationship.java68
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java238
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/SimplexTableau.java637
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/UnboundedSolutionException.java42
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/linear/package-info.java22
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/package-info.java74
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/BaseAbstractUnivariateOptimizer.java162
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/BaseUnivariateOptimizer.java86
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/BracketFinder.java289
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/BrentOptimizer.java316
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/SimpleUnivariateValueChecker.java139
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateMultiStartOptimizer.java203
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateOptimizer.java29
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/UnivariatePointValuePair.java68
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/univariate/package-info.java22
78 files changed, 15672 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optimization/AbstractConvergenceChecker.java b/src/main/java/org/apache/commons/math3/optimization/AbstractConvergenceChecker.java
new file mode 100644
index 0000000..98248ce
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/AbstractConvergenceChecker.java
@@ -0,0 +1,95 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.util.Precision;
+
+/**
+ * Base class for all convergence checker implementations.
+ *
+ * @param <PAIR> Type of (point, value) pair.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public abstract class AbstractConvergenceChecker<PAIR> implements ConvergenceChecker<PAIR> {
+ /**
+ * Default relative threshold.
+ *
+ * @deprecated in 3.1 (to be removed in 4.0) because this value is too small to be useful as a
+ * default (cf. MATH-798).
+ */
+ @Deprecated private static final double DEFAULT_RELATIVE_THRESHOLD = 100 * Precision.EPSILON;
+
+ /**
+ * Default absolute threshold.
+ *
+ * @deprecated in 3.1 (to be removed in 4.0) because this value is too small to be useful as a
+ * default (cf. MATH-798).
+ */
+ @Deprecated private static final double DEFAULT_ABSOLUTE_THRESHOLD = 100 * Precision.SAFE_MIN;
+
+ /** Relative tolerance threshold. */
+ private final double relativeThreshold;
+
+ /** Absolute tolerance threshold. */
+ private final double absoluteThreshold;
+
+ /**
+ * Build an instance with default thresholds.
+ *
+ * @deprecated in 3.1 (to be removed in 4.0). Convergence thresholds are problem-dependent. As
+ * this class is intended for users who want to set their own convergence criterion instead
+ * of relying on an algorithm's default procedure, they should also set the thresholds
+ * appropriately (cf. MATH-798).
+ */
+ @Deprecated
+ public AbstractConvergenceChecker() {
+ this.relativeThreshold = DEFAULT_RELATIVE_THRESHOLD;
+ this.absoluteThreshold = DEFAULT_ABSOLUTE_THRESHOLD;
+ }
+
+ /**
+ * Build an instance with a specified thresholds.
+ *
+ * @param relativeThreshold relative tolerance threshold
+ * @param absoluteThreshold absolute tolerance threshold
+ */
+ public AbstractConvergenceChecker(
+ final double relativeThreshold, final double absoluteThreshold) {
+ this.relativeThreshold = relativeThreshold;
+ this.absoluteThreshold = absoluteThreshold;
+ }
+
+ /**
+ * @return the relative threshold.
+ */
+ public double getRelativeThreshold() {
+ return relativeThreshold;
+ }
+
+ /**
+ * @return the absolute threshold.
+ */
+ public double getAbsoluteThreshold() {
+ return absoluteThreshold;
+ }
+
+ /** {@inheritDoc} */
+ public abstract boolean converged(int iteration, PAIR previous, PAIR current);
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateMultiStartOptimizer.java
new file mode 100644
index 0000000..2c4aa17
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateMultiStartOptimizer.java
@@ -0,0 +1,192 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+
+import java.util.Arrays;
+import java.util.Comparator;
+
+/**
+ * Base class for all implementations of a multi-start optimizer.
+ *
+ * <p>This interface is mainly intended to enforce the internal coherence of Commons-Math. Users of
+ * the API are advised to base their code on {@link MultivariateMultiStartOptimizer} or on {@link
+ * DifferentiableMultivariateMultiStartOptimizer}.
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class BaseMultivariateMultiStartOptimizer<FUNC extends MultivariateFunction>
+ implements BaseMultivariateOptimizer<FUNC> {
+ /** Underlying classical optimizer. */
+ private final BaseMultivariateOptimizer<FUNC> optimizer;
+
+ /** Maximal number of evaluations allowed. */
+ private int maxEvaluations;
+
+ /** Number of evaluations already performed for all starts. */
+ private int totalEvaluations;
+
+ /** Number of starts to go. */
+ private int starts;
+
+ /** Random generator for multi-start. */
+ private RandomVectorGenerator generator;
+
+ /** Found optima. */
+ private PointValuePair[] optima;
+
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform. If {@code starts == 1}, the {@link
+ * #optimize(int,MultivariateFunction,GoalType,double[]) optimize} will return the same
+ * solution as {@code optimizer} would.
+ * @param generator Random vector generator to use for restarts.
+ * @throws NullArgumentException if {@code optimizer} or {@code generator} is {@code null}.
+ * @throws NotStrictlyPositiveException if {@code starts < 1}.
+ */
+ protected BaseMultivariateMultiStartOptimizer(
+ final BaseMultivariateOptimizer<FUNC> optimizer,
+ final int starts,
+ final RandomVectorGenerator generator) {
+ if (optimizer == null || generator == null) {
+ throw new NullArgumentException();
+ }
+ if (starts < 1) {
+ throw new NotStrictlyPositiveException(starts);
+ }
+
+ this.optimizer = optimizer;
+ this.starts = starts;
+ this.generator = generator;
+ }
+
+ /**
+ * Get all the optima found during the last call to {@link
+ * #optimize(int,MultivariateFunction,GoalType,double[]) optimize}. The optimizer stores all the
+ * optima found during a set of restarts. The {@link
+ * #optimize(int,MultivariateFunction,GoalType,double[]) optimize} method returns the best point
+ * only. This method returns all the points found at the end of each starts, including the best
+ * one already returned by the {@link #optimize(int,MultivariateFunction,GoalType,double[])
+ * optimize} method. <br>
+ * The returned array as one element for each start as specified in the constructor. It is
+ * ordered with the results from the runs that did converge first, sorted from best to worst
+ * objective value (i.e in ascending order if minimizing and in descending order if maximizing),
+ * followed by and null elements corresponding to the runs that did not converge. This means all
+ * elements will be null if the {@link #optimize(int,MultivariateFunction,GoalType,double[])
+ * optimize} method did throw an exception. This also means that if the first element is not
+ * {@code null}, it is the best point found across all starts.
+ *
+ * @return an array containing the optima.
+ * @throws MathIllegalStateException if {@link
+ * #optimize(int,MultivariateFunction,GoalType,double[]) optimize} has not been called.
+ */
+ public PointValuePair[] getOptima() {
+ if (optima == null) {
+ throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
+ }
+ return optima.clone();
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxEvaluations() {
+ return maxEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public int getEvaluations() {
+ return totalEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public ConvergenceChecker<PointValuePair> getConvergenceChecker() {
+ return optimizer.getConvergenceChecker();
+ }
+
+ /** {@inheritDoc} */
+ public PointValuePair optimize(
+ int maxEval, final FUNC f, final GoalType goal, double[] startPoint) {
+ maxEvaluations = maxEval;
+ RuntimeException lastException = null;
+ optima = new PointValuePair[starts];
+ totalEvaluations = 0;
+
+ // Multi-start loop.
+ for (int i = 0; i < starts; ++i) {
+ // CHECKSTYLE: stop IllegalCatch
+ try {
+ optima[i] =
+ optimizer.optimize(
+ maxEval - totalEvaluations,
+ f,
+ goal,
+ i == 0 ? startPoint : generator.nextVector());
+ } catch (RuntimeException mue) {
+ lastException = mue;
+ optima[i] = null;
+ }
+ // CHECKSTYLE: resume IllegalCatch
+
+ totalEvaluations += optimizer.getEvaluations();
+ }
+
+ sortPairs(goal);
+
+ if (optima[0] == null) {
+ throw lastException; // cannot be null if starts >=1
+ }
+
+ // Return the found point given the best objective function value.
+ return optima[0];
+ }
+
+ /**
+ * Sort the optima from best to worst, followed by {@code null} elements.
+ *
+ * @param goal Goal type.
+ */
+ private void sortPairs(final GoalType goal) {
+ Arrays.sort(
+ optima,
+ new Comparator<PointValuePair>() {
+ /** {@inheritDoc} */
+ public int compare(final PointValuePair o1, final PointValuePair o2) {
+ if (o1 == null) {
+ return (o2 == null) ? 0 : 1;
+ } else if (o2 == null) {
+ return -1;
+ }
+ final double v1 = o1.getValue();
+ final double v2 = o2.getValue();
+ return (goal == GoalType.MINIMIZE)
+ ? Double.compare(v1, v2)
+ : Double.compare(v2, v1);
+ }
+ });
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateOptimizer.java
new file mode 100644
index 0000000..2db1401
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateOptimizer.java
@@ -0,0 +1,60 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+
+/**
+ * This interface is mainly intended to enforce the internal coherence of Commons-FastMath. Users of
+ * the API are advised to base their code on the following interfaces:
+ *
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateOptimizer}
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableOptimizer}
+ * </ul>
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface BaseMultivariateOptimizer<FUNC extends MultivariateFunction>
+ extends BaseOptimizer<PointValuePair> {
+ /**
+ * Optimize an objective function.
+ *
+ * @param f Objective function.
+ * @param goalType Type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link
+ * GoalType#MINIMIZE}.
+ * @param startPoint Start point for optimization.
+ * @param maxEval Maximum number of function evaluations.
+ * @return the point/value pair giving the optimal value for objective function.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException if the start point
+ * dimension is wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException if the maximal number
+ * of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if any argument is {@code
+ * null}.
+ * @deprecated As of 3.1. In 4.0, it will be replaced by the declaration corresponding to this
+ * {@link
+ * org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer#optimize(int,MultivariateFunction,GoalType,OptimizationData[])
+ * method}.
+ */
+ @Deprecated
+ PointValuePair optimize(int maxEval, FUNC f, GoalType goalType, double[] startPoint);
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateSimpleBoundsOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateSimpleBoundsOptimizer.java
new file mode 100644
index 0000000..4a5a901
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateSimpleBoundsOptimizer.java
@@ -0,0 +1,67 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+
+/**
+ * This interface is mainly intended to enforce the internal coherence of Commons-FastMath. Users of
+ * the API are advised to base their code on the following interfaces:
+ *
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateOptimizer}
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableOptimizer}
+ * </ul>
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface BaseMultivariateSimpleBoundsOptimizer<FUNC extends MultivariateFunction>
+ extends BaseMultivariateOptimizer<FUNC> {
+ /**
+ * Optimize an objective function.
+ *
+ * @param f Objective function.
+ * @param goalType Type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link
+ * GoalType#MINIMIZE}.
+ * @param startPoint Start point for optimization.
+ * @param maxEval Maximum number of function evaluations.
+ * @param lowerBound Lower bound for each of the parameters.
+ * @param upperBound Upper bound for each of the parameters.
+ * @return the point/value pair giving the optimal value for objective function.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException if the array sizes are
+ * wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException if the maximal number
+ * of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if {@code f}, {@code
+ * goalType} or {@code startPoint} is {@code null}.
+ * @throws org.apache.commons.math3.exception.NumberIsTooSmallException if any of the initial
+ * values is less than its lower bound.
+ * @throws org.apache.commons.math3.exception.NumberIsTooLargeException if any of the initial
+ * values is greater than its upper bound.
+ */
+ PointValuePair optimize(
+ int maxEval,
+ FUNC f,
+ GoalType goalType,
+ double[] startPoint,
+ double[] lowerBound,
+ double[] upperBound);
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorMultiStartOptimizer.java
new file mode 100644
index 0000000..7b6523a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorMultiStartOptimizer.java
@@ -0,0 +1,207 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.exception.ConvergenceException;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+
+import java.util.Arrays;
+import java.util.Comparator;
+
+/**
+ * Base class for all implementations of a multi-start optimizer.
+ *
+ * <p>This interface is mainly intended to enforce the internal coherence of Commons-Math. Users of
+ * the API are advised to base their code on {@link
+ * DifferentiableMultivariateVectorMultiStartOptimizer}.
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class BaseMultivariateVectorMultiStartOptimizer<FUNC extends MultivariateVectorFunction>
+ implements BaseMultivariateVectorOptimizer<FUNC> {
+ /** Underlying classical optimizer. */
+ private final BaseMultivariateVectorOptimizer<FUNC> optimizer;
+
+ /** Maximal number of evaluations allowed. */
+ private int maxEvaluations;
+
+ /** Number of evaluations already performed for all starts. */
+ private int totalEvaluations;
+
+ /** Number of starts to go. */
+ private int starts;
+
+ /** Random generator for multi-start. */
+ private RandomVectorGenerator generator;
+
+ /** Found optima. */
+ private PointVectorValuePair[] optima;
+
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform. If {@code starts == 1}, the {@link
+ * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} will
+ * return the same solution as {@code optimizer} would.
+ * @param generator Random vector generator to use for restarts.
+ * @throws NullArgumentException if {@code optimizer} or {@code generator} is {@code null}.
+ * @throws NotStrictlyPositiveException if {@code starts < 1}.
+ */
+ protected BaseMultivariateVectorMultiStartOptimizer(
+ final BaseMultivariateVectorOptimizer<FUNC> optimizer,
+ final int starts,
+ final RandomVectorGenerator generator) {
+ if (optimizer == null || generator == null) {
+ throw new NullArgumentException();
+ }
+ if (starts < 1) {
+ throw new NotStrictlyPositiveException(starts);
+ }
+
+ this.optimizer = optimizer;
+ this.starts = starts;
+ this.generator = generator;
+ }
+
+ /**
+ * Get all the optima found during the last call to {@link
+ * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize}. The optimizer
+ * stores all the optima found during a set of restarts. The {@link
+ * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method returns
+ * the best point only. This method returns all the points found at the end of each starts,
+ * including the best one already returned by the {@link
+ * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method. <br>
+ * The returned array as one element for each start as specified in the constructor. It is
+ * ordered with the results from the runs that did converge first, sorted from best to worst
+ * objective value (i.e. in ascending order if minimizing and in descending order if
+ * maximizing), followed by and null elements corresponding to the runs that did not converge.
+ * This means all elements will be null if the {@link
+ * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method did
+ * throw a {@link ConvergenceException}). This also means that if the first element is not
+ * {@code null}, it is the best point found across all starts.
+ *
+ * @return array containing the optima
+ * @throws MathIllegalStateException if {@link
+ * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} has not
+ * been called.
+ */
+ public PointVectorValuePair[] getOptima() {
+ if (optima == null) {
+ throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
+ }
+ return optima.clone();
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxEvaluations() {
+ return maxEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public int getEvaluations() {
+ return totalEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker() {
+ return optimizer.getConvergenceChecker();
+ }
+
+ /** {@inheritDoc} */
+ public PointVectorValuePair optimize(
+ int maxEval, final FUNC f, double[] target, double[] weights, double[] startPoint) {
+ maxEvaluations = maxEval;
+ RuntimeException lastException = null;
+ optima = new PointVectorValuePair[starts];
+ totalEvaluations = 0;
+
+ // Multi-start loop.
+ for (int i = 0; i < starts; ++i) {
+
+ // CHECKSTYLE: stop IllegalCatch
+ try {
+ optima[i] =
+ optimizer.optimize(
+ maxEval - totalEvaluations,
+ f,
+ target,
+ weights,
+ i == 0 ? startPoint : generator.nextVector());
+ } catch (ConvergenceException oe) {
+ optima[i] = null;
+ } catch (RuntimeException mue) {
+ lastException = mue;
+ optima[i] = null;
+ }
+ // CHECKSTYLE: resume IllegalCatch
+
+ totalEvaluations += optimizer.getEvaluations();
+ }
+
+ sortPairs(target, weights);
+
+ if (optima[0] == null) {
+ throw lastException; // cannot be null if starts >=1
+ }
+
+ // Return the found point given the best objective function value.
+ return optima[0];
+ }
+
+ /**
+ * Sort the optima from best to worst, followed by {@code null} elements.
+ *
+ * @param target Target value for the objective functions at optimum.
+ * @param weights Weights for the least-squares cost computation.
+ */
+ private void sortPairs(final double[] target, final double[] weights) {
+ Arrays.sort(
+ optima,
+ new Comparator<PointVectorValuePair>() {
+ /** {@inheritDoc} */
+ public int compare(
+ final PointVectorValuePair o1, final PointVectorValuePair o2) {
+ if (o1 == null) {
+ return (o2 == null) ? 0 : 1;
+ } else if (o2 == null) {
+ return -1;
+ }
+ return Double.compare(weightedResidual(o1), weightedResidual(o2));
+ }
+
+ private double weightedResidual(final PointVectorValuePair pv) {
+ final double[] value = pv.getValueRef();
+ double sum = 0;
+ for (int i = 0; i < value.length; ++i) {
+ final double ri = value[i] - target[i];
+ sum += weights[i] * ri * ri;
+ }
+ return sum;
+ }
+ });
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorOptimizer.java
new file mode 100644
index 0000000..b8a386f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/BaseMultivariateVectorOptimizer.java
@@ -0,0 +1,62 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+
+/**
+ * This interface is mainly intended to enforce the internal coherence of Commons-Math. Users of the
+ * API are advised to base their code on the following interfaces:
+ *
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer}
+ * </ul>
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface BaseMultivariateVectorOptimizer<FUNC extends MultivariateVectorFunction>
+ extends BaseOptimizer<PointVectorValuePair> {
+ /**
+ * Optimize an objective function. Optimization is considered to be a weighted least-squares
+ * minimization. The cost function to be minimized is <code>
+ * &sum;weight<sub>i</sub>(objective<sub>i</sub> - target<sub>i</sub>)<sup>2</sup></code>
+ *
+ * @param f Objective function.
+ * @param target Target value for the objective functions at optimum.
+ * @param weight Weights for the least squares cost computation.
+ * @param startPoint Start point for optimization.
+ * @return the point/value pair giving the optimal value for objective function.
+ * @param maxEval Maximum number of function evaluations.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException if the start point
+ * dimension is wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException if the maximal number
+ * of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if any argument is {@code
+ * null}.
+ * @deprecated As of 3.1. In 4.0, this will be replaced by the declaration corresponding to this
+ * {@link
+ * org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateVectorOptimizer#optimize(int,MultivariateVectorFunction,OptimizationData[])
+ * method}.
+ */
+ @Deprecated
+ PointVectorValuePair optimize(
+ int maxEval, FUNC f, double[] target, double[] weight, double[] startPoint);
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/BaseOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/BaseOptimizer.java
new file mode 100644
index 0000000..b9db4bd
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/BaseOptimizer.java
@@ -0,0 +1,59 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+/**
+ * This interface is mainly intended to enforce the internal coherence of Commons-Math. Users of the
+ * API are advised to base their code on the following interfaces:
+ *
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateOptimizer}
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableOptimizer}
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableVectorOptimizer}
+ * <li>{@link org.apache.commons.math3.optimization.univariate.UnivariateOptimizer}
+ * </ul>
+ *
+ * @param <PAIR> Type of the point/objective pair.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface BaseOptimizer<PAIR> {
+ /**
+ * Get the maximal number of function evaluations.
+ *
+ * @return the maximal number of function evaluations.
+ */
+ int getMaxEvaluations();
+
+ /**
+ * Get the number of evaluations of the objective function. The number of evaluations
+ * corresponds to the last call to the {@code optimize} method. It is 0 if the method has not
+ * been called yet.
+ *
+ * @return the number of evaluations of the objective function.
+ */
+ int getEvaluations();
+
+ /**
+ * Get the convergence checker.
+ *
+ * @return the object used to check for convergence.
+ */
+ ConvergenceChecker<PAIR> getConvergenceChecker();
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/ConvergenceChecker.java b/src/main/java/org/apache/commons/math3/optimization/ConvergenceChecker.java
new file mode 100644
index 0000000..ee43b95
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/ConvergenceChecker.java
@@ -0,0 +1,50 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+/**
+ * This interface specifies how to check if an optimization algorithm has converged. <br>
+ * Deciding if convergence has been reached is a problem-dependent issue. The user should provide a
+ * class implementing this interface to allow the optimization algorithm to stop its search
+ * according to the problem at hand. <br>
+ * For convenience, three implementations that fit simple needs are already provided: {@link
+ * SimpleValueChecker}, {@link SimpleVectorValueChecker} and {@link SimplePointChecker}. The first
+ * two consider that convergence is reached when the objective function value does not change much
+ * anymore, it does not use the point set at all. The third one considers that convergence is
+ * reached when the input point set does not change much anymore, it does not use objective function
+ * value at all.
+ *
+ * @param <PAIR> Type of the (point, objective value) pair.
+ * @see org.apache.commons.math3.optimization.SimplePointChecker
+ * @see org.apache.commons.math3.optimization.SimpleValueChecker
+ * @see org.apache.commons.math3.optimization.SimpleVectorValueChecker
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface ConvergenceChecker<PAIR> {
+ /**
+ * Check if the optimization algorithm has converged.
+ *
+ * @param iteration Current iteration.
+ * @param previous Best point in the previous iteration.
+ * @param current Best point in the current iteration.
+ * @return {@code true} if the algorithm is considered to have converged.
+ */
+ boolean converged(int iteration, PAIR previous, PAIR current);
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateMultiStartOptimizer.java
new file mode 100644
index 0000000..ae2a48e
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateMultiStartOptimizer.java
@@ -0,0 +1,51 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateFunction;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+
+/**
+ * Special implementation of the {@link DifferentiableMultivariateOptimizer} interface adding
+ * multi-start features to an existing optimizer.
+ *
+ * <p>This class wraps a classical optimizer to use it several times in turn with different starting
+ * points in order to avoid being trapped into a local extremum when looking for a global one.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class DifferentiableMultivariateMultiStartOptimizer
+ extends BaseMultivariateMultiStartOptimizer<DifferentiableMultivariateFunction>
+ implements DifferentiableMultivariateOptimizer {
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform (including the first one), multi-start is disabled
+ * if value is less than or equal to 1.
+ * @param generator Random vector generator to use for restarts.
+ */
+ public DifferentiableMultivariateMultiStartOptimizer(
+ final DifferentiableMultivariateOptimizer optimizer,
+ final int starts,
+ final RandomVectorGenerator generator) {
+ super(optimizer, starts, generator);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateOptimizer.java
new file mode 100644
index 0000000..51e9f26
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateOptimizer.java
@@ -0,0 +1,34 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateFunction;
+
+/**
+ * This interface represents an optimization algorithm for {@link DifferentiableMultivariateFunction
+ * scalar differentiable objective functions}. Optimization algorithms find the input point set that
+ * either {@link GoalType maximize or minimize} an objective function.
+ *
+ * @see MultivariateOptimizer
+ * @see DifferentiableMultivariateVectorOptimizer
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public interface DifferentiableMultivariateOptimizer
+ extends BaseMultivariateOptimizer<DifferentiableMultivariateFunction> {}
diff --git a/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorMultiStartOptimizer.java
new file mode 100644
index 0000000..2ad2bbf
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorMultiStartOptimizer.java
@@ -0,0 +1,51 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateVectorFunction;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+
+/**
+ * Special implementation of the {@link DifferentiableMultivariateVectorOptimizer} interface addind
+ * multi-start features to an existing optimizer.
+ *
+ * <p>This class wraps a classical optimizer to use it several times in turn with different starting
+ * points in order to avoid being trapped into a local extremum when looking for a global one.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class DifferentiableMultivariateVectorMultiStartOptimizer
+ extends BaseMultivariateVectorMultiStartOptimizer<DifferentiableMultivariateVectorFunction>
+ implements DifferentiableMultivariateVectorOptimizer {
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform (including the first one), multi-start is disabled
+ * if value is less than or equal to 1.
+ * @param generator Random vector generator to use for restarts.
+ */
+ public DifferentiableMultivariateVectorMultiStartOptimizer(
+ final DifferentiableMultivariateVectorOptimizer optimizer,
+ final int starts,
+ final RandomVectorGenerator generator) {
+ super(optimizer, starts, generator);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorOptimizer.java
new file mode 100644
index 0000000..6c697f8
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/DifferentiableMultivariateVectorOptimizer.java
@@ -0,0 +1,31 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateVectorFunction;
+
+/**
+ * This interface represents an optimization algorithm for {@link
+ * DifferentiableMultivariateVectorFunction vectorial differentiable objective functions}.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface DifferentiableMultivariateVectorOptimizer
+ extends BaseMultivariateVectorOptimizer<DifferentiableMultivariateVectorFunction> {}
diff --git a/src/main/java/org/apache/commons/math3/optimization/GoalType.java b/src/main/java/org/apache/commons/math3/optimization/GoalType.java
new file mode 100644
index 0000000..f43a350
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/GoalType.java
@@ -0,0 +1,36 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import java.io.Serializable;
+
+/**
+ * Goal type for an optimization problem.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public enum GoalType implements Serializable {
+
+ /** Maximization goal. */
+ MAXIMIZE,
+
+ /** Minimization goal. */
+ MINIMIZE
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/InitialGuess.java b/src/main/java/org/apache/commons/math3/optimization/InitialGuess.java
new file mode 100644
index 0000000..d61e129
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/InitialGuess.java
@@ -0,0 +1,47 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+/**
+ * Starting point (first guess) of the optimization procedure. <br>
+ * Immutable class.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public class InitialGuess implements OptimizationData {
+ /** Initial guess. */
+ private final double[] init;
+
+ /**
+ * @param startPoint Initial guess.
+ */
+ public InitialGuess(double[] startPoint) {
+ init = startPoint.clone();
+ }
+
+ /**
+ * Gets the initial guess.
+ *
+ * @return the initial guess.
+ */
+ public double[] getInitialGuess() {
+ return init.clone();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/LeastSquaresConverter.java b/src/main/java/org/apache/commons/math3/optimization/LeastSquaresConverter.java
new file mode 100644
index 0000000..5ee9754
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/LeastSquaresConverter.java
@@ -0,0 +1,181 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.linear.RealMatrix;
+
+/**
+ * This class converts {@link MultivariateVectorFunction vectorial objective functions} to {@link
+ * MultivariateFunction scalar objective functions} when the goal is to minimize them.
+ *
+ * <p>This class is mostly used when the vectorial objective function represents a theoretical
+ * result computed from a point set applied to a model and the models point must be adjusted to fit
+ * the theoretical result to some reference observations. The observations may be obtained for
+ * example from physical measurements whether the model is built from theoretical considerations.
+ *
+ * <p>This class computes a possibly weighted squared sum of the residuals, which is a scalar value.
+ * The residuals are the difference between the theoretical model (i.e. the output of the vectorial
+ * objective function) and the observations. The class implements the {@link MultivariateFunction}
+ * interface and can therefore be minimized by any optimizer supporting scalar objectives
+ * functions.This is one way to perform a least square estimation. There are other ways to do this
+ * without using this converter, as some optimization algorithms directly support vectorial
+ * objective functions.
+ *
+ * <p>This class support combination of residuals with or without weights and correlations.
+ *
+ * @see MultivariateFunction
+ * @see MultivariateVectorFunction
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class LeastSquaresConverter implements MultivariateFunction {
+
+ /** Underlying vectorial function. */
+ private final MultivariateVectorFunction function;
+
+ /** Observations to be compared to objective function to compute residuals. */
+ private final double[] observations;
+
+ /** Optional weights for the residuals. */
+ private final double[] weights;
+
+ /** Optional scaling matrix (weight and correlations) for the residuals. */
+ private final RealMatrix scale;
+
+ /**
+ * Build a simple converter for uncorrelated residuals with the same weight.
+ *
+ * @param function vectorial residuals function to wrap
+ * @param observations observations to be compared to objective function to compute residuals
+ */
+ public LeastSquaresConverter(
+ final MultivariateVectorFunction function, final double[] observations) {
+ this.function = function;
+ this.observations = observations.clone();
+ this.weights = null;
+ this.scale = null;
+ }
+
+ /**
+ * Build a simple converter for uncorrelated residuals with the specific weights.
+ *
+ * <p>The scalar objective function value is computed as:
+ *
+ * <pre>
+ * objective = &sum;weight<sub>i</sub>(observation<sub>i</sub>-objective<sub>i</sub>)<sup>2</sup>
+ * </pre>
+ *
+ * <p>Weights can be used for example to combine residuals with different standard deviations.
+ * As an example, consider a residuals array in which even elements are angular measurements in
+ * degrees with a 0.01&deg; standard deviation and odd elements are distance measurements in
+ * meters with a 15m standard deviation. In this case, the weights array should be initialized
+ * with value 1.0/(0.01<sup>2</sup>) in the even elements and 1.0/(15.0<sup>2</sup>) in the odd
+ * elements (i.e. reciprocals of variances).
+ *
+ * <p>The array computed by the objective function, the observations array and the weights array
+ * must have consistent sizes or a {@link DimensionMismatchException} will be triggered while
+ * computing the scalar objective.
+ *
+ * @param function vectorial residuals function to wrap
+ * @param observations observations to be compared to objective function to compute residuals
+ * @param weights weights to apply to the residuals
+ * @exception DimensionMismatchException if the observations vector and the weights vector
+ * dimensions do not match (objective function dimension is checked only when the {@link
+ * #value(double[])} method is called)
+ */
+ public LeastSquaresConverter(
+ final MultivariateVectorFunction function,
+ final double[] observations,
+ final double[] weights) {
+ if (observations.length != weights.length) {
+ throw new DimensionMismatchException(observations.length, weights.length);
+ }
+ this.function = function;
+ this.observations = observations.clone();
+ this.weights = weights.clone();
+ this.scale = null;
+ }
+
+ /**
+ * Build a simple converter for correlated residuals with the specific weights.
+ *
+ * <p>The scalar objective function value is computed as:
+ *
+ * <pre>
+ * objective = y<sup>T</sup>y with y = scale&times;(observation-objective)
+ * </pre>
+ *
+ * <p>The array computed by the objective function, the observations array and the the scaling
+ * matrix must have consistent sizes or a {@link DimensionMismatchException} will be triggered
+ * while computing the scalar objective.
+ *
+ * @param function vectorial residuals function to wrap
+ * @param observations observations to be compared to objective function to compute residuals
+ * @param scale scaling matrix
+ * @throws DimensionMismatchException if the observations vector and the scale matrix dimensions
+ * do not match (objective function dimension is checked only when the {@link
+ * #value(double[])} method is called)
+ */
+ public LeastSquaresConverter(
+ final MultivariateVectorFunction function,
+ final double[] observations,
+ final RealMatrix scale) {
+ if (observations.length != scale.getColumnDimension()) {
+ throw new DimensionMismatchException(observations.length, scale.getColumnDimension());
+ }
+ this.function = function;
+ this.observations = observations.clone();
+ this.weights = null;
+ this.scale = scale.copy();
+ }
+
+ /** {@inheritDoc} */
+ public double value(final double[] point) {
+ // compute residuals
+ final double[] residuals = function.value(point);
+ if (residuals.length != observations.length) {
+ throw new DimensionMismatchException(residuals.length, observations.length);
+ }
+ for (int i = 0; i < residuals.length; ++i) {
+ residuals[i] -= observations[i];
+ }
+
+ // compute sum of squares
+ double sumSquares = 0;
+ if (weights != null) {
+ for (int i = 0; i < residuals.length; ++i) {
+ final double ri = residuals[i];
+ sumSquares += weights[i] * ri * ri;
+ }
+ } else if (scale != null) {
+ for (final double yi : scale.operate(residuals)) {
+ sumSquares += yi * yi;
+ }
+ } else {
+ for (final double ri : residuals) {
+ sumSquares += ri * ri;
+ }
+ }
+
+ return sumSquares;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableMultiStartOptimizer.java
new file mode 100644
index 0000000..e883805
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableMultiStartOptimizer.java
@@ -0,0 +1,51 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+
+/**
+ * Special implementation of the {@link MultivariateDifferentiableOptimizer} interface adding
+ * multi-start features to an existing optimizer.
+ *
+ * <p>This class wraps a classical optimizer to use it several times in turn with different starting
+ * points in order to avoid being trapped into a local extremum when looking for a global one.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public class MultivariateDifferentiableMultiStartOptimizer
+ extends BaseMultivariateMultiStartOptimizer<MultivariateDifferentiableFunction>
+ implements MultivariateDifferentiableOptimizer {
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform (including the first one), multi-start is disabled
+ * if value is less than or equal to 1.
+ * @param generator Random vector generator to use for restarts.
+ */
+ public MultivariateDifferentiableMultiStartOptimizer(
+ final MultivariateDifferentiableOptimizer optimizer,
+ final int starts,
+ final RandomVectorGenerator generator) {
+ super(optimizer, starts, generator);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableOptimizer.java
new file mode 100644
index 0000000..a2cf840
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableOptimizer.java
@@ -0,0 +1,34 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
+
+/**
+ * This interface represents an optimization algorithm for {@link MultivariateDifferentiableFunction
+ * scalar differentiable objective functions}. Optimization algorithms find the input point set that
+ * either {@link GoalType maximize or minimize} an objective function.
+ *
+ * @see MultivariateOptimizer
+ * @see MultivariateDifferentiableVectorOptimizer
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public interface MultivariateDifferentiableOptimizer
+ extends BaseMultivariateOptimizer<MultivariateDifferentiableFunction> {}
diff --git a/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorMultiStartOptimizer.java
new file mode 100644
index 0000000..36432cd
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorMultiStartOptimizer.java
@@ -0,0 +1,51 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+
+/**
+ * Special implementation of the {@link MultivariateDifferentiableVectorOptimizer} interface adding
+ * multi-start features to an existing optimizer.
+ *
+ * <p>This class wraps a classical optimizer to use it several times in turn with different starting
+ * points in order to avoid being trapped into a local extremum when looking for a global one.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public class MultivariateDifferentiableVectorMultiStartOptimizer
+ extends BaseMultivariateVectorMultiStartOptimizer<MultivariateDifferentiableVectorFunction>
+ implements MultivariateDifferentiableVectorOptimizer {
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform (including the first one), multi-start is disabled
+ * if value is less than or equal to 1.
+ * @param generator Random vector generator to use for restarts.
+ */
+ public MultivariateDifferentiableVectorMultiStartOptimizer(
+ final MultivariateDifferentiableVectorOptimizer optimizer,
+ final int starts,
+ final RandomVectorGenerator generator) {
+ super(optimizer, starts, generator);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorOptimizer.java
new file mode 100644
index 0000000..65868db
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/MultivariateDifferentiableVectorOptimizer.java
@@ -0,0 +1,31 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
+
+/**
+ * This interface represents an optimization algorithm for {@link
+ * MultivariateDifferentiableVectorFunction differentiable vectorial objective functions}.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public interface MultivariateDifferentiableVectorOptimizer
+ extends BaseMultivariateVectorOptimizer<MultivariateDifferentiableVectorFunction> {}
diff --git a/src/main/java/org/apache/commons/math3/optimization/MultivariateMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/MultivariateMultiStartOptimizer.java
new file mode 100644
index 0000000..24726c4
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/MultivariateMultiStartOptimizer.java
@@ -0,0 +1,51 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.random.RandomVectorGenerator;
+
+/**
+ * Special implementation of the {@link MultivariateOptimizer} interface adding multi-start features
+ * to an existing optimizer.
+ *
+ * <p>This class wraps a classical optimizer to use it several times in turn with different starting
+ * points in order to avoid being trapped into a local extremum when looking for a global one.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class MultivariateMultiStartOptimizer
+ extends BaseMultivariateMultiStartOptimizer<MultivariateFunction>
+ implements MultivariateOptimizer {
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform (including the first one), multi-start is disabled
+ * if value is less than or equal to 1.
+ * @param generator Random vector generator to use for restarts.
+ */
+ public MultivariateMultiStartOptimizer(
+ final MultivariateOptimizer optimizer,
+ final int starts,
+ final RandomVectorGenerator generator) {
+ super(optimizer, starts, generator);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/MultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/MultivariateOptimizer.java
new file mode 100644
index 0000000..e90443c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/MultivariateOptimizer.java
@@ -0,0 +1,35 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+
+/**
+ * This interface represents an optimization algorithm for {@link MultivariateFunction scalar
+ * objective functions}.
+ *
+ * <p>Optimization algorithms find the input point set that either {@link GoalType maximize or
+ * minimize} an objective function.
+ *
+ * @see MultivariateDifferentiableOptimizer
+ * @see MultivariateDifferentiableVectorOptimizer
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public interface MultivariateOptimizer extends BaseMultivariateOptimizer<MultivariateFunction> {}
diff --git a/src/main/java/org/apache/commons/math3/optimization/OptimizationData.java b/src/main/java/org/apache/commons/math3/optimization/OptimizationData.java
new file mode 100644
index 0000000..2faaa30
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/OptimizationData.java
@@ -0,0 +1,28 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optimization;
+
+/**
+ * Marker interface. Implementations will provide functionality (optional or required) needed by the
+ * optimizers, and those will need to check the actual type of the arguments and perform the
+ * appropriate cast in order to access the data they need.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public interface OptimizationData {}
diff --git a/src/main/java/org/apache/commons/math3/optimization/PointValuePair.java b/src/main/java/org/apache/commons/math3/optimization/PointValuePair.java
new file mode 100644
index 0000000..cb4e0bd
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/PointValuePair.java
@@ -0,0 +1,120 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.util.Pair;
+
+import java.io.Serializable;
+
+/**
+ * This class holds a point and the value of an objective function at that point.
+ *
+ * @see PointVectorValuePair
+ * @see org.apache.commons.math3.analysis.MultivariateFunction
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class PointValuePair extends Pair<double[], Double> implements Serializable {
+
+ /** Serializable UID. */
+ private static final long serialVersionUID = 20120513L;
+
+ /**
+ * Builds a point/objective function value pair.
+ *
+ * @param point Point coordinates. This instance will store a copy of the array, not the array
+ * passed as argument.
+ * @param value Value of the objective function at the point.
+ */
+ public PointValuePair(final double[] point, final double value) {
+ this(point, value, true);
+ }
+
+ /**
+ * Builds a point/objective function value pair.
+ *
+ * @param point Point coordinates.
+ * @param value Value of the objective function at the point.
+ * @param copyArray if {@code true}, the input array will be copied, otherwise it will be
+ * referenced.
+ */
+ public PointValuePair(final double[] point, final double value, final boolean copyArray) {
+ super(copyArray ? ((point == null) ? null : point.clone()) : point, value);
+ }
+
+ /**
+ * Gets the point.
+ *
+ * @return a copy of the stored point.
+ */
+ public double[] getPoint() {
+ final double[] p = getKey();
+ return p == null ? null : p.clone();
+ }
+
+ /**
+ * Gets a reference to the point.
+ *
+ * @return a reference to the internal array storing the point.
+ */
+ public double[] getPointRef() {
+ return getKey();
+ }
+
+ /**
+ * Replace the instance with a data transfer object for serialization.
+ *
+ * @return data transfer object that will be serialized
+ */
+ private Object writeReplace() {
+ return new DataTransferObject(getKey(), getValue());
+ }
+
+ /** Internal class used only for serialization. */
+ private static class DataTransferObject implements Serializable {
+ /** Serializable UID. */
+ private static final long serialVersionUID = 20120513L;
+
+ /** Point coordinates. @Serial */
+ private final double[] point;
+
+ /** Value of the objective function at the point. @Serial */
+ private final double value;
+
+ /**
+ * Simple constructor.
+ *
+ * @param point Point coordinates.
+ * @param value Value of the objective function at the point.
+ */
+ DataTransferObject(final double[] point, final double value) {
+ this.point = point.clone();
+ this.value = value;
+ }
+
+ /**
+ * Replace the deserialized data transfer object with a {@link PointValuePair}.
+ *
+ * @return replacement {@link PointValuePair}
+ */
+ private Object readResolve() {
+ return new PointValuePair(point, value, false);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/PointVectorValuePair.java b/src/main/java/org/apache/commons/math3/optimization/PointVectorValuePair.java
new file mode 100644
index 0000000..bf1bf61
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/PointVectorValuePair.java
@@ -0,0 +1,143 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.util.Pair;
+
+import java.io.Serializable;
+
+/**
+ * This class holds a point and the vectorial value of an objective function at that point.
+ *
+ * @see PointValuePair
+ * @see org.apache.commons.math3.analysis.MultivariateVectorFunction
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class PointVectorValuePair extends Pair<double[], double[]> implements Serializable {
+
+ /** Serializable UID. */
+ private static final long serialVersionUID = 20120513L;
+
+ /**
+ * Builds a point/objective function value pair.
+ *
+ * @param point Point coordinates. This instance will store a copy of the array, not the array
+ * passed as argument.
+ * @param value Value of the objective function at the point.
+ */
+ public PointVectorValuePair(final double[] point, final double[] value) {
+ this(point, value, true);
+ }
+
+ /**
+ * Build a point/objective function value pair.
+ *
+ * @param point Point coordinates.
+ * @param value Value of the objective function at the point.
+ * @param copyArray if {@code true}, the input arrays will be copied, otherwise they will be
+ * referenced.
+ */
+ public PointVectorValuePair(
+ final double[] point, final double[] value, final boolean copyArray) {
+ super(
+ copyArray ? ((point == null) ? null : point.clone()) : point,
+ copyArray ? ((value == null) ? null : value.clone()) : value);
+ }
+
+ /**
+ * Gets the point.
+ *
+ * @return a copy of the stored point.
+ */
+ public double[] getPoint() {
+ final double[] p = getKey();
+ return p == null ? null : p.clone();
+ }
+
+ /**
+ * Gets a reference to the point.
+ *
+ * @return a reference to the internal array storing the point.
+ */
+ public double[] getPointRef() {
+ return getKey();
+ }
+
+ /**
+ * Gets the value of the objective function.
+ *
+ * @return a copy of the stored value of the objective function.
+ */
+ @Override
+ public double[] getValue() {
+ final double[] v = super.getValue();
+ return v == null ? null : v.clone();
+ }
+
+ /**
+ * Gets a reference to the value of the objective function.
+ *
+ * @return a reference to the internal array storing the value of the objective function.
+ */
+ public double[] getValueRef() {
+ return super.getValue();
+ }
+
+ /**
+ * Replace the instance with a data transfer object for serialization.
+ *
+ * @return data transfer object that will be serialized
+ */
+ private Object writeReplace() {
+ return new DataTransferObject(getKey(), getValue());
+ }
+
+ /** Internal class used only for serialization. */
+ private static class DataTransferObject implements Serializable {
+ /** Serializable UID. */
+ private static final long serialVersionUID = 20120513L;
+
+ /** Point coordinates. @Serial */
+ private final double[] point;
+
+ /** Value of the objective function at the point. @Serial */
+ private final double[] value;
+
+ /**
+ * Simple constructor.
+ *
+ * @param point Point coordinates.
+ * @param value Value of the objective function at the point.
+ */
+ DataTransferObject(final double[] point, final double[] value) {
+ this.point = point.clone();
+ this.value = value.clone();
+ }
+
+ /**
+ * Replace the deserialized data transfer object with a {@link PointValuePair}.
+ *
+ * @return replacement {@link PointValuePair}
+ */
+ private Object readResolve() {
+ return new PointVectorValuePair(point, value, false);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/SimpleBounds.java b/src/main/java/org/apache/commons/math3/optimization/SimpleBounds.java
new file mode 100644
index 0000000..ebda3ca
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/SimpleBounds.java
@@ -0,0 +1,62 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+/**
+ * Simple optimization constraints: lower and upper bounds. The valid range of the parameters is an
+ * interval that can be infinite (in one or both directions). <br>
+ * Immutable class.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public class SimpleBounds implements OptimizationData {
+ /** Lower bounds. */
+ private final double[] lower;
+
+ /** Upper bounds. */
+ private final double[] upper;
+
+ /**
+ * @param lB Lower bounds.
+ * @param uB Upper bounds.
+ */
+ public SimpleBounds(double[] lB, double[] uB) {
+ lower = lB.clone();
+ upper = uB.clone();
+ }
+
+ /**
+ * Gets the lower bounds.
+ *
+ * @return the initial guess.
+ */
+ public double[] getLower() {
+ return lower.clone();
+ }
+
+ /**
+ * Gets the lower bounds.
+ *
+ * @return the initial guess.
+ */
+ public double[] getUpper() {
+ return upper.clone();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/SimplePointChecker.java b/src/main/java/org/apache/commons/math3/optimization/SimplePointChecker.java
new file mode 100644
index 0000000..50ee2c5
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/SimplePointChecker.java
@@ -0,0 +1,130 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.Pair;
+
+/**
+ * Simple implementation of the {@link ConvergenceChecker} interface using only point coordinates.
+ *
+ * <p>Convergence is considered to have been reached if either the relative difference between each
+ * point coordinate are smaller than a threshold or if either the absolute difference between the
+ * point coordinates are smaller than another threshold. <br>
+ * The {@link #converged(int,Pair,Pair) converged} method will also return {@code true} if the
+ * number of iterations has been set (see {@link #SimplePointChecker(double,double,int) this
+ * constructor}).
+ *
+ * @param <PAIR> Type of the (point, value) pair. The type of the "value" part of the pair (not used
+ * by this class).
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class SimplePointChecker<PAIR extends Pair<double[], ? extends Object>>
+ extends AbstractConvergenceChecker<PAIR> {
+ /**
+ * If {@link #maxIterationCount} is set to this value, the number of iterations will never cause
+ * {@link #converged(int, Pair, Pair)} to return {@code true}.
+ */
+ private static final int ITERATION_CHECK_DISABLED = -1;
+
+ /**
+ * Number of iterations after which the {@link #converged(int, Pair, Pair)} method will return
+ * true (unless the check is disabled).
+ */
+ private final int maxIterationCount;
+
+ /**
+ * Build an instance with default threshold.
+ *
+ * @deprecated See {@link AbstractConvergenceChecker#AbstractConvergenceChecker()}
+ */
+ @Deprecated
+ public SimplePointChecker() {
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /**
+ * Build an instance with specified thresholds. In order to perform only relative checks, the
+ * absolute tolerance must be set to a negative value. In order to perform only absolute checks,
+ * the relative tolerance must be set to a negative value.
+ *
+ * @param relativeThreshold relative tolerance threshold
+ * @param absoluteThreshold absolute tolerance threshold
+ */
+ public SimplePointChecker(final double relativeThreshold, final double absoluteThreshold) {
+ super(relativeThreshold, absoluteThreshold);
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /**
+ * Builds an instance with specified thresholds. In order to perform only relative checks, the
+ * absolute tolerance must be set to a negative value. In order to perform only absolute checks,
+ * the relative tolerance must be set to a negative value.
+ *
+ * @param relativeThreshold Relative tolerance threshold.
+ * @param absoluteThreshold Absolute tolerance threshold.
+ * @param maxIter Maximum iteration count.
+ * @throws NotStrictlyPositiveException if {@code maxIter <= 0}.
+ * @since 3.1
+ */
+ public SimplePointChecker(
+ final double relativeThreshold, final double absoluteThreshold, final int maxIter) {
+ super(relativeThreshold, absoluteThreshold);
+
+ if (maxIter <= 0) {
+ throw new NotStrictlyPositiveException(maxIter);
+ }
+ maxIterationCount = maxIter;
+ }
+
+ /**
+ * Check if the optimization algorithm has converged considering the last two points. This
+ * method may be called several times from the same algorithm iteration with different points.
+ * This can be detected by checking the iteration number at each call if needed. Each time this
+ * method is called, the previous and current point correspond to points with the same role at
+ * each iteration, so they can be compared. As an example, simplex-based algorithms call this
+ * method for all points of the simplex, not only for the best or worst ones.
+ *
+ * @param iteration Index of current iteration
+ * @param previous Best point in the previous iteration.
+ * @param current Best point in the current iteration.
+ * @return {@code true} if the arguments satify the convergence criterion.
+ */
+ @Override
+ public boolean converged(final int iteration, final PAIR previous, final PAIR current) {
+ if (maxIterationCount != ITERATION_CHECK_DISABLED && iteration >= maxIterationCount) {
+ return true;
+ }
+
+ final double[] p = previous.getKey();
+ final double[] c = current.getKey();
+ for (int i = 0; i < p.length; ++i) {
+ final double pi = p[i];
+ final double ci = c[i];
+ final double difference = FastMath.abs(pi - ci);
+ final double size = FastMath.max(FastMath.abs(pi), FastMath.abs(ci));
+ if (difference > size * getRelativeThreshold() && difference > getAbsoluteThreshold()) {
+ return false;
+ }
+ }
+ return true;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/SimpleValueChecker.java b/src/main/java/org/apache/commons/math3/optimization/SimpleValueChecker.java
new file mode 100644
index 0000000..6f7a2c0
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/SimpleValueChecker.java
@@ -0,0 +1,125 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Simple implementation of the {@link ConvergenceChecker} interface using only objective function
+ * values.
+ *
+ * <p>Convergence is considered to have been reached if either the relative difference between the
+ * objective function values is smaller than a threshold or if either the absolute difference
+ * between the objective function values is smaller than another threshold. <br>
+ * The {@link #converged(int,PointValuePair,PointValuePair) converged} method will also return
+ * {@code true} if the number of iterations has been set (see {@link
+ * #SimpleValueChecker(double,double,int) this constructor}).
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class SimpleValueChecker extends AbstractConvergenceChecker<PointValuePair> {
+ /**
+ * If {@link #maxIterationCount} is set to this value, the number of iterations will never cause
+ * {@link #converged(int,PointValuePair,PointValuePair)} to return {@code true}.
+ */
+ private static final int ITERATION_CHECK_DISABLED = -1;
+
+ /**
+ * Number of iterations after which the {@link #converged(int,PointValuePair,PointValuePair)}
+ * method will return true (unless the check is disabled).
+ */
+ private final int maxIterationCount;
+
+ /**
+ * Build an instance with default thresholds.
+ *
+ * @deprecated See {@link AbstractConvergenceChecker#AbstractConvergenceChecker()}
+ */
+ @Deprecated
+ public SimpleValueChecker() {
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /**
+ * Build an instance with specified thresholds.
+ *
+ * <p>In order to perform only relative checks, the absolute tolerance must be set to a negative
+ * value. In order to perform only absolute checks, the relative tolerance must be set to a
+ * negative value.
+ *
+ * @param relativeThreshold relative tolerance threshold
+ * @param absoluteThreshold absolute tolerance threshold
+ */
+ public SimpleValueChecker(final double relativeThreshold, final double absoluteThreshold) {
+ super(relativeThreshold, absoluteThreshold);
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /**
+ * Builds an instance with specified thresholds.
+ *
+ * <p>In order to perform only relative checks, the absolute tolerance must be set to a negative
+ * value. In order to perform only absolute checks, the relative tolerance must be set to a
+ * negative value.
+ *
+ * @param relativeThreshold relative tolerance threshold
+ * @param absoluteThreshold absolute tolerance threshold
+ * @param maxIter Maximum iteration count.
+ * @throws NotStrictlyPositiveException if {@code maxIter <= 0}.
+ * @since 3.1
+ */
+ public SimpleValueChecker(
+ final double relativeThreshold, final double absoluteThreshold, final int maxIter) {
+ super(relativeThreshold, absoluteThreshold);
+
+ if (maxIter <= 0) {
+ throw new NotStrictlyPositiveException(maxIter);
+ }
+ maxIterationCount = maxIter;
+ }
+
+ /**
+ * Check if the optimization algorithm has converged considering the last two points. This
+ * method may be called several time from the same algorithm iteration with different points.
+ * This can be detected by checking the iteration number at each call if needed. Each time this
+ * method is called, the previous and current point correspond to points with the same role at
+ * each iteration, so they can be compared. As an example, simplex-based algorithms call this
+ * method for all points of the simplex, not only for the best or worst ones.
+ *
+ * @param iteration Index of current iteration
+ * @param previous Best point in the previous iteration.
+ * @param current Best point in the current iteration.
+ * @return {@code true} if the algorithm has converged.
+ */
+ @Override
+ public boolean converged(
+ final int iteration, final PointValuePair previous, final PointValuePair current) {
+ if (maxIterationCount != ITERATION_CHECK_DISABLED && iteration >= maxIterationCount) {
+ return true;
+ }
+
+ final double p = previous.getValue();
+ final double c = current.getValue();
+ final double difference = FastMath.abs(p - c);
+ final double size = FastMath.max(FastMath.abs(p), FastMath.abs(c));
+ return difference <= size * getRelativeThreshold() || difference <= getAbsoluteThreshold();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/SimpleVectorValueChecker.java b/src/main/java/org/apache/commons/math3/optimization/SimpleVectorValueChecker.java
new file mode 100644
index 0000000..4ddb93d
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/SimpleVectorValueChecker.java
@@ -0,0 +1,137 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Simple implementation of the {@link ConvergenceChecker} interface using only objective function
+ * values.
+ *
+ * <p>Convergence is considered to have been reached if either the relative difference between the
+ * objective function values is smaller than a threshold or if either the absolute difference
+ * between the objective function values is smaller than another threshold for all vectors elements.
+ * <br>
+ * The {@link #converged(int,PointVectorValuePair,PointVectorValuePair) converged} method will also
+ * return {@code true} if the number of iterations has been set (see {@link
+ * #SimpleVectorValueChecker(double,double,int) this constructor}).
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class SimpleVectorValueChecker extends AbstractConvergenceChecker<PointVectorValuePair> {
+ /**
+ * If {@link #maxIterationCount} is set to this value, the number of iterations will never cause
+ * {@link #converged(int,PointVectorValuePair,PointVectorValuePair)} to return {@code true}.
+ */
+ private static final int ITERATION_CHECK_DISABLED = -1;
+
+ /**
+ * Number of iterations after which the {@link
+ * #converged(int,PointVectorValuePair,PointVectorValuePair)} method will return true (unless
+ * the check is disabled).
+ */
+ private final int maxIterationCount;
+
+ /**
+ * Build an instance with default thresholds.
+ *
+ * @deprecated See {@link AbstractConvergenceChecker#AbstractConvergenceChecker()}
+ */
+ @Deprecated
+ public SimpleVectorValueChecker() {
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /**
+ * Build an instance with specified thresholds.
+ *
+ * <p>In order to perform only relative checks, the absolute tolerance must be set to a negative
+ * value. In order to perform only absolute checks, the relative tolerance must be set to a
+ * negative value.
+ *
+ * @param relativeThreshold relative tolerance threshold
+ * @param absoluteThreshold absolute tolerance threshold
+ */
+ public SimpleVectorValueChecker(
+ final double relativeThreshold, final double absoluteThreshold) {
+ super(relativeThreshold, absoluteThreshold);
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /**
+ * Builds an instance with specified tolerance thresholds and iteration count.
+ *
+ * <p>In order to perform only relative checks, the absolute tolerance must be set to a negative
+ * value. In order to perform only absolute checks, the relative tolerance must be set to a
+ * negative value.
+ *
+ * @param relativeThreshold Relative tolerance threshold.
+ * @param absoluteThreshold Absolute tolerance threshold.
+ * @param maxIter Maximum iteration count.
+ * @throws NotStrictlyPositiveException if {@code maxIter <= 0}.
+ * @since 3.1
+ */
+ public SimpleVectorValueChecker(
+ final double relativeThreshold, final double absoluteThreshold, final int maxIter) {
+ super(relativeThreshold, absoluteThreshold);
+
+ if (maxIter <= 0) {
+ throw new NotStrictlyPositiveException(maxIter);
+ }
+ maxIterationCount = maxIter;
+ }
+
+ /**
+ * Check if the optimization algorithm has converged considering the last two points. This
+ * method may be called several times from the same algorithm iteration with different points.
+ * This can be detected by checking the iteration number at each call if needed. Each time this
+ * method is called, the previous and current point correspond to points with the same role at
+ * each iteration, so they can be compared. As an example, simplex-based algorithms call this
+ * method for all points of the simplex, not only for the best or worst ones.
+ *
+ * @param iteration Index of current iteration
+ * @param previous Best point in the previous iteration.
+ * @param current Best point in the current iteration.
+ * @return {@code true} if the arguments satify the convergence criterion.
+ */
+ @Override
+ public boolean converged(
+ final int iteration,
+ final PointVectorValuePair previous,
+ final PointVectorValuePair current) {
+ if (maxIterationCount != ITERATION_CHECK_DISABLED && iteration >= maxIterationCount) {
+ return true;
+ }
+
+ final double[] p = previous.getValueRef();
+ final double[] c = current.getValueRef();
+ for (int i = 0; i < p.length; ++i) {
+ final double pi = p[i];
+ final double ci = c[i];
+ final double difference = FastMath.abs(pi - ci);
+ final double size = FastMath.max(FastMath.abs(pi), FastMath.abs(ci));
+ if (difference > size * getRelativeThreshold() && difference > getAbsoluteThreshold()) {
+ return false;
+ }
+ }
+ return true;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/Target.java b/src/main/java/org/apache/commons/math3/optimization/Target.java
new file mode 100644
index 0000000..43940ac
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/Target.java
@@ -0,0 +1,48 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+/**
+ * Target of the optimization procedure. They are the values which the objective vector function
+ * must reproduce When the parameters of the model have been optimized. <br>
+ * Immutable class.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public class Target implements OptimizationData {
+ /** Target values (of the objective vector function). */
+ private final double[] target;
+
+ /**
+ * @param observations Target values.
+ */
+ public Target(double[] observations) {
+ target = observations.clone();
+ }
+
+ /**
+ * Gets the initial guess.
+ *
+ * @return the initial guess.
+ */
+ public double[] getTarget() {
+ return target.clone();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/Weight.java b/src/main/java/org/apache/commons/math3/optimization/Weight.java
new file mode 100644
index 0000000..83226b5
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/Weight.java
@@ -0,0 +1,66 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization;
+
+import org.apache.commons.math3.linear.DiagonalMatrix;
+import org.apache.commons.math3.linear.NonSquareMatrixException;
+import org.apache.commons.math3.linear.RealMatrix;
+
+/**
+ * Weight matrix of the residuals between model and observations. <br>
+ * Immutable class.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public class Weight implements OptimizationData {
+ /** Weight matrix. */
+ private final RealMatrix weightMatrix;
+
+ /**
+ * Creates a diagonal weight matrix.
+ *
+ * @param weight List of the values of the diagonal.
+ */
+ public Weight(double[] weight) {
+ weightMatrix = new DiagonalMatrix(weight);
+ }
+
+ /**
+ * @param weight Weight matrix.
+ * @throws NonSquareMatrixException if the argument is not a square matrix.
+ */
+ public Weight(RealMatrix weight) {
+ if (weight.getColumnDimension() != weight.getRowDimension()) {
+ throw new NonSquareMatrixException(
+ weight.getColumnDimension(), weight.getRowDimension());
+ }
+
+ weightMatrix = weight.copy();
+ }
+
+ /**
+ * Gets the initial guess.
+ *
+ * @return the initial guess.
+ */
+ public RealMatrix getWeight() {
+ return weightMatrix.copy();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/AbstractSimplex.java b/src/main/java/org/apache/commons/math3/optimization/direct/AbstractSimplex.java
new file mode 100644
index 0000000..b229cd1
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/AbstractSimplex.java
@@ -0,0 +1,347 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import java.util.Arrays;
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.MathIllegalArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.OptimizationData;
+
+/**
+ * This class implements the simplex concept.
+ * It is intended to be used in conjunction with {@link SimplexOptimizer}.
+ * <br/>
+ * The initial configuration of the simplex is set by the constructors
+ * {@link #AbstractSimplex(double[])} or {@link #AbstractSimplex(double[][])}.
+ * The other {@link #AbstractSimplex(int) constructor} will set all steps
+ * to 1, thus building a default configuration from a unit hypercube.
+ * <br/>
+ * Users <em>must</em> call the {@link #build(double[]) build} method in order
+ * to create the data structure that will be acted on by the other methods of
+ * this class.
+ *
+ * @see SimplexOptimizer
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public abstract class AbstractSimplex implements OptimizationData {
+ /** Simplex. */
+ private PointValuePair[] simplex;
+ /** Start simplex configuration. */
+ private double[][] startConfiguration;
+ /** Simplex dimension (must be equal to {@code simplex.length - 1}). */
+ private final int dimension;
+
+ /**
+ * Build a unit hypercube simplex.
+ *
+ * @param n Dimension of the simplex.
+ */
+ protected AbstractSimplex(int n) {
+ this(n, 1d);
+ }
+
+ /**
+ * Build a hypercube simplex with the given side length.
+ *
+ * @param n Dimension of the simplex.
+ * @param sideLength Length of the sides of the hypercube.
+ */
+ protected AbstractSimplex(int n,
+ double sideLength) {
+ this(createHypercubeSteps(n, sideLength));
+ }
+
+ /**
+ * The start configuration for simplex is built from a box parallel to
+ * the canonical axes of the space. The simplex is the subset of vertices
+ * of a box parallel to the canonical axes. It is built as the path followed
+ * while traveling from one vertex of the box to the diagonally opposite
+ * vertex moving only along the box edges. The first vertex of the box will
+ * be located at the start point of the optimization.
+ * As an example, in dimension 3 a simplex has 4 vertices. Setting the
+ * steps to (1, 10, 2) and the start point to (1, 1, 1) would imply the
+ * start simplex would be: { (1, 1, 1), (2, 1, 1), (2, 11, 1), (2, 11, 3) }.
+ * The first vertex would be set to the start point at (1, 1, 1) and the
+ * last vertex would be set to the diagonally opposite vertex at (2, 11, 3).
+ *
+ * @param steps Steps along the canonical axes representing box edges. They
+ * may be negative but not zero.
+ * @throws NullArgumentException if {@code steps} is {@code null}.
+ * @throws ZeroException if one of the steps is zero.
+ */
+ protected AbstractSimplex(final double[] steps) {
+ if (steps == null) {
+ throw new NullArgumentException();
+ }
+ if (steps.length == 0) {
+ throw new ZeroException();
+ }
+ dimension = steps.length;
+
+ // Only the relative position of the n final vertices with respect
+ // to the first one are stored.
+ startConfiguration = new double[dimension][dimension];
+ for (int i = 0; i < dimension; i++) {
+ final double[] vertexI = startConfiguration[i];
+ for (int j = 0; j < i + 1; j++) {
+ if (steps[j] == 0) {
+ throw new ZeroException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX);
+ }
+ System.arraycopy(steps, 0, vertexI, 0, j + 1);
+ }
+ }
+ }
+
+ /**
+ * The real initial simplex will be set up by moving the reference
+ * simplex such that its first point is located at the start point of the
+ * optimization.
+ *
+ * @param referenceSimplex Reference simplex.
+ * @throws NotStrictlyPositiveException if the reference simplex does not
+ * contain at least one point.
+ * @throws DimensionMismatchException if there is a dimension mismatch
+ * in the reference simplex.
+ * @throws IllegalArgumentException if one of its vertices is duplicated.
+ */
+ protected AbstractSimplex(final double[][] referenceSimplex) {
+ if (referenceSimplex.length <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.SIMPLEX_NEED_ONE_POINT,
+ referenceSimplex.length);
+ }
+ dimension = referenceSimplex.length - 1;
+
+ // Only the relative position of the n final vertices with respect
+ // to the first one are stored.
+ startConfiguration = new double[dimension][dimension];
+ final double[] ref0 = referenceSimplex[0];
+
+ // Loop over vertices.
+ for (int i = 0; i < referenceSimplex.length; i++) {
+ final double[] refI = referenceSimplex[i];
+
+ // Safety checks.
+ if (refI.length != dimension) {
+ throw new DimensionMismatchException(refI.length, dimension);
+ }
+ for (int j = 0; j < i; j++) {
+ final double[] refJ = referenceSimplex[j];
+ boolean allEquals = true;
+ for (int k = 0; k < dimension; k++) {
+ if (refI[k] != refJ[k]) {
+ allEquals = false;
+ break;
+ }
+ }
+ if (allEquals) {
+ throw new MathIllegalArgumentException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX,
+ i, j);
+ }
+ }
+
+ // Store vertex i position relative to vertex 0 position.
+ if (i > 0) {
+ final double[] confI = startConfiguration[i - 1];
+ for (int k = 0; k < dimension; k++) {
+ confI[k] = refI[k] - ref0[k];
+ }
+ }
+ }
+ }
+
+ /**
+ * Get simplex dimension.
+ *
+ * @return the dimension of the simplex.
+ */
+ public int getDimension() {
+ return dimension;
+ }
+
+ /**
+ * Get simplex size.
+ * After calling the {@link #build(double[]) build} method, this method will
+ * will be equivalent to {@code getDimension() + 1}.
+ *
+ * @return the size of the simplex.
+ */
+ public int getSize() {
+ return simplex.length;
+ }
+
+ /**
+ * Compute the next simplex of the algorithm.
+ *
+ * @param evaluationFunction Evaluation function.
+ * @param comparator Comparator to use to sort simplex vertices from best
+ * to worst.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the algorithm fails to converge.
+ */
+ public abstract void iterate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator);
+
+ /**
+ * Build an initial simplex.
+ *
+ * @param startPoint First point of the simplex.
+ * @throws DimensionMismatchException if the start point does not match
+ * simplex dimension.
+ */
+ public void build(final double[] startPoint) {
+ if (dimension != startPoint.length) {
+ throw new DimensionMismatchException(dimension, startPoint.length);
+ }
+
+ // Set first vertex.
+ simplex = new PointValuePair[dimension + 1];
+ simplex[0] = new PointValuePair(startPoint, Double.NaN);
+
+ // Set remaining vertices.
+ for (int i = 0; i < dimension; i++) {
+ final double[] confI = startConfiguration[i];
+ final double[] vertexI = new double[dimension];
+ for (int k = 0; k < dimension; k++) {
+ vertexI[k] = startPoint[k] + confI[k];
+ }
+ simplex[i + 1] = new PointValuePair(vertexI, Double.NaN);
+ }
+ }
+
+ /**
+ * Evaluate all the non-evaluated points of the simplex.
+ *
+ * @param evaluationFunction Evaluation function.
+ * @param comparator Comparator to use to sort simplex vertices from best to worst.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ */
+ public void evaluate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator) {
+ // Evaluate the objective function at all non-evaluated simplex points.
+ for (int i = 0; i < simplex.length; i++) {
+ final PointValuePair vertex = simplex[i];
+ final double[] point = vertex.getPointRef();
+ if (Double.isNaN(vertex.getValue())) {
+ simplex[i] = new PointValuePair(point, evaluationFunction.value(point), false);
+ }
+ }
+
+ // Sort the simplex from best to worst.
+ Arrays.sort(simplex, comparator);
+ }
+
+ /**
+ * Replace the worst point of the simplex by a new point.
+ *
+ * @param pointValuePair Point to insert.
+ * @param comparator Comparator to use for sorting the simplex vertices
+ * from best to worst.
+ */
+ protected void replaceWorstPoint(PointValuePair pointValuePair,
+ final Comparator<PointValuePair> comparator) {
+ for (int i = 0; i < dimension; i++) {
+ if (comparator.compare(simplex[i], pointValuePair) > 0) {
+ PointValuePair tmp = simplex[i];
+ simplex[i] = pointValuePair;
+ pointValuePair = tmp;
+ }
+ }
+ simplex[dimension] = pointValuePair;
+ }
+
+ /**
+ * Get the points of the simplex.
+ *
+ * @return all the simplex points.
+ */
+ public PointValuePair[] getPoints() {
+ final PointValuePair[] copy = new PointValuePair[simplex.length];
+ System.arraycopy(simplex, 0, copy, 0, simplex.length);
+ return copy;
+ }
+
+ /**
+ * Get the simplex point stored at the requested {@code index}.
+ *
+ * @param index Location.
+ * @return the point at location {@code index}.
+ */
+ public PointValuePair getPoint(int index) {
+ if (index < 0 ||
+ index >= simplex.length) {
+ throw new OutOfRangeException(index, 0, simplex.length - 1);
+ }
+ return simplex[index];
+ }
+
+ /**
+ * Store a new point at location {@code index}.
+ * Note that no deep-copy of {@code point} is performed.
+ *
+ * @param index Location.
+ * @param point New value.
+ */
+ protected void setPoint(int index, PointValuePair point) {
+ if (index < 0 ||
+ index >= simplex.length) {
+ throw new OutOfRangeException(index, 0, simplex.length - 1);
+ }
+ simplex[index] = point;
+ }
+
+ /**
+ * Replace all points.
+ * Note that no deep-copy of {@code points} is performed.
+ *
+ * @param points New Points.
+ */
+ protected void setPoints(PointValuePair[] points) {
+ if (points.length != simplex.length) {
+ throw new DimensionMismatchException(points.length, simplex.length);
+ }
+ simplex = points;
+ }
+
+ /**
+ * Create steps for a unit hypercube.
+ *
+ * @param n Dimension of the hypercube.
+ * @param sideLength Length of the sides of the hypercube.
+ * @return the steps.
+ */
+ private static double[] createHypercubeSteps(int n,
+ double sideLength) {
+ final double[] steps = new double[n];
+ for (int i = 0; i < n; i++) {
+ steps[i] = sideLength;
+ }
+ return steps;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/BOBYQAOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/direct/BOBYQAOptimizer.java
new file mode 100644
index 0000000..78d2d2c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/BOBYQAOptimizer.java
@@ -0,0 +1,2480 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// CHECKSTYLE: stop all
+package org.apache.commons.math3.optimization.direct;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.RealVector;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.MultivariateOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Powell's BOBYQA algorithm. This implementation is translated and
+ * adapted from the Fortran version available
+ * <a href="http://plato.asu.edu/ftp/other_software/bobyqa.zip">here</a>.
+ * See <a href="http://www.optimization-online.org/DB_HTML/2010/05/2616.html">
+ * this paper</a> for an introduction.
+ * <br/>
+ * BOBYQA is particularly well suited for high dimensional problems
+ * where derivatives are not available. In most cases it outperforms the
+ * {@link PowellOptimizer} significantly. Stochastic algorithms like
+ * {@link CMAESOptimizer} succeed more often than BOBYQA, but are more
+ * expensive. BOBYQA could also be considered as a replacement of any
+ * derivative-based optimizer when the derivatives are approximated by
+ * finite differences.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class BOBYQAOptimizer
+ extends BaseAbstractMultivariateSimpleBoundsOptimizer<MultivariateFunction>
+ implements MultivariateOptimizer {
+ /** Minimum dimension of the problem: {@value} */
+ public static final int MINIMUM_PROBLEM_DIMENSION = 2;
+ /** Default value for {@link #initialTrustRegionRadius}: {@value} . */
+ public static final double DEFAULT_INITIAL_RADIUS = 10.0;
+ /** Default value for {@link #stoppingTrustRegionRadius}: {@value} . */
+ public static final double DEFAULT_STOPPING_RADIUS = 1E-8;
+ /** Constant 0. */
+ private static final double ZERO = 0d;
+ /** Constant 1. */
+ private static final double ONE = 1d;
+ /** Constant 2. */
+ private static final double TWO = 2d;
+ /** Constant 10. */
+ private static final double TEN = 10d;
+ /** Constant 16. */
+ private static final double SIXTEEN = 16d;
+ /** Constant 250. */
+ private static final double TWO_HUNDRED_FIFTY = 250d;
+ /** Constant -1. */
+ private static final double MINUS_ONE = -ONE;
+ /** Constant 1/2. */
+ private static final double HALF = ONE / 2;
+ /** Constant 1/4. */
+ private static final double ONE_OVER_FOUR = ONE / 4;
+ /** Constant 1/8. */
+ private static final double ONE_OVER_EIGHT = ONE / 8;
+ /** Constant 1/10. */
+ private static final double ONE_OVER_TEN = ONE / 10;
+ /** Constant 1/1000. */
+ private static final double ONE_OVER_A_THOUSAND = ONE / 1000;
+
+ /**
+ * numberOfInterpolationPoints XXX
+ */
+ private final int numberOfInterpolationPoints;
+ /**
+ * initialTrustRegionRadius XXX
+ */
+ private double initialTrustRegionRadius;
+ /**
+ * stoppingTrustRegionRadius XXX
+ */
+ private final double stoppingTrustRegionRadius;
+ /** Goal type (minimize or maximize). */
+ private boolean isMinimize;
+ /**
+ * Current best values for the variables to be optimized.
+ * The vector will be changed in-place to contain the values of the least
+ * calculated objective function values.
+ */
+ private ArrayRealVector currentBest;
+ /** Differences between the upper and lower bounds. */
+ private double[] boundDifference;
+ /**
+ * Index of the interpolation point at the trust region center.
+ */
+ private int trustRegionCenterInterpolationPointIndex;
+ /**
+ * Last <em>n</em> columns of matrix H (where <em>n</em> is the dimension
+ * of the problem).
+ * XXX "bmat" in the original code.
+ */
+ private Array2DRowRealMatrix bMatrix;
+ /**
+ * Factorization of the leading <em>npt</em> square submatrix of H, this
+ * factorization being Z Z<sup>T</sup>, which provides both the correct
+ * rank and positive semi-definiteness.
+ * XXX "zmat" in the original code.
+ */
+ private Array2DRowRealMatrix zMatrix;
+ /**
+ * Coordinates of the interpolation points relative to {@link #originShift}.
+ * XXX "xpt" in the original code.
+ */
+ private Array2DRowRealMatrix interpolationPoints;
+ /**
+ * Shift of origin that should reduce the contributions from rounding
+ * errors to values of the model and Lagrange functions.
+ * XXX "xbase" in the original code.
+ */
+ private ArrayRealVector originShift;
+ /**
+ * Values of the objective function at the interpolation points.
+ * XXX "fval" in the original code.
+ */
+ private ArrayRealVector fAtInterpolationPoints;
+ /**
+ * Displacement from {@link #originShift} of the trust region center.
+ * XXX "xopt" in the original code.
+ */
+ private ArrayRealVector trustRegionCenterOffset;
+ /**
+ * Gradient of the quadratic model at {@link #originShift} +
+ * {@link #trustRegionCenterOffset}.
+ * XXX "gopt" in the original code.
+ */
+ private ArrayRealVector gradientAtTrustRegionCenter;
+ /**
+ * Differences {@link #getLowerBound()} - {@link #originShift}.
+ * All the components of every {@link #trustRegionCenterOffset} are going
+ * to satisfy the bounds<br/>
+ * {@link #getLowerBound() lowerBound}<sub>i</sub> &le;
+ * {@link #trustRegionCenterOffset}<sub>i</sub>,<br/>
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is
+ * on a constraint boundary.
+ * XXX "sl" in the original code.
+ */
+ private ArrayRealVector lowerDifference;
+ /**
+ * Differences {@link #getUpperBound()} - {@link #originShift}
+ * All the components of every {@link #trustRegionCenterOffset} are going
+ * to satisfy the bounds<br/>
+ * {@link #trustRegionCenterOffset}<sub>i</sub> &le;
+ * {@link #getUpperBound() upperBound}<sub>i</sub>,<br/>
+ * with appropriate equalities when {@link #trustRegionCenterOffset} is
+ * on a constraint boundary.
+ * XXX "su" in the original code.
+ */
+ private ArrayRealVector upperDifference;
+ /**
+ * Parameters of the implicit second derivatives of the quadratic model.
+ * XXX "pq" in the original code.
+ */
+ private ArrayRealVector modelSecondDerivativesParameters;
+ /**
+ * Point chosen by function {@link #trsbox(double,ArrayRealVector,
+ * ArrayRealVector, ArrayRealVector,ArrayRealVector,ArrayRealVector) trsbox}
+ * or {@link #altmov(int,double) altmov}.
+ * Usually {@link #originShift} + {@link #newPoint} is the vector of
+ * variables for the next evaluation of the objective function.
+ * It also satisfies the constraints indicated in {@link #lowerDifference}
+ * and {@link #upperDifference}.
+ * XXX "xnew" in the original code.
+ */
+ private ArrayRealVector newPoint;
+ /**
+ * Alternative to {@link #newPoint}, chosen by
+ * {@link #altmov(int,double) altmov}.
+ * It may replace {@link #newPoint} in order to increase the denominator
+ * in the {@link #update(double, double, int) updating procedure}.
+ * XXX "xalt" in the original code.
+ */
+ private ArrayRealVector alternativeNewPoint;
+ /**
+ * Trial step from {@link #trustRegionCenterOffset} which is usually
+ * {@link #newPoint} - {@link #trustRegionCenterOffset}.
+ * XXX "d__" in the original code.
+ */
+ private ArrayRealVector trialStepPoint;
+ /**
+ * Values of the Lagrange functions at a new point.
+ * XXX "vlag" in the original code.
+ */
+ private ArrayRealVector lagrangeValuesAtNewPoint;
+ /**
+ * Explicit second derivatives of the quadratic model.
+ * XXX "hq" in the original code.
+ */
+ private ArrayRealVector modelSecondDerivativesValues;
+
+ /**
+ * @param numberOfInterpolationPoints Number of interpolation conditions.
+ * For a problem of dimension {@code n}, its value must be in the interval
+ * {@code [n+2, (n+1)(n+2)/2]}.
+ * Choices that exceed {@code 2n+1} are not recommended.
+ */
+ public BOBYQAOptimizer(int numberOfInterpolationPoints) {
+ this(numberOfInterpolationPoints,
+ DEFAULT_INITIAL_RADIUS,
+ DEFAULT_STOPPING_RADIUS);
+ }
+
+ /**
+ * @param numberOfInterpolationPoints Number of interpolation conditions.
+ * For a problem of dimension {@code n}, its value must be in the interval
+ * {@code [n+2, (n+1)(n+2)/2]}.
+ * Choices that exceed {@code 2n+1} are not recommended.
+ * @param initialTrustRegionRadius Initial trust region radius.
+ * @param stoppingTrustRegionRadius Stopping trust region radius.
+ */
+ public BOBYQAOptimizer(int numberOfInterpolationPoints,
+ double initialTrustRegionRadius,
+ double stoppingTrustRegionRadius) {
+ super(null); // No custom convergence criterion.
+ this.numberOfInterpolationPoints = numberOfInterpolationPoints;
+ this.initialTrustRegionRadius = initialTrustRegionRadius;
+ this.stoppingTrustRegionRadius = stoppingTrustRegionRadius;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ final double[] lowerBound = getLowerBound();
+ final double[] upperBound = getUpperBound();
+
+ // Validity checks.
+ setup(lowerBound, upperBound);
+
+ isMinimize = (getGoalType() == GoalType.MINIMIZE);
+ currentBest = new ArrayRealVector(getStartPoint());
+
+ final double value = bobyqa(lowerBound, upperBound);
+
+ return new PointValuePair(currentBest.getDataRef(),
+ isMinimize ? value : -value);
+ }
+
+ /**
+ * This subroutine seeks the least value of a function of many variables,
+ * by applying a trust region method that forms quadratic models by
+ * interpolation. There is usually some freedom in the interpolation
+ * conditions, which is taken up by minimizing the Frobenius norm of
+ * the change to the second derivative of the model, beginning with the
+ * zero matrix. The values of the variables are constrained by upper and
+ * lower bounds. The arguments of the subroutine are as follows.
+ *
+ * N must be set to the number of variables and must be at least two.
+ * NPT is the number of interpolation conditions. Its value must be in
+ * the interval [N+2,(N+1)(N+2)/2]. Choices that exceed 2*N+1 are not
+ * recommended.
+ * Initial values of the variables must be set in X(1),X(2),...,X(N). They
+ * will be changed to the values that give the least calculated F.
+ * For I=1,2,...,N, XL(I) and XU(I) must provide the lower and upper
+ * bounds, respectively, on X(I). The construction of quadratic models
+ * requires XL(I) to be strictly less than XU(I) for each I. Further,
+ * the contribution to a model from changes to the I-th variable is
+ * damaged severely by rounding errors if XU(I)-XL(I) is too small.
+ * RHOBEG and RHOEND must be set to the initial and final values of a trust
+ * region radius, so both must be positive with RHOEND no greater than
+ * RHOBEG. Typically, RHOBEG should be about one tenth of the greatest
+ * expected change to a variable, while RHOEND should indicate the
+ * accuracy that is required in the final values of the variables. An
+ * error return occurs if any of the differences XU(I)-XL(I), I=1,...,N,
+ * is less than 2*RHOBEG.
+ * MAXFUN must be set to an upper bound on the number of calls of CALFUN.
+ * The array W will be used for working space. Its length must be at least
+ * (NPT+5)*(NPT+N)+3*N*(N+5)/2.
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ * @return the value of the objective at the optimum.
+ */
+ private double bobyqa(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+
+ // Return if there is insufficient space between the bounds. Modify the
+ // initial X if necessary in order to avoid conflicts between the bounds
+ // and the construction of the first quadratic model. The lower and upper
+ // bounds on moves from the updated X are set now, in the ISL and ISU
+ // partitions of W, in order to provide useful and exact information about
+ // components of X that become within distance RHOBEG from their bounds.
+
+ for (int j = 0; j < n; j++) {
+ final double boundDiff = boundDifference[j];
+ lowerDifference.setEntry(j, lowerBound[j] - currentBest.getEntry(j));
+ upperDifference.setEntry(j, upperBound[j] - currentBest.getEntry(j));
+ if (lowerDifference.getEntry(j) >= -initialTrustRegionRadius) {
+ if (lowerDifference.getEntry(j) >= ZERO) {
+ currentBest.setEntry(j, lowerBound[j]);
+ lowerDifference.setEntry(j, ZERO);
+ upperDifference.setEntry(j, boundDiff);
+ } else {
+ currentBest.setEntry(j, lowerBound[j] + initialTrustRegionRadius);
+ lowerDifference.setEntry(j, -initialTrustRegionRadius);
+ // Computing MAX
+ final double deltaOne = upperBound[j] - currentBest.getEntry(j);
+ upperDifference.setEntry(j, FastMath.max(deltaOne, initialTrustRegionRadius));
+ }
+ } else if (upperDifference.getEntry(j) <= initialTrustRegionRadius) {
+ if (upperDifference.getEntry(j) <= ZERO) {
+ currentBest.setEntry(j, upperBound[j]);
+ lowerDifference.setEntry(j, -boundDiff);
+ upperDifference.setEntry(j, ZERO);
+ } else {
+ currentBest.setEntry(j, upperBound[j] - initialTrustRegionRadius);
+ // Computing MIN
+ final double deltaOne = lowerBound[j] - currentBest.getEntry(j);
+ final double deltaTwo = -initialTrustRegionRadius;
+ lowerDifference.setEntry(j, FastMath.min(deltaOne, deltaTwo));
+ upperDifference.setEntry(j, initialTrustRegionRadius);
+ }
+ }
+ }
+
+ // Make the call of BOBYQB.
+
+ return bobyqb(lowerBound, upperBound);
+ } // bobyqa
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arguments N, NPT, X, XL, XU, RHOBEG, RHOEND, IPRINT and MAXFUN
+ * are identical to the corresponding arguments in SUBROUTINE BOBYQA.
+ * XBASE holds a shift of origin that should reduce the contributions
+ * from rounding errors to values of the model and Lagrange functions.
+ * XPT is a two-dimensional array that holds the coordinates of the
+ * interpolation points relative to XBASE.
+ * FVAL holds the values of F at the interpolation points.
+ * XOPT is set to the displacement from XBASE of the trust region centre.
+ * GOPT holds the gradient of the quadratic model at XBASE+XOPT.
+ * HQ holds the explicit second derivatives of the quadratic model.
+ * PQ contains the parameters of the implicit second derivatives of the
+ * quadratic model.
+ * BMAT holds the last N columns of H.
+ * ZMAT holds the factorization of the leading NPT by NPT submatrix of H,
+ * this factorization being ZMAT times ZMAT^T, which provides both the
+ * correct rank and positive semi-definiteness.
+ * NDIM is the first dimension of BMAT and has the value NPT+N.
+ * SL and SU hold the differences XL-XBASE and XU-XBASE, respectively.
+ * All the components of every XOPT are going to satisfy the bounds
+ * SL(I) .LEQ. XOPT(I) .LEQ. SU(I), with appropriate equalities when
+ * XOPT is on a constraint boundary.
+ * XNEW is chosen by SUBROUTINE TRSBOX or ALTMOV. Usually XBASE+XNEW is the
+ * vector of variables for the next call of CALFUN. XNEW also satisfies
+ * the SL and SU constraints in the way that has just been mentioned.
+ * XALT is an alternative to XNEW, chosen by ALTMOV, that may replace XNEW
+ * in order to increase the denominator in the updating of UPDATE.
+ * D is reserved for a trial step from XOPT, which is usually XNEW-XOPT.
+ * VLAG contains the values of the Lagrange functions at a new point X.
+ * They are part of a product that requires VLAG to be of length NDIM.
+ * W is a one-dimensional array that is used for working space. Its length
+ * must be at least 3*NDIM = 3*(NPT+N).
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ * @return the value of the objective at the optimum.
+ */
+ private double bobyqb(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int np = n + 1;
+ final int nptm = npt - np;
+ final int nh = n * np / 2;
+
+ final ArrayRealVector work1 = new ArrayRealVector(n);
+ final ArrayRealVector work2 = new ArrayRealVector(npt);
+ final ArrayRealVector work3 = new ArrayRealVector(npt);
+
+ double cauchy = Double.NaN;
+ double alpha = Double.NaN;
+ double dsq = Double.NaN;
+ double crvmin = Double.NaN;
+
+ // Set some constants.
+ // Parameter adjustments
+
+ // Function Body
+
+ // The call of PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
+ // BMAT and ZMAT for the first iteration, with the corresponding values of
+ // of NF and KOPT, which are the number of calls of CALFUN so far and the
+ // index of the interpolation point at the trust region centre. Then the
+ // initial XOPT is set too. The branch to label 720 occurs if MAXFUN is
+ // less than NPT. GOPT will be updated if KOPT is different from KBASE.
+
+ trustRegionCenterInterpolationPointIndex = 0;
+
+ prelim(lowerBound, upperBound);
+ double xoptsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ trustRegionCenterOffset.setEntry(i, interpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex, i));
+ // Computing 2nd power
+ final double deltaOne = trustRegionCenterOffset.getEntry(i);
+ xoptsq += deltaOne * deltaOne;
+ }
+ double fsave = fAtInterpolationPoints.getEntry(0);
+ final int kbase = 0;
+
+ // Complete the settings that are required for the iterative procedure.
+
+ int ntrits = 0;
+ int itest = 0;
+ int knew = 0;
+ int nfsav = getEvaluations();
+ double rho = initialTrustRegionRadius;
+ double delta = rho;
+ double diffa = ZERO;
+ double diffb = ZERO;
+ double diffc = ZERO;
+ double f = ZERO;
+ double beta = ZERO;
+ double adelt = ZERO;
+ double denom = ZERO;
+ double ratio = ZERO;
+ double dnorm = ZERO;
+ double scaden = ZERO;
+ double biglsq = ZERO;
+ double distsq = ZERO;
+
+ // Update GOPT if necessary before the first iteration and after each
+ // call of RESCUE that makes a call of CALFUN.
+
+ int state = 20;
+ for(;;) {
+ switch (state) {
+ case 20: {
+ printState(20); // XXX
+ if (trustRegionCenterInterpolationPointIndex != kbase) {
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(i));
+ }
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(j));
+ ih++;
+ }
+ }
+ if (getEvaluations() > npt) {
+ for (int k = 0; k < npt; k++) {
+ double temp = ZERO;
+ for (int j = 0; j < n; j++) {
+ temp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ temp *= modelSecondDerivativesParameters.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ // throw new PathIsExploredException(); // XXX
+ }
+ }
+
+ // Generate the next point in the trust region that provides a small value
+ // of the quadratic model subject to the constraints on the variables.
+ // The int NTRITS is set to the number "trust region" iterations that
+ // have occurred since the last "alternative" iteration. If the length
+ // of XNEW-XOPT is less than HALF*RHO, however, then there is a branch to
+ // label 650 or 680 with NTRITS=-1, instead of calculating F at XNEW.
+
+ }
+ case 60: {
+ printState(60); // XXX
+ final ArrayRealVector gnew = new ArrayRealVector(n);
+ final ArrayRealVector xbdi = new ArrayRealVector(n);
+ final ArrayRealVector s = new ArrayRealVector(n);
+ final ArrayRealVector hs = new ArrayRealVector(n);
+ final ArrayRealVector hred = new ArrayRealVector(n);
+
+ final double[] dsqCrvmin = trsbox(delta, gnew, xbdi, s,
+ hs, hred);
+ dsq = dsqCrvmin[0];
+ crvmin = dsqCrvmin[1];
+
+ // Computing MIN
+ double deltaOne = delta;
+ double deltaTwo = FastMath.sqrt(dsq);
+ dnorm = FastMath.min(deltaOne, deltaTwo);
+ if (dnorm < HALF * rho) {
+ ntrits = -1;
+ // Computing 2nd power
+ deltaOne = TEN * rho;
+ distsq = deltaOne * deltaOne;
+ if (getEvaluations() <= nfsav + 2) {
+ state = 650; break;
+ }
+
+ // The following choice between labels 650 and 680 depends on whether or
+ // not our work with the current RHO seems to be complete. Either RHO is
+ // decreased or termination occurs if the errors in the quadratic model at
+ // the last three interpolation points compare favourably with predictions
+ // of likely improvements to the model within distance HALF*RHO of XOPT.
+
+ // Computing MAX
+ deltaOne = FastMath.max(diffa, diffb);
+ final double errbig = FastMath.max(deltaOne, diffc);
+ final double frhosq = rho * ONE_OVER_EIGHT * rho;
+ if (crvmin > ZERO &&
+ errbig > frhosq * crvmin) {
+ state = 650; break;
+ }
+ final double bdtol = errbig / rho;
+ for (int j = 0; j < n; j++) {
+ double bdtest = bdtol;
+ if (newPoint.getEntry(j) == lowerDifference.getEntry(j)) {
+ bdtest = work1.getEntry(j);
+ }
+ if (newPoint.getEntry(j) == upperDifference.getEntry(j)) {
+ bdtest = -work1.getEntry(j);
+ }
+ if (bdtest < bdtol) {
+ double curv = modelSecondDerivativesValues.getEntry((j + j * j) / 2);
+ for (int k = 0; k < npt; k++) {
+ // Computing 2nd power
+ final double d1 = interpolationPoints.getEntry(k, j);
+ curv += modelSecondDerivativesParameters.getEntry(k) * (d1 * d1);
+ }
+ bdtest += HALF * curv * rho;
+ if (bdtest < bdtol) {
+ state = 650; break;
+ }
+ // throw new PathIsExploredException(); // XXX
+ }
+ }
+ state = 680; break;
+ }
+ ++ntrits;
+
+ // Severe cancellation is likely to occur if XOPT is too far from XBASE.
+ // If the following test holds, then XBASE is shifted so that XOPT becomes
+ // zero. The appropriate changes are made to BMAT and to the second
+ // derivatives of the current model, beginning with the changes to BMAT
+ // that do not depend on ZMAT. VLAG is used temporarily for working space.
+
+ }
+ case 90: {
+ printState(90); // XXX
+ if (dsq <= xoptsq * ONE_OVER_A_THOUSAND) {
+ final double fracsq = xoptsq * ONE_OVER_FOUR;
+ double sumpq = ZERO;
+ // final RealVector sumVector
+ // = new ArrayRealVector(npt, -HALF * xoptsq).add(interpolationPoints.operate(trustRegionCenter));
+ for (int k = 0; k < npt; k++) {
+ sumpq += modelSecondDerivativesParameters.getEntry(k);
+ double sum = -HALF * xoptsq;
+ for (int i = 0; i < n; i++) {
+ sum += interpolationPoints.getEntry(k, i) * trustRegionCenterOffset.getEntry(i);
+ }
+ // sum = sumVector.getEntry(k); // XXX "testAckley" and "testDiffPow" fail.
+ work2.setEntry(k, sum);
+ final double temp = fracsq - HALF * sum;
+ for (int i = 0; i < n; i++) {
+ work1.setEntry(i, bMatrix.getEntry(k, i));
+ lagrangeValuesAtNewPoint.setEntry(i, sum * interpolationPoints.getEntry(k, i) + temp * trustRegionCenterOffset.getEntry(i));
+ final int ip = npt + i;
+ for (int j = 0; j <= i; j++) {
+ bMatrix.setEntry(ip, j,
+ bMatrix.getEntry(ip, j)
+ + work1.getEntry(i) * lagrangeValuesAtNewPoint.getEntry(j)
+ + lagrangeValuesAtNewPoint.getEntry(i) * work1.getEntry(j));
+ }
+ }
+ }
+
+ // Then the revisions of BMAT that depend on ZMAT are calculated.
+
+ for (int m = 0; m < nptm; m++) {
+ double sumz = ZERO;
+ double sumw = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sumz += zMatrix.getEntry(k, m);
+ lagrangeValuesAtNewPoint.setEntry(k, work2.getEntry(k) * zMatrix.getEntry(k, m));
+ sumw += lagrangeValuesAtNewPoint.getEntry(k);
+ }
+ for (int j = 0; j < n; j++) {
+ double sum = (fracsq * sumz - HALF * sumw) * trustRegionCenterOffset.getEntry(j);
+ for (int k = 0; k < npt; k++) {
+ sum += lagrangeValuesAtNewPoint.getEntry(k) * interpolationPoints.getEntry(k, j);
+ }
+ work1.setEntry(j, sum);
+ for (int k = 0; k < npt; k++) {
+ bMatrix.setEntry(k, j,
+ bMatrix.getEntry(k, j)
+ + sum * zMatrix.getEntry(k, m));
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ final int ip = i + npt;
+ final double temp = work1.getEntry(i);
+ for (int j = 0; j <= i; j++) {
+ bMatrix.setEntry(ip, j,
+ bMatrix.getEntry(ip, j)
+ + temp * work1.getEntry(j));
+ }
+ }
+ }
+
+ // The following instructions complete the shift, including the changes
+ // to the second derivative parameters of the quadratic model.
+
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ work1.setEntry(j, -HALF * sumpq * trustRegionCenterOffset.getEntry(j));
+ for (int k = 0; k < npt; k++) {
+ work1.setEntry(j, work1.getEntry(j) + modelSecondDerivativesParameters.getEntry(k) * interpolationPoints.getEntry(k, j));
+ interpolationPoints.setEntry(k, j, interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j));
+ }
+ for (int i = 0; i <= j; i++) {
+ modelSecondDerivativesValues.setEntry(ih,
+ modelSecondDerivativesValues.getEntry(ih)
+ + work1.getEntry(i) * trustRegionCenterOffset.getEntry(j)
+ + trustRegionCenterOffset.getEntry(i) * work1.getEntry(j));
+ bMatrix.setEntry(npt + i, j, bMatrix.getEntry(npt + j, i));
+ ih++;
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ originShift.setEntry(i, originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i));
+ newPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ lowerDifference.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ upperDifference.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ trustRegionCenterOffset.setEntry(i, ZERO);
+ }
+ xoptsq = ZERO;
+ }
+ if (ntrits == 0) {
+ state = 210; break;
+ }
+ state = 230; break;
+
+ // XBASE is also moved to XOPT by a call of RESCUE. This calculation is
+ // more expensive than the previous shift, because new matrices BMAT and
+ // ZMAT are generated from scratch, which may include the replacement of
+ // interpolation points whose positions seem to be causing near linear
+ // dependence in the interpolation conditions. Therefore RESCUE is called
+ // only if rounding errors have reduced by at least a factor of two the
+ // denominator of the formula for updating the H matrix. It provides a
+ // useful safeguard, but is not invoked in most applications of BOBYQA.
+
+ }
+ case 210: {
+ printState(210); // XXX
+ // Pick two alternative vectors of variables, relative to XBASE, that
+ // are suitable as new positions of the KNEW-th interpolation point.
+ // Firstly, XNEW is set to the point on a line through XOPT and another
+ // interpolation point that minimizes the predicted value of the next
+ // denominator, subject to ||XNEW - XOPT|| .LEQ. ADELT and to the SL
+ // and SU bounds. Secondly, XALT is set to the best feasible point on
+ // a constrained version of the Cauchy step of the KNEW-th Lagrange
+ // function, the corresponding value of the square of this function
+ // being returned in CAUCHY. The choice between these alternatives is
+ // going to be made when the denominator is calculated.
+
+ final double[] alphaCauchy = altmov(knew, adelt);
+ alpha = alphaCauchy[0];
+ cauchy = alphaCauchy[1];
+
+ for (int i = 0; i < n; i++) {
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ }
+
+ // Calculate VLAG and BETA for the current choice of D. The scalar
+ // product of D with XPT(K,.) is going to be held in W(NPT+K) for
+ // use when VQUAD is calculated.
+
+ }
+ case 230: {
+ printState(230); // XXX
+ for (int k = 0; k < npt; k++) {
+ double suma = ZERO;
+ double sumb = ZERO;
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ suma += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
+ sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ sum += bMatrix.getEntry(k, j) * trialStepPoint.getEntry(j);
+ }
+ work3.setEntry(k, suma * (HALF * suma + sumb));
+ lagrangeValuesAtNewPoint.setEntry(k, sum);
+ work2.setEntry(k, suma);
+ }
+ beta = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += zMatrix.getEntry(k, m) * work3.getEntry(k);
+ }
+ beta -= sum * sum;
+ for (int k = 0; k < npt; k++) {
+ lagrangeValuesAtNewPoint.setEntry(k, lagrangeValuesAtNewPoint.getEntry(k) + sum * zMatrix.getEntry(k, m));
+ }
+ }
+ dsq = ZERO;
+ double bsum = ZERO;
+ double dx = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(j);
+ dsq += d1 * d1;
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += work3.getEntry(k) * bMatrix.getEntry(k, j);
+ }
+ bsum += sum * trialStepPoint.getEntry(j);
+ final int jp = npt + j;
+ for (int i = 0; i < n; i++) {
+ sum += bMatrix.getEntry(jp, i) * trialStepPoint.getEntry(i);
+ }
+ lagrangeValuesAtNewPoint.setEntry(jp, sum);
+ bsum += sum * trialStepPoint.getEntry(j);
+ dx += trialStepPoint.getEntry(j) * trustRegionCenterOffset.getEntry(j);
+ }
+
+ beta = dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) + beta - bsum; // Original
+ // beta += dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) - bsum; // XXX "testAckley" and "testDiffPow" fail.
+ // beta = dx * dx + dsq * (xoptsq + 2 * dx + HALF * dsq) + beta - bsum; // XXX "testDiffPow" fails.
+
+ lagrangeValuesAtNewPoint.setEntry(trustRegionCenterInterpolationPointIndex,
+ lagrangeValuesAtNewPoint.getEntry(trustRegionCenterInterpolationPointIndex) + ONE);
+
+ // If NTRITS is zero, the denominator may be increased by replacing
+ // the step D of ALTMOV by a Cauchy step. Then RESCUE may be called if
+ // rounding errors have damaged the chosen denominator.
+
+ if (ntrits == 0) {
+ // Computing 2nd power
+ final double d1 = lagrangeValuesAtNewPoint.getEntry(knew);
+ denom = d1 * d1 + alpha * beta;
+ if (denom < cauchy && cauchy > ZERO) {
+ for (int i = 0; i < n; i++) {
+ newPoint.setEntry(i, alternativeNewPoint.getEntry(i));
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ }
+ cauchy = ZERO; // XXX Useful statement?
+ state = 230; break;
+ }
+ // Alternatively, if NTRITS is positive, then set KNEW to the index of
+ // the next interpolation point to be deleted to make room for a trust
+ // region step. Again RESCUE may be called if rounding errors have damaged_
+ // the chosen denominator, which is the reason for attempting to select
+ // KNEW before calculating the next value of the objective function.
+
+ } else {
+ final double delsq = delta * delta;
+ scaden = ZERO;
+ biglsq = ZERO;
+ knew = 0;
+ for (int k = 0; k < npt; k++) {
+ if (k == trustRegionCenterInterpolationPointIndex) {
+ continue;
+ }
+ double hdiag = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ // Computing 2nd power
+ final double d1 = zMatrix.getEntry(k, m);
+ hdiag += d1 * d1;
+ }
+ // Computing 2nd power
+ final double d2 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double den = beta * hdiag + d2 * d2;
+ distsq = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d3 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
+ distsq += d3 * d3;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d4 = distsq / delsq;
+ final double temp = FastMath.max(ONE, d4 * d4);
+ if (temp * den > scaden) {
+ scaden = temp * den;
+ knew = k;
+ denom = den;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d5 = lagrangeValuesAtNewPoint.getEntry(k);
+ biglsq = FastMath.max(biglsq, temp * (d5 * d5));
+ }
+ }
+
+ // Put the variables for the next calculation of the objective function
+ // in XNEW, with any adjustments for the bounds.
+
+ // Calculate the value of the objective function at XBASE+XNEW, unless
+ // the limit on the number of calculations of F has been reached.
+
+ }
+ case 360: {
+ printState(360); // XXX
+ for (int i = 0; i < n; i++) {
+ // Computing MIN
+ // Computing MAX
+ final double d3 = lowerBound[i];
+ final double d4 = originShift.getEntry(i) + newPoint.getEntry(i);
+ final double d1 = FastMath.max(d3, d4);
+ final double d2 = upperBound[i];
+ currentBest.setEntry(i, FastMath.min(d1, d2));
+ if (newPoint.getEntry(i) == lowerDifference.getEntry(i)) {
+ currentBest.setEntry(i, lowerBound[i]);
+ }
+ if (newPoint.getEntry(i) == upperDifference.getEntry(i)) {
+ currentBest.setEntry(i, upperBound[i]);
+ }
+ }
+
+ f = computeObjectiveValue(currentBest.toArray());
+
+ if (!isMinimize) {
+ f = -f;
+ }
+ if (ntrits == -1) {
+ fsave = f;
+ state = 720; break;
+ }
+
+ // Use the quadratic model to predict the change in F due to the step D,
+ // and set DIFF to the error of this prediction.
+
+ final double fopt = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
+ double vquad = ZERO;
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ vquad += trialStepPoint.getEntry(j) * gradientAtTrustRegionCenter.getEntry(j);
+ for (int i = 0; i <= j; i++) {
+ double temp = trialStepPoint.getEntry(i) * trialStepPoint.getEntry(j);
+ if (i == j) {
+ temp *= HALF;
+ }
+ vquad += modelSecondDerivativesValues.getEntry(ih) * temp;
+ ih++;
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ // Computing 2nd power
+ final double d1 = work2.getEntry(k);
+ final double d2 = d1 * d1; // "d1" must be squared first to prevent test failures.
+ vquad += HALF * modelSecondDerivativesParameters.getEntry(k) * d2;
+ }
+ final double diff = f - fopt - vquad;
+ diffc = diffb;
+ diffb = diffa;
+ diffa = FastMath.abs(diff);
+ if (dnorm > rho) {
+ nfsav = getEvaluations();
+ }
+
+ // Pick the next value of DELTA after a trust region step.
+
+ if (ntrits > 0) {
+ if (vquad >= ZERO) {
+ throw new MathIllegalStateException(LocalizedFormats.TRUST_REGION_STEP_FAILED, vquad);
+ }
+ ratio = (f - fopt) / vquad;
+ final double hDelta = HALF * delta;
+ if (ratio <= ONE_OVER_TEN) {
+ // Computing MIN
+ delta = FastMath.min(hDelta, dnorm);
+ } else if (ratio <= .7) {
+ // Computing MAX
+ delta = FastMath.max(hDelta, dnorm);
+ } else {
+ // Computing MAX
+ delta = FastMath.max(hDelta, 2 * dnorm);
+ }
+ if (delta <= rho * 1.5) {
+ delta = rho;
+ }
+
+ // Recalculate KNEW and DENOM if the new F is less than FOPT.
+
+ if (f < fopt) {
+ final int ksav = knew;
+ final double densav = denom;
+ final double delsq = delta * delta;
+ scaden = ZERO;
+ biglsq = ZERO;
+ knew = 0;
+ for (int k = 0; k < npt; k++) {
+ double hdiag = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ // Computing 2nd power
+ final double d1 = zMatrix.getEntry(k, m);
+ hdiag += d1 * d1;
+ }
+ // Computing 2nd power
+ final double d1 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double den = beta * hdiag + d1 * d1;
+ distsq = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d2 = interpolationPoints.getEntry(k, j) - newPoint.getEntry(j);
+ distsq += d2 * d2;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d3 = distsq / delsq;
+ final double temp = FastMath.max(ONE, d3 * d3);
+ if (temp * den > scaden) {
+ scaden = temp * den;
+ knew = k;
+ denom = den;
+ }
+ // Computing MAX
+ // Computing 2nd power
+ final double d4 = lagrangeValuesAtNewPoint.getEntry(k);
+ final double d5 = temp * (d4 * d4);
+ biglsq = FastMath.max(biglsq, d5);
+ }
+ if (scaden <= HALF * biglsq) {
+ knew = ksav;
+ denom = densav;
+ }
+ }
+ }
+
+ // Update BMAT and ZMAT, so that the KNEW-th interpolation point can be
+ // moved. Also update the second derivative terms of the model.
+
+ update(beta, denom, knew);
+
+ ih = 0;
+ final double pqold = modelSecondDerivativesParameters.getEntry(knew);
+ modelSecondDerivativesParameters.setEntry(knew, ZERO);
+ for (int i = 0; i < n; i++) {
+ final double temp = pqold * interpolationPoints.getEntry(knew, i);
+ for (int j = 0; j <= i; j++) {
+ modelSecondDerivativesValues.setEntry(ih, modelSecondDerivativesValues.getEntry(ih) + temp * interpolationPoints.getEntry(knew, j));
+ ih++;
+ }
+ }
+ for (int m = 0; m < nptm; m++) {
+ final double temp = diff * zMatrix.getEntry(knew, m);
+ for (int k = 0; k < npt; k++) {
+ modelSecondDerivativesParameters.setEntry(k, modelSecondDerivativesParameters.getEntry(k) + temp * zMatrix.getEntry(k, m));
+ }
+ }
+
+ // Include the new interpolation point, and make the changes to GOPT at
+ // the old XOPT that are caused by the updating of the quadratic model.
+
+ fAtInterpolationPoints.setEntry(knew, f);
+ for (int i = 0; i < n; i++) {
+ interpolationPoints.setEntry(knew, i, newPoint.getEntry(i));
+ work1.setEntry(i, bMatrix.getEntry(knew, i));
+ }
+ for (int k = 0; k < npt; k++) {
+ double suma = ZERO;
+ for (int m = 0; m < nptm; m++) {
+ suma += zMatrix.getEntry(knew, m) * zMatrix.getEntry(k, m);
+ }
+ double sumb = ZERO;
+ for (int j = 0; j < n; j++) {
+ sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ final double temp = suma * sumb;
+ for (int i = 0; i < n; i++) {
+ work1.setEntry(i, work1.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + diff * work1.getEntry(i));
+ }
+
+ // Update XOPT, GOPT and KOPT if the new calculated F is less than FOPT.
+
+ if (f < fopt) {
+ trustRegionCenterInterpolationPointIndex = knew;
+ xoptsq = ZERO;
+ ih = 0;
+ for (int j = 0; j < n; j++) {
+ trustRegionCenterOffset.setEntry(j, newPoint.getEntry(j));
+ // Computing 2nd power
+ final double d1 = trustRegionCenterOffset.getEntry(j);
+ xoptsq += d1 * d1;
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(i));
+ }
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(j));
+ ih++;
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ double temp = ZERO;
+ for (int j = 0; j < n; j++) {
+ temp += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
+ }
+ temp *= modelSecondDerivativesParameters.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
+ }
+ }
+ }
+
+ // Calculate the parameters of the least Frobenius norm interpolant to
+ // the current data, the gradient of this interpolant at XOPT being put
+ // into VLAG(NPT+I), I=1,2,...,N.
+
+ if (ntrits > 0) {
+ for (int k = 0; k < npt; k++) {
+ lagrangeValuesAtNewPoint.setEntry(k, fAtInterpolationPoints.getEntry(k) - fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex));
+ work3.setEntry(k, ZERO);
+ }
+ for (int j = 0; j < nptm; j++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += zMatrix.getEntry(k, j) * lagrangeValuesAtNewPoint.getEntry(k);
+ }
+ for (int k = 0; k < npt; k++) {
+ work3.setEntry(k, work3.getEntry(k) + sum * zMatrix.getEntry(k, j));
+ }
+ }
+ for (int k = 0; k < npt; k++) {
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ sum += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ work2.setEntry(k, work3.getEntry(k));
+ work3.setEntry(k, sum * work3.getEntry(k));
+ }
+ double gqsq = ZERO;
+ double gisq = ZERO;
+ for (int i = 0; i < n; i++) {
+ double sum = ZERO;
+ for (int k = 0; k < npt; k++) {
+ sum += bMatrix.getEntry(k, i) *
+ lagrangeValuesAtNewPoint.getEntry(k) + interpolationPoints.getEntry(k, i) * work3.getEntry(k);
+ }
+ if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
+ // Computing MIN
+ // Computing 2nd power
+ final double d1 = FastMath.min(ZERO, gradientAtTrustRegionCenter.getEntry(i));
+ gqsq += d1 * d1;
+ // Computing 2nd power
+ final double d2 = FastMath.min(ZERO, sum);
+ gisq += d2 * d2;
+ } else if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
+ // Computing MAX
+ // Computing 2nd power
+ final double d1 = FastMath.max(ZERO, gradientAtTrustRegionCenter.getEntry(i));
+ gqsq += d1 * d1;
+ // Computing 2nd power
+ final double d2 = FastMath.max(ZERO, sum);
+ gisq += d2 * d2;
+ } else {
+ // Computing 2nd power
+ final double d1 = gradientAtTrustRegionCenter.getEntry(i);
+ gqsq += d1 * d1;
+ gisq += sum * sum;
+ }
+ lagrangeValuesAtNewPoint.setEntry(npt + i, sum);
+ }
+
+ // Test whether to replace the new quadratic model by the least Frobenius
+ // norm interpolant, making the replacement if the test is satisfied.
+
+ ++itest;
+ if (gqsq < TEN * gisq) {
+ itest = 0;
+ }
+ if (itest >= 3) {
+ for (int i = 0, max = FastMath.max(npt, nh); i < max; i++) {
+ if (i < n) {
+ gradientAtTrustRegionCenter.setEntry(i, lagrangeValuesAtNewPoint.getEntry(npt + i));
+ }
+ if (i < npt) {
+ modelSecondDerivativesParameters.setEntry(i, work2.getEntry(i));
+ }
+ if (i < nh) {
+ modelSecondDerivativesValues.setEntry(i, ZERO);
+ }
+ itest = 0;
+ }
+ }
+ }
+
+ // If a trust region step has provided a sufficient decrease in F, then
+ // branch for another trust region calculation. The case NTRITS=0 occurs
+ // when the new interpolation point was reached by an alternative step.
+
+ if (ntrits == 0) {
+ state = 60; break;
+ }
+ if (f <= fopt + ONE_OVER_TEN * vquad) {
+ state = 60; break;
+ }
+
+ // Alternatively, find out if the interpolation points are close enough
+ // to the best point so far.
+
+ // Computing MAX
+ // Computing 2nd power
+ final double d1 = TWO * delta;
+ // Computing 2nd power
+ final double d2 = TEN * rho;
+ distsq = FastMath.max(d1 * d1, d2 * d2);
+ }
+ case 650: {
+ printState(650); // XXX
+ knew = -1;
+ for (int k = 0; k < npt; k++) {
+ double sum = ZERO;
+ for (int j = 0; j < n; j++) {
+ // Computing 2nd power
+ final double d1 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
+ sum += d1 * d1;
+ }
+ if (sum > distsq) {
+ knew = k;
+ distsq = sum;
+ }
+ }
+
+ // If KNEW is positive, then ALTMOV finds alternative new positions for
+ // the KNEW-th interpolation point within distance ADELT of XOPT. It is
+ // reached via label 90. Otherwise, there is a branch to label 60 for
+ // another trust region iteration, unless the calculations with the
+ // current RHO are complete.
+
+ if (knew >= 0) {
+ final double dist = FastMath.sqrt(distsq);
+ if (ntrits == -1) {
+ // Computing MIN
+ delta = FastMath.min(ONE_OVER_TEN * delta, HALF * dist);
+ if (delta <= rho * 1.5) {
+ delta = rho;
+ }
+ }
+ ntrits = 0;
+ // Computing MAX
+ // Computing MIN
+ final double d1 = FastMath.min(ONE_OVER_TEN * dist, delta);
+ adelt = FastMath.max(d1, rho);
+ dsq = adelt * adelt;
+ state = 90; break;
+ }
+ if (ntrits == -1) {
+ state = 680; break;
+ }
+ if (ratio > ZERO) {
+ state = 60; break;
+ }
+ if (FastMath.max(delta, dnorm) > rho) {
+ state = 60; break;
+ }
+
+ // The calculations with the current value of RHO are complete. Pick the
+ // next values of RHO and DELTA.
+ }
+ case 680: {
+ printState(680); // XXX
+ if (rho > stoppingTrustRegionRadius) {
+ delta = HALF * rho;
+ ratio = rho / stoppingTrustRegionRadius;
+ if (ratio <= SIXTEEN) {
+ rho = stoppingTrustRegionRadius;
+ } else if (ratio <= TWO_HUNDRED_FIFTY) {
+ rho = FastMath.sqrt(ratio) * stoppingTrustRegionRadius;
+ } else {
+ rho *= ONE_OVER_TEN;
+ }
+ delta = FastMath.max(delta, rho);
+ ntrits = 0;
+ nfsav = getEvaluations();
+ state = 60; break;
+ }
+
+ // Return from the calculation, after another Newton-Raphson step, if
+ // it is too short to have been tried before.
+
+ if (ntrits == -1) {
+ state = 360; break;
+ }
+ }
+ case 720: {
+ printState(720); // XXX
+ if (fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex) <= fsave) {
+ for (int i = 0; i < n; i++) {
+ // Computing MIN
+ // Computing MAX
+ final double d3 = lowerBound[i];
+ final double d4 = originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i);
+ final double d1 = FastMath.max(d3, d4);
+ final double d2 = upperBound[i];
+ currentBest.setEntry(i, FastMath.min(d1, d2));
+ if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
+ currentBest.setEntry(i, lowerBound[i]);
+ }
+ if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
+ currentBest.setEntry(i, upperBound[i]);
+ }
+ }
+ f = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
+ }
+ return f;
+ }
+ default: {
+ throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "bobyqb");
+ }}}
+ } // bobyqb
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arguments N, NPT, XPT, XOPT, BMAT, ZMAT, NDIM, SL and SU all have
+ * the same meanings as the corresponding arguments of BOBYQB.
+ * KOPT is the index of the optimal interpolation point.
+ * KNEW is the index of the interpolation point that is going to be moved.
+ * ADELT is the current trust region bound.
+ * XNEW will be set to a suitable new position for the interpolation point
+ * XPT(KNEW,.). Specifically, it satisfies the SL, SU and trust region
+ * bounds and it should provide a large denominator in the next call of
+ * UPDATE. The step XNEW-XOPT from XOPT is restricted to moves along the
+ * straight lines through XOPT and another interpolation point.
+ * XALT also provides a large value of the modulus of the KNEW-th Lagrange
+ * function subject to the constraints that have been mentioned, its main
+ * difference from XNEW being that XALT-XOPT is a constrained version of
+ * the Cauchy step within the trust region. An exception is that XALT is
+ * not calculated if all components of GLAG (see below) are zero.
+ * ALPHA will be set to the KNEW-th diagonal element of the H matrix.
+ * CAUCHY will be set to the square of the KNEW-th Lagrange function at
+ * the step XALT-XOPT from XOPT for the vector XALT that is returned,
+ * except that CAUCHY is set to zero if XALT is not calculated.
+ * GLAG is a working space vector of length N for the gradient of the
+ * KNEW-th Lagrange function at XOPT.
+ * HCOL is a working space vector of length NPT for the second derivative
+ * coefficients of the KNEW-th Lagrange function.
+ * W is a working space vector of length 2N that is going to hold the
+ * constrained Cauchy step from XOPT of the Lagrange function, followed
+ * by the downhill version of XALT when the uphill step is calculated.
+ *
+ * Set the first NPT components of W to the leading elements of the
+ * KNEW-th column of the H matrix.
+ * @param knew
+ * @param adelt
+ */
+ private double[] altmov(
+ int knew,
+ double adelt
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+
+ final ArrayRealVector glag = new ArrayRealVector(n);
+ final ArrayRealVector hcol = new ArrayRealVector(npt);
+
+ final ArrayRealVector work1 = new ArrayRealVector(n);
+ final ArrayRealVector work2 = new ArrayRealVector(n);
+
+ for (int k = 0; k < npt; k++) {
+ hcol.setEntry(k, ZERO);
+ }
+ for (int j = 0, max = npt - n - 1; j < max; j++) {
+ final double tmp = zMatrix.getEntry(knew, j);
+ for (int k = 0; k < npt; k++) {
+ hcol.setEntry(k, hcol.getEntry(k) + tmp * zMatrix.getEntry(k, j));
+ }
+ }
+ final double alpha = hcol.getEntry(knew);
+ final double ha = HALF * alpha;
+
+ // Calculate the gradient of the KNEW-th Lagrange function at XOPT.
+
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, bMatrix.getEntry(knew, i));
+ }
+ for (int k = 0; k < npt; k++) {
+ double tmp = ZERO;
+ for (int j = 0; j < n; j++) {
+ tmp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
+ }
+ tmp *= hcol.getEntry(k);
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, glag.getEntry(i) + tmp * interpolationPoints.getEntry(k, i));
+ }
+ }
+
+ // Search for a large denominator along the straight lines through XOPT
+ // and another interpolation point. SLBD and SUBD will be lower and upper
+ // bounds on the step along each of these lines in turn. PREDSQ will be
+ // set to the square of the predicted denominator for each line. PRESAV
+ // will be set to the largest admissible value of PREDSQ that occurs.
+
+ double presav = ZERO;
+ double step = Double.NaN;
+ int ksav = 0;
+ int ibdsav = 0;
+ double stpsav = 0;
+ for (int k = 0; k < npt; k++) {
+ if (k == trustRegionCenterInterpolationPointIndex) {
+ continue;
+ }
+ double dderiv = ZERO;
+ double distsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
+ dderiv += glag.getEntry(i) * tmp;
+ distsq += tmp * tmp;
+ }
+ double subd = adelt / FastMath.sqrt(distsq);
+ double slbd = -subd;
+ int ilbd = 0;
+ int iubd = 0;
+ final double sumin = FastMath.min(ONE, subd);
+
+ // Revise SLBD and SUBD if necessary because of the bounds in SL and SU.
+
+ for (int i = 0; i < n; i++) {
+ final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
+ if (tmp > ZERO) {
+ if (slbd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ slbd = (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
+ ilbd = -i - 1;
+ }
+ if (subd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ // Computing MAX
+ subd = FastMath.max(sumin,
+ (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
+ iubd = i + 1;
+ }
+ } else if (tmp < ZERO) {
+ if (slbd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ slbd = (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
+ ilbd = i + 1;
+ }
+ if (subd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
+ // Computing MAX
+ subd = FastMath.max(sumin,
+ (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
+ iubd = -i - 1;
+ }
+ }
+ }
+
+ // Seek a large modulus of the KNEW-th Lagrange function when the index
+ // of the other interpolation point on the line through XOPT is KNEW.
+
+ step = slbd;
+ int isbd = ilbd;
+ double vlag = Double.NaN;
+ if (k == knew) {
+ final double diff = dderiv - ONE;
+ vlag = slbd * (dderiv - slbd * diff);
+ final double d1 = subd * (dderiv - subd * diff);
+ if (FastMath.abs(d1) > FastMath.abs(vlag)) {
+ step = subd;
+ vlag = d1;
+ isbd = iubd;
+ }
+ final double d2 = HALF * dderiv;
+ final double d3 = d2 - diff * slbd;
+ final double d4 = d2 - diff * subd;
+ if (d3 * d4 < ZERO) {
+ final double d5 = d2 * d2 / diff;
+ if (FastMath.abs(d5) > FastMath.abs(vlag)) {
+ step = d2 / diff;
+ vlag = d5;
+ isbd = 0;
+ }
+ }
+
+ // Search along each of the other lines through XOPT and another point.
+
+ } else {
+ vlag = slbd * (ONE - slbd);
+ final double tmp = subd * (ONE - subd);
+ if (FastMath.abs(tmp) > FastMath.abs(vlag)) {
+ step = subd;
+ vlag = tmp;
+ isbd = iubd;
+ }
+ if (subd > HALF && FastMath.abs(vlag) < ONE_OVER_FOUR) {
+ step = HALF;
+ vlag = ONE_OVER_FOUR;
+ isbd = 0;
+ }
+ vlag *= dderiv;
+ }
+
+ // Calculate PREDSQ for the current line search and maintain PRESAV.
+
+ final double tmp = step * (ONE - step) * distsq;
+ final double predsq = vlag * vlag * (vlag * vlag + ha * tmp * tmp);
+ if (predsq > presav) {
+ presav = predsq;
+ ksav = k;
+ stpsav = step;
+ ibdsav = isbd;
+ }
+ }
+
+ // Construct XNEW in a way that satisfies the bound constraints exactly.
+
+ for (int i = 0; i < n; i++) {
+ final double tmp = trustRegionCenterOffset.getEntry(i) + stpsav * (interpolationPoints.getEntry(ksav, i) - trustRegionCenterOffset.getEntry(i));
+ newPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i),
+ FastMath.min(upperDifference.getEntry(i), tmp)));
+ }
+ if (ibdsav < 0) {
+ newPoint.setEntry(-ibdsav - 1, lowerDifference.getEntry(-ibdsav - 1));
+ }
+ if (ibdsav > 0) {
+ newPoint.setEntry(ibdsav - 1, upperDifference.getEntry(ibdsav - 1));
+ }
+
+ // Prepare for the iterative method that assembles the constrained Cauchy
+ // step in W. The sum of squares of the fixed components of W is formed in
+ // WFIXSQ, and the free components of W are set to BIGSTP.
+
+ final double bigstp = adelt + adelt;
+ int iflag = 0;
+ double cauchy = Double.NaN;
+ double csave = ZERO;
+ while (true) {
+ double wfixsq = ZERO;
+ double ggfree = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double glagValue = glag.getEntry(i);
+ work1.setEntry(i, ZERO);
+ if (FastMath.min(trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i), glagValue) > ZERO ||
+ FastMath.max(trustRegionCenterOffset.getEntry(i) - upperDifference.getEntry(i), glagValue) < ZERO) {
+ work1.setEntry(i, bigstp);
+ // Computing 2nd power
+ ggfree += glagValue * glagValue;
+ }
+ }
+ if (ggfree == ZERO) {
+ return new double[] { alpha, ZERO };
+ }
+
+ // Investigate whether more components of W can be fixed.
+ final double tmp1 = adelt * adelt - wfixsq;
+ if (tmp1 > ZERO) {
+ step = FastMath.sqrt(tmp1 / ggfree);
+ ggfree = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (work1.getEntry(i) == bigstp) {
+ final double tmp2 = trustRegionCenterOffset.getEntry(i) - step * glag.getEntry(i);
+ if (tmp2 <= lowerDifference.getEntry(i)) {
+ work1.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = work1.getEntry(i);
+ wfixsq += d1 * d1;
+ } else if (tmp2 >= upperDifference.getEntry(i)) {
+ work1.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = work1.getEntry(i);
+ wfixsq += d1 * d1;
+ } else {
+ // Computing 2nd power
+ final double d1 = glag.getEntry(i);
+ ggfree += d1 * d1;
+ }
+ }
+ }
+ }
+
+ // Set the remaining free components of W and all components of XALT,
+ // except that W may be scaled later.
+
+ double gw = ZERO;
+ for (int i = 0; i < n; i++) {
+ final double glagValue = glag.getEntry(i);
+ if (work1.getEntry(i) == bigstp) {
+ work1.setEntry(i, -step * glagValue);
+ final double min = FastMath.min(upperDifference.getEntry(i),
+ trustRegionCenterOffset.getEntry(i) + work1.getEntry(i));
+ alternativeNewPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i), min));
+ } else if (work1.getEntry(i) == ZERO) {
+ alternativeNewPoint.setEntry(i, trustRegionCenterOffset.getEntry(i));
+ } else if (glagValue > ZERO) {
+ alternativeNewPoint.setEntry(i, lowerDifference.getEntry(i));
+ } else {
+ alternativeNewPoint.setEntry(i, upperDifference.getEntry(i));
+ }
+ gw += glagValue * work1.getEntry(i);
+ }
+
+ // Set CURV to the curvature of the KNEW-th Lagrange function along W.
+ // Scale W by a factor less than one if that can reduce the modulus of
+ // the Lagrange function at XOPT+W. Set CAUCHY to the final value of
+ // the square of this function.
+
+ double curv = ZERO;
+ for (int k = 0; k < npt; k++) {
+ double tmp = ZERO;
+ for (int j = 0; j < n; j++) {
+ tmp += interpolationPoints.getEntry(k, j) * work1.getEntry(j);
+ }
+ curv += hcol.getEntry(k) * tmp * tmp;
+ }
+ if (iflag == 1) {
+ curv = -curv;
+ }
+ if (curv > -gw &&
+ curv < -gw * (ONE + FastMath.sqrt(TWO))) {
+ final double scale = -gw / curv;
+ for (int i = 0; i < n; i++) {
+ final double tmp = trustRegionCenterOffset.getEntry(i) + scale * work1.getEntry(i);
+ alternativeNewPoint.setEntry(i, FastMath.max(lowerDifference.getEntry(i),
+ FastMath.min(upperDifference.getEntry(i), tmp)));
+ }
+ // Computing 2nd power
+ final double d1 = HALF * gw * scale;
+ cauchy = d1 * d1;
+ } else {
+ // Computing 2nd power
+ final double d1 = gw + HALF * curv;
+ cauchy = d1 * d1;
+ }
+
+ // If IFLAG is zero, then XALT is calculated as before after reversing
+ // the sign of GLAG. Thus two XALT vectors become available. The one that
+ // is chosen is the one that gives the larger value of CAUCHY.
+
+ if (iflag == 0) {
+ for (int i = 0; i < n; i++) {
+ glag.setEntry(i, -glag.getEntry(i));
+ work2.setEntry(i, alternativeNewPoint.getEntry(i));
+ }
+ csave = cauchy;
+ iflag = 1;
+ } else {
+ break;
+ }
+ }
+ if (csave > cauchy) {
+ for (int i = 0; i < n; i++) {
+ alternativeNewPoint.setEntry(i, work2.getEntry(i));
+ }
+ cauchy = csave;
+ }
+
+ return new double[] { alpha, cauchy };
+ } // altmov
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
+ * BMAT and ZMAT for the first iteration, and it maintains the values of
+ * NF and KOPT. The vector X is also changed by PRELIM.
+ *
+ * The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the
+ * same as the corresponding arguments in SUBROUTINE BOBYQA.
+ * The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU
+ * are the same as the corresponding arguments in BOBYQB, the elements
+ * of SL and SU being set in BOBYQA.
+ * GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but
+ * it is set by PRELIM to the gradient of the quadratic model at XBASE.
+ * If XOPT is nonzero, BOBYQB will change it to its usual value later.
+ * NF is maintaned as the number of calls of CALFUN so far.
+ * KOPT will be such that the least calculated value of F so far is at
+ * the point XPT(KOPT,.)+XBASE in the space of the variables.
+ *
+ * @param lowerBound Lower bounds.
+ * @param upperBound Upper bounds.
+ */
+ private void prelim(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int ndim = bMatrix.getRowDimension();
+
+ final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius;
+ final double recip = 1d / rhosq;
+ final int np = n + 1;
+
+ // Set XBASE to the initial vector of variables, and set the initial
+ // elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
+
+ for (int j = 0; j < n; j++) {
+ originShift.setEntry(j, currentBest.getEntry(j));
+ for (int k = 0; k < npt; k++) {
+ interpolationPoints.setEntry(k, j, ZERO);
+ }
+ for (int i = 0; i < ndim; i++) {
+ bMatrix.setEntry(i, j, ZERO);
+ }
+ }
+ for (int i = 0, max = n * np / 2; i < max; i++) {
+ modelSecondDerivativesValues.setEntry(i, ZERO);
+ }
+ for (int k = 0; k < npt; k++) {
+ modelSecondDerivativesParameters.setEntry(k, ZERO);
+ for (int j = 0, max = npt - np; j < max; j++) {
+ zMatrix.setEntry(k, j, ZERO);
+ }
+ }
+
+ // Begin the initialization procedure. NF becomes one more than the number
+ // of function values so far. The coordinates of the displacement of the
+ // next initial interpolation point from XBASE are set in XPT(NF+1,.).
+
+ int ipt = 0;
+ int jpt = 0;
+ double fbeg = Double.NaN;
+ do {
+ final int nfm = getEvaluations();
+ final int nfx = nfm - n;
+ final int nfmm = nfm - 1;
+ final int nfxm = nfx - 1;
+ double stepa = 0;
+ double stepb = 0;
+ if (nfm <= 2 * n) {
+ if (nfm >= 1 &&
+ nfm <= n) {
+ stepa = initialTrustRegionRadius;
+ if (upperDifference.getEntry(nfmm) == ZERO) {
+ stepa = -stepa;
+ // throw new PathIsExploredException(); // XXX
+ }
+ interpolationPoints.setEntry(nfm, nfmm, stepa);
+ } else if (nfm > n) {
+ stepa = interpolationPoints.getEntry(nfx, nfxm);
+ stepb = -initialTrustRegionRadius;
+ if (lowerDifference.getEntry(nfxm) == ZERO) {
+ stepb = FastMath.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm));
+ // throw new PathIsExploredException(); // XXX
+ }
+ if (upperDifference.getEntry(nfxm) == ZERO) {
+ stepb = FastMath.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm));
+ // throw new PathIsExploredException(); // XXX
+ }
+ interpolationPoints.setEntry(nfm, nfxm, stepb);
+ }
+ } else {
+ final int tmp1 = (nfm - np) / n;
+ jpt = nfm - tmp1 * n - n;
+ ipt = jpt + tmp1;
+ if (ipt > n) {
+ final int tmp2 = jpt;
+ jpt = ipt - n;
+ ipt = tmp2;
+// throw new PathIsExploredException(); // XXX
+ }
+ final int iptMinus1 = ipt - 1;
+ final int jptMinus1 = jpt - 1;
+ interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1));
+ interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1));
+ }
+
+ // Calculate the next value of F. The least function value so far and
+ // its index are required.
+
+ for (int j = 0; j < n; j++) {
+ currentBest.setEntry(j, FastMath.min(FastMath.max(lowerBound[j],
+ originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)),
+ upperBound[j]));
+ if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) {
+ currentBest.setEntry(j, lowerBound[j]);
+ }
+ if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) {
+ currentBest.setEntry(j, upperBound[j]);
+ }
+ }
+
+ final double objectiveValue = computeObjectiveValue(currentBest.toArray());
+ final double f = isMinimize ? objectiveValue : -objectiveValue;
+ final int numEval = getEvaluations(); // nfm + 1
+ fAtInterpolationPoints.setEntry(nfm, f);
+
+ if (numEval == 1) {
+ fbeg = f;
+ trustRegionCenterInterpolationPointIndex = 0;
+ } else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) {
+ trustRegionCenterInterpolationPointIndex = nfm;
+ }
+
+ // Set the nonzero initial elements of BMAT and the quadratic model in the
+ // cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions
+ // of the NF-th and (NF-N)-th interpolation points may be switched, in
+ // order that the function value at the first of them contributes to the
+ // off-diagonal second derivative terms of the initial quadratic model.
+
+ if (numEval <= 2 * n + 1) {
+ if (numEval >= 2 &&
+ numEval <= n + 1) {
+ gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa);
+ if (npt < numEval + n) {
+ final double oneOverStepA = ONE / stepa;
+ bMatrix.setEntry(0, nfmm, -oneOverStepA);
+ bMatrix.setEntry(nfm, nfmm, oneOverStepA);
+ bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq);
+ // throw new PathIsExploredException(); // XXX
+ }
+ } else if (numEval >= n + 2) {
+ final int ih = nfx * (nfx + 1) / 2 - 1;
+ final double tmp = (f - fbeg) / stepb;
+ final double diff = stepb - stepa;
+ modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff);
+ gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff);
+ if (stepa * stepb < ZERO && f < fAtInterpolationPoints.getEntry(nfm - n)) {
+ fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n));
+ fAtInterpolationPoints.setEntry(nfm - n, f);
+ if (trustRegionCenterInterpolationPointIndex == nfm) {
+ trustRegionCenterInterpolationPointIndex = nfm - n;
+ }
+ interpolationPoints.setEntry(nfm - n, nfxm, stepb);
+ interpolationPoints.setEntry(nfm, nfxm, stepa);
+ }
+ bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb));
+ bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm));
+ bMatrix.setEntry(nfm - n, nfxm,
+ -bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm));
+ zMatrix.setEntry(0, nfxm, FastMath.sqrt(TWO) / (stepa * stepb));
+ zMatrix.setEntry(nfm, nfxm, FastMath.sqrt(HALF) / rhosq);
+ // zMatrix.setEntry(nfm, nfxm, FastMath.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail.
+ zMatrix.setEntry(nfm - n, nfxm,
+ -zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm));
+ }
+
+ // Set the off-diagonal second derivatives of the Lagrange functions and
+ // the initial quadratic model.
+
+ } else {
+ zMatrix.setEntry(0, nfxm, recip);
+ zMatrix.setEntry(nfm, nfxm, recip);
+ zMatrix.setEntry(ipt, nfxm, -recip);
+ zMatrix.setEntry(jpt, nfxm, -recip);
+
+ final int ih = ipt * (ipt - 1) / 2 + jpt - 1;
+ final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1);
+ modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp);
+// throw new PathIsExploredException(); // XXX
+ }
+ } while (getEvaluations() < npt);
+ } // prelim
+
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * A version of the truncated conjugate gradient is applied. If a line
+ * search is restricted by a constraint, then the procedure is restarted,
+ * the values of the variables that are at their bounds being fixed. If
+ * the trust region boundary is reached, then further changes may be made
+ * to D, each one being in the two dimensional space that is spanned
+ * by the current D and the gradient of Q at XOPT+D, staying on the trust
+ * region boundary. Termination occurs when the reduction in Q seems to
+ * be close to the greatest reduction that can be achieved.
+ * The arguments N, NPT, XPT, XOPT, GOPT, HQ, PQ, SL and SU have the same
+ * meanings as the corresponding arguments of BOBYQB.
+ * DELTA is the trust region radius for the present calculation, which
+ * seeks a small value of the quadratic model within distance DELTA of
+ * XOPT subject to the bounds on the variables.
+ * XNEW will be set to a new vector of variables that is approximately
+ * the one that minimizes the quadratic model within the trust region
+ * subject to the SL and SU constraints on the variables. It satisfies
+ * as equations the bounds that become active during the calculation.
+ * D is the calculated trial step from XOPT, generated iteratively from an
+ * initial value of zero. Thus XNEW is XOPT+D after the final iteration.
+ * GNEW holds the gradient of the quadratic model at XOPT+D. It is updated
+ * when D is updated.
+ * xbdi.get( is a working space vector. For I=1,2,...,N, the element xbdi.get((I) is
+ * set to -1.0, 0.0, or 1.0, the value being nonzero if and only if the
+ * I-th variable has become fixed at a bound, the bound being SL(I) or
+ * SU(I) in the case xbdi.get((I)=-1.0 or xbdi.get((I)=1.0, respectively. This
+ * information is accumulated during the construction of XNEW.
+ * The arrays S, HS and HRED are also used for working space. They hold the
+ * current search direction, and the changes in the gradient of Q along S
+ * and the reduced D, respectively, where the reduced D is the same as D,
+ * except that the components of the fixed variables are zero.
+ * DSQ will be set to the square of the length of XNEW-XOPT.
+ * CRVMIN is set to zero if D reaches the trust region boundary. Otherwise
+ * it is set to the least curvature of H that occurs in the conjugate
+ * gradient searches that are not restricted by any constraints. The
+ * value CRVMIN=-1.0D0 is set, however, if all of these searches are
+ * constrained.
+ * @param delta
+ * @param gnew
+ * @param xbdi
+ * @param s
+ * @param hs
+ * @param hred
+ */
+ private double[] trsbox(
+ double delta,
+ ArrayRealVector gnew,
+ ArrayRealVector xbdi,
+ ArrayRealVector s,
+ ArrayRealVector hs,
+ ArrayRealVector hred
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+
+ double dsq = Double.NaN;
+ double crvmin = Double.NaN;
+
+ // Local variables
+ double ds;
+ int iu;
+ double dhd, dhs, cth, shs, sth, ssq, beta=0, sdec, blen;
+ int iact = -1;
+ int nact = 0;
+ double angt = 0, qred;
+ int isav;
+ double temp = 0, xsav = 0, xsum = 0, angbd = 0, dredg = 0, sredg = 0;
+ int iterc;
+ double resid = 0, delsq = 0, ggsav = 0, tempa = 0, tempb = 0,
+ redmax = 0, dredsq = 0, redsav = 0, gredsq = 0, rednew = 0;
+ int itcsav = 0;
+ double rdprev = 0, rdnext = 0, stplen = 0, stepsq = 0;
+ int itermax = 0;
+
+ // Set some constants.
+
+ // Function Body
+
+ // The sign of GOPT(I) gives the sign of the change to the I-th variable
+ // that will reduce Q from its value at XOPT. Thus xbdi.get((I) shows whether
+ // or not to fix the I-th variable at one of its bounds initially, with
+ // NACT being set to the number of fixed variables. D and GNEW are also
+ // set for the first iteration. DELSQ is the upper bound on the sum of
+ // squares of the free variables. QRED is the reduction in Q so far.
+
+ iterc = 0;
+ nact = 0;
+ for (int i = 0; i < n; i++) {
+ xbdi.setEntry(i, ZERO);
+ if (trustRegionCenterOffset.getEntry(i) <= lowerDifference.getEntry(i)) {
+ if (gradientAtTrustRegionCenter.getEntry(i) >= ZERO) {
+ xbdi.setEntry(i, MINUS_ONE);
+ }
+ } else if (trustRegionCenterOffset.getEntry(i) >= upperDifference.getEntry(i) &&
+ gradientAtTrustRegionCenter.getEntry(i) <= ZERO) {
+ xbdi.setEntry(i, ONE);
+ }
+ if (xbdi.getEntry(i) != ZERO) {
+ ++nact;
+ }
+ trialStepPoint.setEntry(i, ZERO);
+ gnew.setEntry(i, gradientAtTrustRegionCenter.getEntry(i));
+ }
+ delsq = delta * delta;
+ qred = ZERO;
+ crvmin = MINUS_ONE;
+
+ // Set the next search direction of the conjugate gradient method. It is
+ // the steepest descent direction initially and when the iterations are
+ // restarted because a variable has just been fixed by a bound, and of
+ // course the components of the fixed variables are zero. ITERMAX is an
+ // upper bound on the indices of the conjugate gradient iterations.
+
+ int state = 20;
+ for(;;) {
+ switch (state) {
+ case 20: {
+ printState(20); // XXX
+ beta = ZERO;
+ }
+ case 30: {
+ printState(30); // XXX
+ stepsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) != ZERO) {
+ s.setEntry(i, ZERO);
+ } else if (beta == ZERO) {
+ s.setEntry(i, -gnew.getEntry(i));
+ } else {
+ s.setEntry(i, beta * s.getEntry(i) - gnew.getEntry(i));
+ }
+ // Computing 2nd power
+ final double d1 = s.getEntry(i);
+ stepsq += d1 * d1;
+ }
+ if (stepsq == ZERO) {
+ state = 190; break;
+ }
+ if (beta == ZERO) {
+ gredsq = stepsq;
+ itermax = iterc + n - nact;
+ }
+ if (gredsq * delsq <= qred * 1e-4 * qred) {
+ state = 190; break;
+ }
+
+ // Multiply the search direction by the second derivative matrix of Q and
+ // calculate some scalars for the choice of steplength. Then set BLEN to
+ // the length of the the step to the trust region boundary and STPLEN to
+ // the steplength, ignoring the simple bounds.
+
+ state = 210; break;
+ }
+ case 50: {
+ printState(50); // XXX
+ resid = delsq;
+ ds = ZERO;
+ shs = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(i);
+ resid -= d1 * d1;
+ ds += s.getEntry(i) * trialStepPoint.getEntry(i);
+ shs += s.getEntry(i) * hs.getEntry(i);
+ }
+ }
+ if (resid <= ZERO) {
+ state = 90; break;
+ }
+ temp = FastMath.sqrt(stepsq * resid + ds * ds);
+ if (ds < ZERO) {
+ blen = (temp - ds) / stepsq;
+ } else {
+ blen = resid / (temp + ds);
+ }
+ stplen = blen;
+ if (shs > ZERO) {
+ // Computing MIN
+ stplen = FastMath.min(blen, gredsq / shs);
+ }
+
+ // Reduce STPLEN if necessary in order to preserve the simple bounds,
+ // letting IACT be the index of the new constrained variable.
+
+ iact = -1;
+ for (int i = 0; i < n; i++) {
+ if (s.getEntry(i) != ZERO) {
+ xsum = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i);
+ if (s.getEntry(i) > ZERO) {
+ temp = (upperDifference.getEntry(i) - xsum) / s.getEntry(i);
+ } else {
+ temp = (lowerDifference.getEntry(i) - xsum) / s.getEntry(i);
+ }
+ if (temp < stplen) {
+ stplen = temp;
+ iact = i;
+ }
+ }
+ }
+
+ // Update CRVMIN, GNEW and D. Set SDEC to the decrease that occurs in Q.
+
+ sdec = ZERO;
+ if (stplen > ZERO) {
+ ++iterc;
+ temp = shs / stepsq;
+ if (iact == -1 && temp > ZERO) {
+ crvmin = FastMath.min(crvmin,temp);
+ if (crvmin == MINUS_ONE) {
+ crvmin = temp;
+ }
+ }
+ ggsav = gredsq;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ gnew.setEntry(i, gnew.getEntry(i) + stplen * hs.getEntry(i));
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ final double d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ }
+ trialStepPoint.setEntry(i, trialStepPoint.getEntry(i) + stplen * s.getEntry(i));
+ }
+ // Computing MAX
+ final double d1 = stplen * (ggsav - HALF * stplen * shs);
+ sdec = FastMath.max(d1, ZERO);
+ qred += sdec;
+ }
+
+ // Restart the conjugate gradient method if it has hit a new bound.
+
+ if (iact >= 0) {
+ ++nact;
+ xbdi.setEntry(iact, ONE);
+ if (s.getEntry(iact) < ZERO) {
+ xbdi.setEntry(iact, MINUS_ONE);
+ }
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(iact);
+ delsq -= d1 * d1;
+ if (delsq <= ZERO) {
+ state = 190; break;
+ }
+ state = 20; break;
+ }
+
+ // If STPLEN is less than BLEN, then either apply another conjugate
+ // gradient iteration or RETURN.
+
+ if (stplen < blen) {
+ if (iterc == itermax) {
+ state = 190; break;
+ }
+ if (sdec <= qred * .01) {
+ state = 190; break;
+ }
+ beta = gredsq / ggsav;
+ state = 30; break;
+ }
+ }
+ case 90: {
+ printState(90); // XXX
+ crvmin = ZERO;
+
+ // Prepare for the alternative iteration by calculating some scalars
+ // and by multiplying the reduced D by the second derivative matrix of
+ // Q, where S holds the reduced D in the call of GGMULT.
+
+ }
+ case 100: {
+ printState(100); // XXX
+ if (nact >= n - 1) {
+ state = 190; break;
+ }
+ dredsq = ZERO;
+ dredg = ZERO;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ // Computing 2nd power
+ double d1 = trialStepPoint.getEntry(i);
+ dredsq += d1 * d1;
+ dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
+ // Computing 2nd power
+ d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ s.setEntry(i, trialStepPoint.getEntry(i));
+ } else {
+ s.setEntry(i, ZERO);
+ }
+ }
+ itcsav = iterc;
+ state = 210; break;
+ // Let the search direction S be a linear combination of the reduced D
+ // and the reduced G that is orthogonal to the reduced D.
+ }
+ case 120: {
+ printState(120); // XXX
+ ++iterc;
+ temp = gredsq * dredsq - dredg * dredg;
+ if (temp <= qred * 1e-4 * qred) {
+ state = 190; break;
+ }
+ temp = FastMath.sqrt(temp);
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ s.setEntry(i, (dredg * trialStepPoint.getEntry(i) - dredsq * gnew.getEntry(i)) / temp);
+ } else {
+ s.setEntry(i, ZERO);
+ }
+ }
+ sredg = -temp;
+
+ // By considering the simple bounds on the variables, calculate an upper
+ // bound on the tangent of half the angle of the alternative iteration,
+ // namely ANGBD, except that, if already a free variable has reached a
+ // bound, there is a branch back to label 100 after fixing that variable.
+
+ angbd = ONE;
+ iact = -1;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ tempa = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i) - lowerDifference.getEntry(i);
+ tempb = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i) - trialStepPoint.getEntry(i);
+ if (tempa <= ZERO) {
+ ++nact;
+ xbdi.setEntry(i, MINUS_ONE);
+ state = 100; break;
+ } else if (tempb <= ZERO) {
+ ++nact;
+ xbdi.setEntry(i, ONE);
+ state = 100; break;
+ }
+ // Computing 2nd power
+ double d1 = trialStepPoint.getEntry(i);
+ // Computing 2nd power
+ double d2 = s.getEntry(i);
+ ssq = d1 * d1 + d2 * d2;
+ // Computing 2nd power
+ d1 = trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i);
+ temp = ssq - d1 * d1;
+ if (temp > ZERO) {
+ temp = FastMath.sqrt(temp) - s.getEntry(i);
+ if (angbd * temp > tempa) {
+ angbd = tempa / temp;
+ iact = i;
+ xsav = MINUS_ONE;
+ }
+ }
+ // Computing 2nd power
+ d1 = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i);
+ temp = ssq - d1 * d1;
+ if (temp > ZERO) {
+ temp = FastMath.sqrt(temp) + s.getEntry(i);
+ if (angbd * temp > tempb) {
+ angbd = tempb / temp;
+ iact = i;
+ xsav = ONE;
+ }
+ }
+ }
+ }
+
+ // Calculate HHD and some curvatures for the alternative iteration.
+
+ state = 210; break;
+ }
+ case 150: {
+ printState(150); // XXX
+ shs = ZERO;
+ dhs = ZERO;
+ dhd = ZERO;
+ for (int i = 0; i < n; i++) {
+ if (xbdi.getEntry(i) == ZERO) {
+ shs += s.getEntry(i) * hs.getEntry(i);
+ dhs += trialStepPoint.getEntry(i) * hs.getEntry(i);
+ dhd += trialStepPoint.getEntry(i) * hred.getEntry(i);
+ }
+ }
+
+ // Seek the greatest reduction in Q for a range of equally spaced values
+ // of ANGT in [0,ANGBD], where ANGT is the tangent of half the angle of
+ // the alternative iteration.
+
+ redmax = ZERO;
+ isav = -1;
+ redsav = ZERO;
+ iu = (int) (angbd * 17. + 3.1);
+ for (int i = 0; i < iu; i++) {
+ angt = angbd * i / iu;
+ sth = (angt + angt) / (ONE + angt * angt);
+ temp = shs + angt * (angt * dhd - dhs - dhs);
+ rednew = sth * (angt * dredg - sredg - HALF * sth * temp);
+ if (rednew > redmax) {
+ redmax = rednew;
+ isav = i;
+ rdprev = redsav;
+ } else if (i == isav + 1) {
+ rdnext = rednew;
+ }
+ redsav = rednew;
+ }
+
+ // Return if the reduction is zero. Otherwise, set the sine and cosine
+ // of the angle of the alternative iteration, and calculate SDEC.
+
+ if (isav < 0) {
+ state = 190; break;
+ }
+ if (isav < iu) {
+ temp = (rdnext - rdprev) / (redmax + redmax - rdprev - rdnext);
+ angt = angbd * (isav + HALF * temp) / iu;
+ }
+ cth = (ONE - angt * angt) / (ONE + angt * angt);
+ sth = (angt + angt) / (ONE + angt * angt);
+ temp = shs + angt * (angt * dhd - dhs - dhs);
+ sdec = sth * (angt * dredg - sredg - HALF * sth * temp);
+ if (sdec <= ZERO) {
+ state = 190; break;
+ }
+
+ // Update GNEW, D and HRED. If the angle of the alternative iteration
+ // is restricted by a bound on a free variable, that variable is fixed
+ // at the bound.
+
+ dredg = ZERO;
+ gredsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ gnew.setEntry(i, gnew.getEntry(i) + (cth - ONE) * hred.getEntry(i) + sth * hs.getEntry(i));
+ if (xbdi.getEntry(i) == ZERO) {
+ trialStepPoint.setEntry(i, cth * trialStepPoint.getEntry(i) + sth * s.getEntry(i));
+ dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
+ // Computing 2nd power
+ final double d1 = gnew.getEntry(i);
+ gredsq += d1 * d1;
+ }
+ hred.setEntry(i, cth * hred.getEntry(i) + sth * hs.getEntry(i));
+ }
+ qred += sdec;
+ if (iact >= 0 && isav == iu) {
+ ++nact;
+ xbdi.setEntry(iact, xsav);
+ state = 100; break;
+ }
+
+ // If SDEC is sufficiently small, then RETURN after setting XNEW to
+ // XOPT+D, giving careful attention to the bounds.
+
+ if (sdec > qred * .01) {
+ state = 120; break;
+ }
+ }
+ case 190: {
+ printState(190); // XXX
+ dsq = ZERO;
+ for (int i = 0; i < n; i++) {
+ // Computing MAX
+ // Computing MIN
+ final double min = FastMath.min(trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i),
+ upperDifference.getEntry(i));
+ newPoint.setEntry(i, FastMath.max(min, lowerDifference.getEntry(i)));
+ if (xbdi.getEntry(i) == MINUS_ONE) {
+ newPoint.setEntry(i, lowerDifference.getEntry(i));
+ }
+ if (xbdi.getEntry(i) == ONE) {
+ newPoint.setEntry(i, upperDifference.getEntry(i));
+ }
+ trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
+ // Computing 2nd power
+ final double d1 = trialStepPoint.getEntry(i);
+ dsq += d1 * d1;
+ }
+ return new double[] { dsq, crvmin };
+ // The following instructions multiply the current S-vector by the second
+ // derivative matrix of the quadratic model, putting the product in HS.
+ // They are reached from three different parts of the software above and
+ // they can be regarded as an external subroutine.
+ }
+ case 210: {
+ printState(210); // XXX
+ int ih = 0;
+ for (int j = 0; j < n; j++) {
+ hs.setEntry(j, ZERO);
+ for (int i = 0; i <= j; i++) {
+ if (i < j) {
+ hs.setEntry(j, hs.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(i));
+ }
+ hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
+ ih++;
+ }
+ }
+ final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
+ for (int k = 0; k < npt; k++) {
+ if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
+ for (int i = 0; i < n; i++) {
+ hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
+ }
+ }
+ }
+ if (crvmin != ZERO) {
+ state = 50; break;
+ }
+ if (iterc > itcsav) {
+ state = 150; break;
+ }
+ for (int i = 0; i < n; i++) {
+ hred.setEntry(i, hs.getEntry(i));
+ }
+ state = 120; break;
+ }
+ default: {
+ throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "trsbox");
+ }}
+ }
+ } // trsbox
+
+ // ----------------------------------------------------------------------------------------
+
+ /**
+ * The arrays BMAT and ZMAT are updated, as required by the new position
+ * of the interpolation point that has the index KNEW. The vector VLAG has
+ * N+NPT components, set on entry to the first NPT and last N components
+ * of the product Hw in equation (4.11) of the Powell (2006) paper on
+ * NEWUOA. Further, BETA is set on entry to the value of the parameter
+ * with that name, and DENOM is set to the denominator of the updating
+ * formula. Elements of ZMAT may be treated as zero if their moduli are
+ * at most ZTEST. The first NDIM elements of W are used for working space.
+ * @param beta
+ * @param denom
+ * @param knew
+ */
+ private void update(
+ double beta,
+ double denom,
+ int knew
+ ) {
+ printMethod(); // XXX
+
+ final int n = currentBest.getDimension();
+ final int npt = numberOfInterpolationPoints;
+ final int nptm = npt - n - 1;
+
+ // XXX Should probably be split into two arrays.
+ final ArrayRealVector work = new ArrayRealVector(npt + n);
+
+ double ztest = ZERO;
+ for (int k = 0; k < npt; k++) {
+ for (int j = 0; j < nptm; j++) {
+ // Computing MAX
+ ztest = FastMath.max(ztest, FastMath.abs(zMatrix.getEntry(k, j)));
+ }
+ }
+ ztest *= 1e-20;
+
+ // Apply the rotations that put zeros in the KNEW-th row of ZMAT.
+
+ for (int j = 1; j < nptm; j++) {
+ final double d1 = zMatrix.getEntry(knew, j);
+ if (FastMath.abs(d1) > ztest) {
+ // Computing 2nd power
+ final double d2 = zMatrix.getEntry(knew, 0);
+ // Computing 2nd power
+ final double d3 = zMatrix.getEntry(knew, j);
+ final double d4 = FastMath.sqrt(d2 * d2 + d3 * d3);
+ final double d5 = zMatrix.getEntry(knew, 0) / d4;
+ final double d6 = zMatrix.getEntry(knew, j) / d4;
+ for (int i = 0; i < npt; i++) {
+ final double d7 = d5 * zMatrix.getEntry(i, 0) + d6 * zMatrix.getEntry(i, j);
+ zMatrix.setEntry(i, j, d5 * zMatrix.getEntry(i, j) - d6 * zMatrix.getEntry(i, 0));
+ zMatrix.setEntry(i, 0, d7);
+ }
+ }
+ zMatrix.setEntry(knew, j, ZERO);
+ }
+
+ // Put the first NPT components of the KNEW-th column of HLAG into W,
+ // and calculate the parameters of the updating formula.
+
+ for (int i = 0; i < npt; i++) {
+ work.setEntry(i, zMatrix.getEntry(knew, 0) * zMatrix.getEntry(i, 0));
+ }
+ final double alpha = work.getEntry(knew);
+ final double tau = lagrangeValuesAtNewPoint.getEntry(knew);
+ lagrangeValuesAtNewPoint.setEntry(knew, lagrangeValuesAtNewPoint.getEntry(knew) - ONE);
+
+ // Complete the updating of ZMAT.
+
+ final double sqrtDenom = FastMath.sqrt(denom);
+ final double d1 = tau / sqrtDenom;
+ final double d2 = zMatrix.getEntry(knew, 0) / sqrtDenom;
+ for (int i = 0; i < npt; i++) {
+ zMatrix.setEntry(i, 0,
+ d1 * zMatrix.getEntry(i, 0) - d2 * lagrangeValuesAtNewPoint.getEntry(i));
+ }
+
+ // Finally, update the matrix BMAT.
+
+ for (int j = 0; j < n; j++) {
+ final int jp = npt + j;
+ work.setEntry(jp, bMatrix.getEntry(knew, j));
+ final double d3 = (alpha * lagrangeValuesAtNewPoint.getEntry(jp) - tau * work.getEntry(jp)) / denom;
+ final double d4 = (-beta * work.getEntry(jp) - tau * lagrangeValuesAtNewPoint.getEntry(jp)) / denom;
+ for (int i = 0; i <= jp; i++) {
+ bMatrix.setEntry(i, j,
+ bMatrix.getEntry(i, j) + d3 * lagrangeValuesAtNewPoint.getEntry(i) + d4 * work.getEntry(i));
+ if (i >= npt) {
+ bMatrix.setEntry(jp, (i - npt), bMatrix.getEntry(i, j));
+ }
+ }
+ }
+ } // update
+
+ /**
+ * Performs validity checks.
+ *
+ * @param lowerBound Lower bounds (constraints) of the objective variables.
+ * @param upperBound Upperer bounds (constraints) of the objective variables.
+ */
+ private void setup(double[] lowerBound,
+ double[] upperBound) {
+ printMethod(); // XXX
+
+ double[] init = getStartPoint();
+ final int dimension = init.length;
+
+ // Check problem dimension.
+ if (dimension < MINIMUM_PROBLEM_DIMENSION) {
+ throw new NumberIsTooSmallException(dimension, MINIMUM_PROBLEM_DIMENSION, true);
+ }
+ // Check number of interpolation points.
+ final int[] nPointsInterval = { dimension + 2, (dimension + 2) * (dimension + 1) / 2 };
+ if (numberOfInterpolationPoints < nPointsInterval[0] ||
+ numberOfInterpolationPoints > nPointsInterval[1]) {
+ throw new OutOfRangeException(LocalizedFormats.NUMBER_OF_INTERPOLATION_POINTS,
+ numberOfInterpolationPoints,
+ nPointsInterval[0],
+ nPointsInterval[1]);
+ }
+
+ // Initialize bound differences.
+ boundDifference = new double[dimension];
+
+ double requiredMinDiff = 2 * initialTrustRegionRadius;
+ double minDiff = Double.POSITIVE_INFINITY;
+ for (int i = 0; i < dimension; i++) {
+ boundDifference[i] = upperBound[i] - lowerBound[i];
+ minDiff = FastMath.min(minDiff, boundDifference[i]);
+ }
+ if (minDiff < requiredMinDiff) {
+ initialTrustRegionRadius = minDiff / 3.0;
+ }
+
+ // Initialize the data structures used by the "bobyqa" method.
+ bMatrix = new Array2DRowRealMatrix(dimension + numberOfInterpolationPoints,
+ dimension);
+ zMatrix = new Array2DRowRealMatrix(numberOfInterpolationPoints,
+ numberOfInterpolationPoints - dimension - 1);
+ interpolationPoints = new Array2DRowRealMatrix(numberOfInterpolationPoints,
+ dimension);
+ originShift = new ArrayRealVector(dimension);
+ fAtInterpolationPoints = new ArrayRealVector(numberOfInterpolationPoints);
+ trustRegionCenterOffset = new ArrayRealVector(dimension);
+ gradientAtTrustRegionCenter = new ArrayRealVector(dimension);
+ lowerDifference = new ArrayRealVector(dimension);
+ upperDifference = new ArrayRealVector(dimension);
+ modelSecondDerivativesParameters = new ArrayRealVector(numberOfInterpolationPoints);
+ newPoint = new ArrayRealVector(dimension);
+ alternativeNewPoint = new ArrayRealVector(dimension);
+ trialStepPoint = new ArrayRealVector(dimension);
+ lagrangeValuesAtNewPoint = new ArrayRealVector(dimension + numberOfInterpolationPoints);
+ modelSecondDerivativesValues = new ArrayRealVector(dimension * (dimension + 1) / 2);
+ }
+
+ // XXX utility for figuring out call sequence.
+ private static String caller(int n) {
+ final Throwable t = new Throwable();
+ final StackTraceElement[] elements = t.getStackTrace();
+ final StackTraceElement e = elements[n];
+ return e.getMethodName() + " (at line " + e.getLineNumber() + ")";
+ }
+ // XXX utility for figuring out call sequence.
+ private static void printState(int s) {
+ // System.out.println(caller(2) + ": state " + s);
+ }
+ // XXX utility for figuring out call sequence.
+ private static void printMethod() {
+ // System.out.println(caller(2));
+ }
+
+ /**
+ * Marker for code paths that are not explored with the current unit tests.
+ * If the path becomes explored, it should just be removed from the code.
+ */
+ private static class PathIsExploredException extends RuntimeException {
+ /** Serializable UID. */
+ private static final long serialVersionUID = 745350979634801853L;
+
+ /** Message string. */
+ private static final String PATH_IS_EXPLORED
+ = "If this exception is thrown, just remove it from the code";
+
+ PathIsExploredException() {
+ super(PATH_IS_EXPLORED + " " + BOBYQAOptimizer.caller(3));
+ }
+ }
+}
+//CHECKSTYLE: resume all
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateOptimizer.java
new file mode 100644
index 0000000..d148d8c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateOptimizer.java
@@ -0,0 +1,318 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import org.apache.commons.math3.util.Incrementor;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.optimization.BaseMultivariateOptimizer;
+import org.apache.commons.math3.optimization.OptimizationData;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.InitialGuess;
+import org.apache.commons.math3.optimization.SimpleBounds;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.SimpleValueChecker;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.NumberIsTooLargeException;
+
+/**
+ * Base class for implementing optimizers for multivariate scalar functions.
+ * This base class handles the boiler-plate methods associated to thresholds,
+ * evaluations counting, initial guess and simple bounds settings.
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.2
+ */
+@Deprecated
+public abstract class BaseAbstractMultivariateOptimizer<FUNC extends MultivariateFunction>
+ implements BaseMultivariateOptimizer<FUNC> {
+ /** Evaluations counter. */
+ protected final Incrementor evaluations = new Incrementor();
+ /** Convergence checker. */
+ private ConvergenceChecker<PointValuePair> checker;
+ /** Type of optimization. */
+ private GoalType goal;
+ /** Initial guess. */
+ private double[] start;
+ /** Lower bounds. */
+ private double[] lowerBound;
+ /** Upper bounds. */
+ private double[] upperBound;
+ /** Objective function. */
+ private MultivariateFunction function;
+
+ /**
+ * Simple constructor with default settings.
+ * The convergence check is set to a {@link SimpleValueChecker}.
+ * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ protected BaseAbstractMultivariateOptimizer() {
+ this(new SimpleValueChecker());
+ }
+ /**
+ * @param checker Convergence checker.
+ */
+ protected BaseAbstractMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ this.checker = checker;
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxEvaluations() {
+ return evaluations.getMaximalCount();
+ }
+
+ /** {@inheritDoc} */
+ public int getEvaluations() {
+ return evaluations.getCount();
+ }
+
+ /** {@inheritDoc} */
+ public ConvergenceChecker<PointValuePair> getConvergenceChecker() {
+ return checker;
+ }
+
+ /**
+ * Compute the objective function value.
+ *
+ * @param point Point at which the objective function must be evaluated.
+ * @return the objective function value at the specified point.
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations is exceeded.
+ */
+ protected double computeObjectiveValue(double[] point) {
+ try {
+ evaluations.incrementCount();
+ } catch (MaxCountExceededException e) {
+ throw new TooManyEvaluationsException(e.getMax());
+ }
+ return function.value(point);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @deprecated As of 3.1. Please use
+ * {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
+ * instead.
+ */
+ @Deprecated
+ public PointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
+ double[] startPoint) {
+ return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint));
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param goalType Optimization type.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link InitialGuess}</li>
+ * <li>{@link SimpleBounds}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value of the objective
+ * function.
+ * @since 3.1
+ */
+ public PointValuePair optimize(int maxEval,
+ FUNC f,
+ GoalType goalType,
+ OptimizationData... optData) {
+ return optimizeInternal(maxEval, f, goalType, optData);
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param f Objective function.
+ * @param goalType Type of optimization goal: either
+ * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
+ * @param startPoint Start point for optimization.
+ * @param maxEval Maximum number of function evaluations.
+ * @return the point/value pair giving the optimal value for objective
+ * function.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if the start point dimension is wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if
+ * any argument is {@code null}.
+ * @deprecated As of 3.1. Please use
+ * {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
+ * instead.
+ */
+ @Deprecated
+ protected PointValuePair optimizeInternal(int maxEval, FUNC f, GoalType goalType,
+ double[] startPoint) {
+ return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint));
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param goalType Optimization type.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link InitialGuess}</li>
+ * <li>{@link SimpleBounds}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value of the objective
+ * function.
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations is exceeded.
+ * @since 3.1
+ */
+ protected PointValuePair optimizeInternal(int maxEval,
+ FUNC f,
+ GoalType goalType,
+ OptimizationData... optData)
+ throws TooManyEvaluationsException {
+ // Set internal state.
+ evaluations.setMaximalCount(maxEval);
+ evaluations.resetCount();
+ function = f;
+ goal = goalType;
+ // Retrieve other settings.
+ parseOptimizationData(optData);
+ // Check input consistency.
+ checkParameters();
+ // Perform computation.
+ return doOptimize();
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link InitialGuess}</li>
+ * <li>{@link SimpleBounds}</li>
+ * </ul>
+ */
+ private void parseOptimizationData(OptimizationData... optData) {
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof InitialGuess) {
+ start = ((InitialGuess) data).getInitialGuess();
+ continue;
+ }
+ if (data instanceof SimpleBounds) {
+ final SimpleBounds bounds = (SimpleBounds) data;
+ lowerBound = bounds.getLower();
+ upperBound = bounds.getUpper();
+ continue;
+ }
+ }
+ }
+
+ /**
+ * @return the optimization type.
+ */
+ public GoalType getGoalType() {
+ return goal;
+ }
+
+ /**
+ * @return the initial guess.
+ */
+ public double[] getStartPoint() {
+ return start == null ? null : start.clone();
+ }
+ /**
+ * @return the lower bounds.
+ * @since 3.1
+ */
+ public double[] getLowerBound() {
+ return lowerBound == null ? null : lowerBound.clone();
+ }
+ /**
+ * @return the upper bounds.
+ * @since 3.1
+ */
+ public double[] getUpperBound() {
+ return upperBound == null ? null : upperBound.clone();
+ }
+
+ /**
+ * Perform the bulk of the optimization algorithm.
+ *
+ * @return the point/value pair giving the optimal value of the
+ * objective function.
+ */
+ protected abstract PointValuePair doOptimize();
+
+ /**
+ * Check parameters consistency.
+ */
+ private void checkParameters() {
+ if (start != null) {
+ final int dim = start.length;
+ if (lowerBound != null) {
+ if (lowerBound.length != dim) {
+ throw new DimensionMismatchException(lowerBound.length, dim);
+ }
+ for (int i = 0; i < dim; i++) {
+ final double v = start[i];
+ final double lo = lowerBound[i];
+ if (v < lo) {
+ throw new NumberIsTooSmallException(v, lo, true);
+ }
+ }
+ }
+ if (upperBound != null) {
+ if (upperBound.length != dim) {
+ throw new DimensionMismatchException(upperBound.length, dim);
+ }
+ for (int i = 0; i < dim; i++) {
+ final double v = start[i];
+ final double hi = upperBound[i];
+ if (v > hi) {
+ throw new NumberIsTooLargeException(v, hi, true);
+ }
+ }
+ }
+
+ // If the bounds were not specified, the allowed interval is
+ // assumed to be [-inf, +inf].
+ if (lowerBound == null) {
+ lowerBound = new double[dim];
+ for (int i = 0; i < dim; i++) {
+ lowerBound[i] = Double.NEGATIVE_INFINITY;
+ }
+ }
+ if (upperBound == null) {
+ upperBound = new double[dim];
+ for (int i = 0; i < dim; i++) {
+ upperBound[i] = Double.POSITIVE_INFINITY;
+ }
+ }
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateSimpleBoundsOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateSimpleBoundsOptimizer.java
new file mode 100644
index 0000000..67a4296
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateSimpleBoundsOptimizer.java
@@ -0,0 +1,82 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.optimization.BaseMultivariateOptimizer;
+import org.apache.commons.math3.optimization.BaseMultivariateSimpleBoundsOptimizer;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.InitialGuess;
+import org.apache.commons.math3.optimization.SimpleBounds;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+
+/**
+ * Base class for implementing optimizers for multivariate scalar functions,
+ * subject to simple bounds: The valid range of the parameters is an interval.
+ * The interval can possibly be infinite (in one or both directions).
+ * This base class handles the boiler-plate methods associated to thresholds
+ * settings, iterations and evaluations counting.
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ * @deprecated As of 3.1 since the {@link BaseAbstractMultivariateOptimizer
+ * base class} contains similar functionality.
+ */
+@Deprecated
+public abstract class BaseAbstractMultivariateSimpleBoundsOptimizer<FUNC extends MultivariateFunction>
+ extends BaseAbstractMultivariateOptimizer<FUNC>
+ implements BaseMultivariateOptimizer<FUNC>,
+ BaseMultivariateSimpleBoundsOptimizer<FUNC> {
+ /**
+ * Simple constructor with default settings.
+ * The convergence checker is set to a
+ * {@link org.apache.commons.math3.optimization.SimpleValueChecker}.
+ *
+ * @see BaseAbstractMultivariateOptimizer#BaseAbstractMultivariateOptimizer()
+ * @deprecated See {@link org.apache.commons.math3.optimization.SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ protected BaseAbstractMultivariateSimpleBoundsOptimizer() {}
+
+ /**
+ * @param checker Convergence checker.
+ */
+ protected BaseAbstractMultivariateSimpleBoundsOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public PointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
+ double[] startPoint) {
+ return super.optimizeInternal(maxEval, f, goalType,
+ new InitialGuess(startPoint));
+ }
+
+ /** {@inheritDoc} */
+ public PointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
+ double[] startPoint,
+ double[] lower, double[] upper) {
+ return super.optimizeInternal(maxEval, f, goalType,
+ new InitialGuess(startPoint),
+ new SimpleBounds(lower, upper));
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateVectorOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateVectorOptimizer.java
new file mode 100644
index 0000000..e070632
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/BaseAbstractMultivariateVectorOptimizer.java
@@ -0,0 +1,370 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import org.apache.commons.math3.util.Incrementor;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.optimization.OptimizationData;
+import org.apache.commons.math3.optimization.InitialGuess;
+import org.apache.commons.math3.optimization.Target;
+import org.apache.commons.math3.optimization.Weight;
+import org.apache.commons.math3.optimization.BaseMultivariateVectorOptimizer;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.PointVectorValuePair;
+import org.apache.commons.math3.optimization.SimpleVectorValueChecker;
+import org.apache.commons.math3.linear.RealMatrix;
+
+/**
+ * Base class for implementing optimizers for multivariate scalar functions.
+ * This base class handles the boiler-plate methods associated to thresholds
+ * settings, iterations and evaluations counting.
+ *
+ * @param <FUNC> the type of the objective function to be optimized
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public abstract class BaseAbstractMultivariateVectorOptimizer<FUNC extends MultivariateVectorFunction>
+ implements BaseMultivariateVectorOptimizer<FUNC> {
+ /** Evaluations counter. */
+ protected final Incrementor evaluations = new Incrementor();
+ /** Convergence checker. */
+ private ConvergenceChecker<PointVectorValuePair> checker;
+ /** Target value for the objective functions at optimum. */
+ private double[] target;
+ /** Weight matrix. */
+ private RealMatrix weightMatrix;
+ /** Weight for the least squares cost computation.
+ * @deprecated
+ */
+ @Deprecated
+ private double[] weight;
+ /** Initial guess. */
+ private double[] start;
+ /** Objective function. */
+ private FUNC function;
+
+ /**
+ * Simple constructor with default settings.
+ * The convergence check is set to a {@link SimpleVectorValueChecker}.
+ * @deprecated See {@link SimpleVectorValueChecker#SimpleVectorValueChecker()}
+ */
+ @Deprecated
+ protected BaseAbstractMultivariateVectorOptimizer() {
+ this(new SimpleVectorValueChecker());
+ }
+ /**
+ * @param checker Convergence checker.
+ */
+ protected BaseAbstractMultivariateVectorOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
+ this.checker = checker;
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxEvaluations() {
+ return evaluations.getMaximalCount();
+ }
+
+ /** {@inheritDoc} */
+ public int getEvaluations() {
+ return evaluations.getCount();
+ }
+
+ /** {@inheritDoc} */
+ public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker() {
+ return checker;
+ }
+
+ /**
+ * Compute the objective function value.
+ *
+ * @param point Point at which the objective function must be evaluated.
+ * @return the objective function value at the specified point.
+ * @throws TooManyEvaluationsException if the maximal number of evaluations is
+ * exceeded.
+ */
+ protected double[] computeObjectiveValue(double[] point) {
+ try {
+ evaluations.incrementCount();
+ } catch (MaxCountExceededException e) {
+ throw new TooManyEvaluationsException(e.getMax());
+ }
+ return function.value(point);
+ }
+
+ /** {@inheritDoc}
+ *
+ * @deprecated As of 3.1. Please use
+ * {@link #optimize(int,MultivariateVectorFunction,OptimizationData[])}
+ * instead.
+ */
+ @Deprecated
+ public PointVectorValuePair optimize(int maxEval, FUNC f, double[] t, double[] w,
+ double[] startPoint) {
+ return optimizeInternal(maxEval, f, t, w, startPoint);
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link Target}</li>
+ * <li>{@link Weight}</li>
+ * <li>{@link InitialGuess}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value of the objective
+ * function.
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations is exceeded.
+ * @throws DimensionMismatchException if the initial guess, target, and weight
+ * arguments have inconsistent dimensions.
+ *
+ * @since 3.1
+ */
+ protected PointVectorValuePair optimize(int maxEval,
+ FUNC f,
+ OptimizationData... optData)
+ throws TooManyEvaluationsException,
+ DimensionMismatchException {
+ return optimizeInternal(maxEval, f, optData);
+ }
+
+ /**
+ * Optimize an objective function.
+ * Optimization is considered to be a weighted least-squares minimization.
+ * The cost function to be minimized is
+ * <code>&sum;weight<sub>i</sub>(objective<sub>i</sub> - target<sub>i</sub>)<sup>2</sup></code>
+ *
+ * @param f Objective function.
+ * @param t Target value for the objective functions at optimum.
+ * @param w Weights for the least squares cost computation.
+ * @param startPoint Start point for optimization.
+ * @return the point/value pair giving the optimal value for objective
+ * function.
+ * @param maxEval Maximum number of function evaluations.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if the start point dimension is wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if
+ * any argument is {@code null}.
+ * @deprecated As of 3.1. Please use
+ * {@link #optimizeInternal(int,MultivariateVectorFunction,OptimizationData[])}
+ * instead.
+ */
+ @Deprecated
+ protected PointVectorValuePair optimizeInternal(final int maxEval, final FUNC f,
+ final double[] t, final double[] w,
+ final double[] startPoint) {
+ // Checks.
+ if (f == null) {
+ throw new NullArgumentException();
+ }
+ if (t == null) {
+ throw new NullArgumentException();
+ }
+ if (w == null) {
+ throw new NullArgumentException();
+ }
+ if (startPoint == null) {
+ throw new NullArgumentException();
+ }
+ if (t.length != w.length) {
+ throw new DimensionMismatchException(t.length, w.length);
+ }
+
+ return optimizeInternal(maxEval, f,
+ new Target(t),
+ new Weight(w),
+ new InitialGuess(startPoint));
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link Target}</li>
+ * <li>{@link Weight}</li>
+ * <li>{@link InitialGuess}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value of the objective
+ * function.
+ * @throws TooManyEvaluationsException if the maximal number of
+ * evaluations is exceeded.
+ * @throws DimensionMismatchException if the initial guess, target, and weight
+ * arguments have inconsistent dimensions.
+ *
+ * @since 3.1
+ */
+ protected PointVectorValuePair optimizeInternal(int maxEval,
+ FUNC f,
+ OptimizationData... optData)
+ throws TooManyEvaluationsException,
+ DimensionMismatchException {
+ // Set internal state.
+ evaluations.setMaximalCount(maxEval);
+ evaluations.resetCount();
+ function = f;
+ // Retrieve other settings.
+ parseOptimizationData(optData);
+ // Check input consistency.
+ checkParameters();
+ // Allow subclasses to reset their own internal state.
+ setUp();
+ // Perform computation.
+ return doOptimize();
+ }
+
+ /**
+ * Gets the initial values of the optimized parameters.
+ *
+ * @return the initial guess.
+ */
+ public double[] getStartPoint() {
+ return start.clone();
+ }
+
+ /**
+ * Gets the weight matrix of the observations.
+ *
+ * @return the weight matrix.
+ * @since 3.1
+ */
+ public RealMatrix getWeight() {
+ return weightMatrix.copy();
+ }
+ /**
+ * Gets the observed values to be matched by the objective vector
+ * function.
+ *
+ * @return the target values.
+ * @since 3.1
+ */
+ public double[] getTarget() {
+ return target.clone();
+ }
+
+ /**
+ * Gets the objective vector function.
+ * Note that this access bypasses the evaluation counter.
+ *
+ * @return the objective vector function.
+ * @since 3.1
+ */
+ protected FUNC getObjectiveFunction() {
+ return function;
+ }
+
+ /**
+ * Perform the bulk of the optimization algorithm.
+ *
+ * @return the point/value pair giving the optimal value for the
+ * objective function.
+ */
+ protected abstract PointVectorValuePair doOptimize();
+
+ /**
+ * @return a reference to the {@link #target array}.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] getTargetRef() {
+ return target;
+ }
+ /**
+ * @return a reference to the {@link #weight array}.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] getWeightRef() {
+ return weight;
+ }
+
+ /**
+ * Method which a subclass <em>must</em> override whenever its internal
+ * state depend on the {@link OptimizationData input} parsed by this base
+ * class.
+ * It will be called after the parsing step performed in the
+ * {@link #optimize(int,MultivariateVectorFunction,OptimizationData[])
+ * optimize} method and just before {@link #doOptimize()}.
+ *
+ * @since 3.1
+ */
+ protected void setUp() {
+ // XXX Temporary code until the new internal data is used everywhere.
+ final int dim = target.length;
+ weight = new double[dim];
+ for (int i = 0; i < dim; i++) {
+ weight[i] = weightMatrix.getEntry(i, i);
+ }
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link Target}</li>
+ * <li>{@link Weight}</li>
+ * <li>{@link InitialGuess}</li>
+ * </ul>
+ */
+ private void parseOptimizationData(OptimizationData... optData) {
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof Target) {
+ target = ((Target) data).getTarget();
+ continue;
+ }
+ if (data instanceof Weight) {
+ weightMatrix = ((Weight) data).getWeight();
+ continue;
+ }
+ if (data instanceof InitialGuess) {
+ start = ((InitialGuess) data).getInitialGuess();
+ continue;
+ }
+ }
+ }
+
+ /**
+ * Check parameters consistency.
+ *
+ * @throws DimensionMismatchException if {@link #target} and
+ * {@link #weightMatrix} have inconsistent dimensions.
+ */
+ private void checkParameters() {
+ if (target.length != weightMatrix.getColumnDimension()) {
+ throw new DimensionMismatchException(target.length,
+ weightMatrix.getColumnDimension());
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/CMAESOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/direct/CMAESOptimizer.java
new file mode 100644
index 0000000..388a6f7
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/CMAESOptimizer.java
@@ -0,0 +1,1441 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.List;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NotPositiveException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.linear.EigenDecomposition;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.OptimizationData;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.MultivariateOptimizer;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.SimpleValueChecker;
+import org.apache.commons.math3.random.MersenneTwister;
+import org.apache.commons.math3.random.RandomGenerator;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+
+/**
+ * <p>An implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
+ * for non-linear, non-convex, non-smooth, global function minimization.
+ * The CMA-Evolution Strategy (CMA-ES) is a reliable stochastic optimization method
+ * which should be applied if derivative-based methods, e.g. quasi-Newton BFGS or
+ * conjugate gradient, fail due to a rugged search landscape (e.g. noise, local
+ * optima, outlier, etc.) of the objective function. Like a
+ * quasi-Newton method, the CMA-ES learns and applies a variable metric
+ * on the underlying search space. Unlike a quasi-Newton method, the
+ * CMA-ES neither estimates nor uses gradients, making it considerably more
+ * reliable in terms of finding a good, or even close to optimal, solution.</p>
+ *
+ * <p>In general, on smooth objective functions the CMA-ES is roughly ten times
+ * slower than BFGS (counting objective function evaluations, no gradients provided).
+ * For up to <math>N=10</math> variables also the derivative-free simplex
+ * direct search method (Nelder and Mead) can be faster, but it is
+ * far less reliable than CMA-ES.</p>
+ *
+ * <p>The CMA-ES is particularly well suited for non-separable
+ * and/or badly conditioned problems. To observe the advantage of CMA compared
+ * to a conventional evolution strategy, it will usually take about
+ * <math>30 N</math> function evaluations. On difficult problems the complete
+ * optimization (a single run) is expected to take <em>roughly</em> between
+ * <math>30 N</math> and <math>300 N<sup>2</sup></math>
+ * function evaluations.</p>
+ *
+ * <p>This implementation is translated and adapted from the Matlab version
+ * of the CMA-ES algorithm as implemented in module {@code cmaes.m} version 3.51.</p>
+ *
+ * For more information, please refer to the following links:
+ * <ul>
+ * <li><a href="http://www.lri.fr/~hansen/cmaes.m">Matlab code</a></li>
+ * <li><a href="http://www.lri.fr/~hansen/cmaesintro.html">Introduction to CMA-ES</a></li>
+ * <li><a href="http://en.wikipedia.org/wiki/CMA-ES">Wikipedia</a></li>
+ * </ul>
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class CMAESOptimizer
+ extends BaseAbstractMultivariateSimpleBoundsOptimizer<MultivariateFunction>
+ implements MultivariateOptimizer {
+ /** Default value for {@link #checkFeasableCount}: {@value}. */
+ public static final int DEFAULT_CHECKFEASABLECOUNT = 0;
+ /** Default value for {@link #stopFitness}: {@value}. */
+ public static final double DEFAULT_STOPFITNESS = 0;
+ /** Default value for {@link #isActiveCMA}: {@value}. */
+ public static final boolean DEFAULT_ISACTIVECMA = true;
+ /** Default value for {@link #maxIterations}: {@value}. */
+ public static final int DEFAULT_MAXITERATIONS = 30000;
+ /** Default value for {@link #diagonalOnly}: {@value}. */
+ public static final int DEFAULT_DIAGONALONLY = 0;
+ /** Default value for {@link #random}. */
+ public static final RandomGenerator DEFAULT_RANDOMGENERATOR = new MersenneTwister();
+
+ // global search parameters
+ /**
+ * Population size, offspring number. The primary strategy parameter to play
+ * with, which can be increased from its default value. Increasing the
+ * population size improves global search properties in exchange to speed.
+ * Speed decreases, as a rule, at most linearly with increasing population
+ * size. It is advisable to begin with the default small population size.
+ */
+ private int lambda; // population size
+ /**
+ * Covariance update mechanism, default is active CMA. isActiveCMA = true
+ * turns on "active CMA" with a negative update of the covariance matrix and
+ * checks for positive definiteness. OPTS.CMA.active = 2 does not check for
+ * pos. def. and is numerically faster. Active CMA usually speeds up the
+ * adaptation.
+ */
+ private boolean isActiveCMA;
+ /**
+ * Determines how often a new random offspring is generated in case it is
+ * not feasible / beyond the defined limits, default is 0.
+ */
+ private int checkFeasableCount;
+ /**
+ * @see Sigma
+ */
+ private double[] inputSigma;
+ /** Number of objective variables/problem dimension */
+ private int dimension;
+ /**
+ * Defines the number of initial iterations, where the covariance matrix
+ * remains diagonal and the algorithm has internally linear time complexity.
+ * diagonalOnly = 1 means keeping the covariance matrix always diagonal and
+ * this setting also exhibits linear space complexity. This can be
+ * particularly useful for dimension > 100.
+ * @see <a href="http://hal.archives-ouvertes.fr/inria-00287367/en">A Simple Modification in CMA-ES</a>
+ */
+ private int diagonalOnly = 0;
+ /** Number of objective variables/problem dimension */
+ private boolean isMinimize = true;
+ /** Indicates whether statistic data is collected. */
+ private boolean generateStatistics = false;
+
+ // termination criteria
+ /** Maximal number of iterations allowed. */
+ private int maxIterations;
+ /** Limit for fitness value. */
+ private double stopFitness;
+ /** Stop if x-changes larger stopTolUpX. */
+ private double stopTolUpX;
+ /** Stop if x-change smaller stopTolX. */
+ private double stopTolX;
+ /** Stop if fun-changes smaller stopTolFun. */
+ private double stopTolFun;
+ /** Stop if back fun-changes smaller stopTolHistFun. */
+ private double stopTolHistFun;
+
+ // selection strategy parameters
+ /** Number of parents/points for recombination. */
+ private int mu; //
+ /** log(mu + 0.5), stored for efficiency. */
+ private double logMu2;
+ /** Array for weighted recombination. */
+ private RealMatrix weights;
+ /** Variance-effectiveness of sum w_i x_i. */
+ private double mueff; //
+
+ // dynamic strategy parameters and constants
+ /** Overall standard deviation - search volume. */
+ private double sigma;
+ /** Cumulation constant. */
+ private double cc;
+ /** Cumulation constant for step-size. */
+ private double cs;
+ /** Damping for step-size. */
+ private double damps;
+ /** Learning rate for rank-one update. */
+ private double ccov1;
+ /** Learning rate for rank-mu update' */
+ private double ccovmu;
+ /** Expectation of ||N(0,I)|| == norm(randn(N,1)). */
+ private double chiN;
+ /** Learning rate for rank-one update - diagonalOnly */
+ private double ccov1Sep;
+ /** Learning rate for rank-mu update - diagonalOnly */
+ private double ccovmuSep;
+
+ // CMA internal values - updated each generation
+ /** Objective variables. */
+ private RealMatrix xmean;
+ /** Evolution path. */
+ private RealMatrix pc;
+ /** Evolution path for sigma. */
+ private RealMatrix ps;
+ /** Norm of ps, stored for efficiency. */
+ private double normps;
+ /** Coordinate system. */
+ private RealMatrix B;
+ /** Scaling. */
+ private RealMatrix D;
+ /** B*D, stored for efficiency. */
+ private RealMatrix BD;
+ /** Diagonal of sqrt(D), stored for efficiency. */
+ private RealMatrix diagD;
+ /** Covariance matrix. */
+ private RealMatrix C;
+ /** Diagonal of C, used for diagonalOnly. */
+ private RealMatrix diagC;
+ /** Number of iterations already performed. */
+ private int iterations;
+
+ /** History queue of best values. */
+ private double[] fitnessHistory;
+ /** Size of history queue of best values. */
+ private int historySize;
+
+ /** Random generator. */
+ private RandomGenerator random;
+
+ /** History of sigma values. */
+ private List<Double> statisticsSigmaHistory = new ArrayList<Double>();
+ /** History of mean matrix. */
+ private List<RealMatrix> statisticsMeanHistory = new ArrayList<RealMatrix>();
+ /** History of fitness values. */
+ private List<Double> statisticsFitnessHistory = new ArrayList<Double>();
+ /** History of D matrix. */
+ private List<RealMatrix> statisticsDHistory = new ArrayList<RealMatrix>();
+
+ /**
+ * Default constructor, uses default parameters
+ *
+ * @deprecated As of version 3.1: Parameter {@code lambda} must be
+ * passed with the call to {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])
+ * optimize} (whereas in the current code it is set to an undocumented value).
+ */
+ @Deprecated
+ public CMAESOptimizer() {
+ this(0);
+ }
+
+ /**
+ * @param lambda Population size.
+ * @deprecated As of version 3.1: Parameter {@code lambda} must be
+ * passed with the call to {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])
+ * optimize} (whereas in the current code it is set to an undocumented value)..
+ */
+ @Deprecated
+ public CMAESOptimizer(int lambda) {
+ this(lambda, null, DEFAULT_MAXITERATIONS, DEFAULT_STOPFITNESS,
+ DEFAULT_ISACTIVECMA, DEFAULT_DIAGONALONLY,
+ DEFAULT_CHECKFEASABLECOUNT, DEFAULT_RANDOMGENERATOR,
+ false, null);
+ }
+
+ /**
+ * @param lambda Population size.
+ * @param inputSigma Initial standard deviations to sample new points
+ * around the initial guess.
+ * @deprecated As of version 3.1: Parameters {@code lambda} and {@code inputSigma} must be
+ * passed with the call to {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])
+ * optimize}.
+ */
+ @Deprecated
+ public CMAESOptimizer(int lambda, double[] inputSigma) {
+ this(lambda, inputSigma, DEFAULT_MAXITERATIONS, DEFAULT_STOPFITNESS,
+ DEFAULT_ISACTIVECMA, DEFAULT_DIAGONALONLY,
+ DEFAULT_CHECKFEASABLECOUNT, DEFAULT_RANDOMGENERATOR, false);
+ }
+
+ /**
+ * @param lambda Population size.
+ * @param inputSigma Initial standard deviations to sample new points
+ * around the initial guess.
+ * @param maxIterations Maximal number of iterations.
+ * @param stopFitness Whether to stop if objective function value is smaller than
+ * {@code stopFitness}.
+ * @param isActiveCMA Chooses the covariance matrix update method.
+ * @param diagonalOnly Number of initial iterations, where the covariance matrix
+ * remains diagonal.
+ * @param checkFeasableCount Determines how often new random objective variables are
+ * generated in case they are out of bounds.
+ * @param random Random generator.
+ * @param generateStatistics Whether statistic data is collected.
+ * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ public CMAESOptimizer(int lambda, double[] inputSigma,
+ int maxIterations, double stopFitness,
+ boolean isActiveCMA, int diagonalOnly, int checkFeasableCount,
+ RandomGenerator random, boolean generateStatistics) {
+ this(lambda, inputSigma, maxIterations, stopFitness, isActiveCMA,
+ diagonalOnly, checkFeasableCount, random, generateStatistics,
+ new SimpleValueChecker());
+ }
+
+ /**
+ * @param lambda Population size.
+ * @param inputSigma Initial standard deviations to sample new points
+ * around the initial guess.
+ * @param maxIterations Maximal number of iterations.
+ * @param stopFitness Whether to stop if objective function value is smaller than
+ * {@code stopFitness}.
+ * @param isActiveCMA Chooses the covariance matrix update method.
+ * @param diagonalOnly Number of initial iterations, where the covariance matrix
+ * remains diagonal.
+ * @param checkFeasableCount Determines how often new random objective variables are
+ * generated in case they are out of bounds.
+ * @param random Random generator.
+ * @param generateStatistics Whether statistic data is collected.
+ * @param checker Convergence checker.
+ * @deprecated As of version 3.1: Parameters {@code lambda} and {@code inputSigma} must be
+ * passed with the call to {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])
+ * optimize}.
+ */
+ @Deprecated
+ public CMAESOptimizer(int lambda, double[] inputSigma,
+ int maxIterations, double stopFitness,
+ boolean isActiveCMA, int diagonalOnly, int checkFeasableCount,
+ RandomGenerator random, boolean generateStatistics,
+ ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ this.lambda = lambda;
+ this.inputSigma = inputSigma == null ? null : (double[]) inputSigma.clone();
+ this.maxIterations = maxIterations;
+ this.stopFitness = stopFitness;
+ this.isActiveCMA = isActiveCMA;
+ this.diagonalOnly = diagonalOnly;
+ this.checkFeasableCount = checkFeasableCount;
+ this.random = random;
+ this.generateStatistics = generateStatistics;
+ }
+
+ /**
+ * @param maxIterations Maximal number of iterations.
+ * @param stopFitness Whether to stop if objective function value is smaller than
+ * {@code stopFitness}.
+ * @param isActiveCMA Chooses the covariance matrix update method.
+ * @param diagonalOnly Number of initial iterations, where the covariance matrix
+ * remains diagonal.
+ * @param checkFeasableCount Determines how often new random objective variables are
+ * generated in case they are out of bounds.
+ * @param random Random generator.
+ * @param generateStatistics Whether statistic data is collected.
+ * @param checker Convergence checker.
+ *
+ * @since 3.1
+ */
+ public CMAESOptimizer(int maxIterations,
+ double stopFitness,
+ boolean isActiveCMA,
+ int diagonalOnly,
+ int checkFeasableCount,
+ RandomGenerator random,
+ boolean generateStatistics,
+ ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ this.maxIterations = maxIterations;
+ this.stopFitness = stopFitness;
+ this.isActiveCMA = isActiveCMA;
+ this.diagonalOnly = diagonalOnly;
+ this.checkFeasableCount = checkFeasableCount;
+ this.random = random;
+ this.generateStatistics = generateStatistics;
+ }
+
+ /**
+ * @return History of sigma values.
+ */
+ public List<Double> getStatisticsSigmaHistory() {
+ return statisticsSigmaHistory;
+ }
+
+ /**
+ * @return History of mean matrix.
+ */
+ public List<RealMatrix> getStatisticsMeanHistory() {
+ return statisticsMeanHistory;
+ }
+
+ /**
+ * @return History of fitness values.
+ */
+ public List<Double> getStatisticsFitnessHistory() {
+ return statisticsFitnessHistory;
+ }
+
+ /**
+ * @return History of D matrix.
+ */
+ public List<RealMatrix> getStatisticsDHistory() {
+ return statisticsDHistory;
+ }
+
+ /**
+ * Input sigma values.
+ * They define the initial coordinate-wise standard deviations for
+ * sampling new search points around the initial guess.
+ * It is suggested to set them to the estimated distance from the
+ * initial to the desired optimum.
+ * Small values induce the search to be more local (and very small
+ * values are more likely to find a local optimum close to the initial
+ * guess).
+ * Too small values might however lead to early termination.
+ * @since 3.1
+ */
+ public static class Sigma implements OptimizationData {
+ /** Sigma values. */
+ private final double[] sigma;
+
+ /**
+ * @param s Sigma values.
+ * @throws NotPositiveException if any of the array entries is smaller
+ * than zero.
+ */
+ public Sigma(double[] s)
+ throws NotPositiveException {
+ for (int i = 0; i < s.length; i++) {
+ if (s[i] < 0) {
+ throw new NotPositiveException(s[i]);
+ }
+ }
+
+ sigma = s.clone();
+ }
+
+ /**
+ * @return the sigma values.
+ */
+ public double[] getSigma() {
+ return sigma.clone();
+ }
+ }
+
+ /**
+ * Population size.
+ * The number of offspring is the primary strategy parameter.
+ * In the absence of better clues, a good default could be an
+ * integer close to {@code 4 + 3 ln(n)}, where {@code n} is the
+ * number of optimized parameters.
+ * Increasing the population size improves global search properties
+ * at the expense of speed (which in general decreases at most
+ * linearly with increasing population size).
+ * @since 3.1
+ */
+ public static class PopulationSize implements OptimizationData {
+ /** Population size. */
+ private final int lambda;
+
+ /**
+ * @param size Population size.
+ * @throws NotStrictlyPositiveException if {@code size <= 0}.
+ */
+ public PopulationSize(int size)
+ throws NotStrictlyPositiveException {
+ if (size <= 0) {
+ throw new NotStrictlyPositiveException(size);
+ }
+ lambda = size;
+ }
+
+ /**
+ * @return the population size.
+ */
+ public int getPopulationSize() {
+ return lambda;
+ }
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param goalType Optimization type.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.InitialGuess InitialGuess}</li>
+ * <li>{@link Sigma}</li>
+ * <li>{@link PopulationSize}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value for objective
+ * function.
+ */
+ @Override
+ protected PointValuePair optimizeInternal(int maxEval, MultivariateFunction f,
+ GoalType goalType,
+ OptimizationData... optData) {
+ // Scan "optData" for the input specific to this optimizer.
+ parseOptimizationData(optData);
+
+ // The parent's method will retrieve the common parameters from
+ // "optData" and call "doOptimize".
+ return super.optimizeInternal(maxEval, f, goalType, optData);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ checkParameters();
+ // -------------------- Initialization --------------------------------
+ isMinimize = getGoalType().equals(GoalType.MINIMIZE);
+ final FitnessFunction fitfun = new FitnessFunction();
+ final double[] guess = getStartPoint();
+ // number of objective variables/problem dimension
+ dimension = guess.length;
+ initializeCMA(guess);
+ iterations = 0;
+ double bestValue = fitfun.value(guess);
+ push(fitnessHistory, bestValue);
+ PointValuePair optimum = new PointValuePair(getStartPoint(),
+ isMinimize ? bestValue : -bestValue);
+ PointValuePair lastResult = null;
+
+ // -------------------- Generation Loop --------------------------------
+
+ generationLoop:
+ for (iterations = 1; iterations <= maxIterations; iterations++) {
+ // Generate and evaluate lambda offspring
+ final RealMatrix arz = randn1(dimension, lambda);
+ final RealMatrix arx = zeros(dimension, lambda);
+ final double[] fitness = new double[lambda];
+ // generate random offspring
+ for (int k = 0; k < lambda; k++) {
+ RealMatrix arxk = null;
+ for (int i = 0; i < checkFeasableCount + 1; i++) {
+ if (diagonalOnly <= 0) {
+ arxk = xmean.add(BD.multiply(arz.getColumnMatrix(k))
+ .scalarMultiply(sigma)); // m + sig * Normal(0,C)
+ } else {
+ arxk = xmean.add(times(diagD,arz.getColumnMatrix(k))
+ .scalarMultiply(sigma));
+ }
+ if (i >= checkFeasableCount ||
+ fitfun.isFeasible(arxk.getColumn(0))) {
+ break;
+ }
+ // regenerate random arguments for row
+ arz.setColumn(k, randn(dimension));
+ }
+ copyColumn(arxk, 0, arx, k);
+ try {
+ fitness[k] = fitfun.value(arx.getColumn(k)); // compute fitness
+ } catch (TooManyEvaluationsException e) {
+ break generationLoop;
+ }
+ }
+ // Sort by fitness and compute weighted mean into xmean
+ final int[] arindex = sortedIndices(fitness);
+ // Calculate new xmean, this is selection and recombination
+ final RealMatrix xold = xmean; // for speed up of Eq. (2) and (3)
+ final RealMatrix bestArx = selectColumns(arx, MathArrays.copyOf(arindex, mu));
+ xmean = bestArx.multiply(weights);
+ final RealMatrix bestArz = selectColumns(arz, MathArrays.copyOf(arindex, mu));
+ final RealMatrix zmean = bestArz.multiply(weights);
+ final boolean hsig = updateEvolutionPaths(zmean, xold);
+ if (diagonalOnly <= 0) {
+ updateCovariance(hsig, bestArx, arz, arindex, xold);
+ } else {
+ updateCovarianceDiagonalOnly(hsig, bestArz);
+ }
+ // Adapt step size sigma - Eq. (5)
+ sigma *= FastMath.exp(FastMath.min(1, (normps/chiN - 1) * cs / damps));
+ final double bestFitness = fitness[arindex[0]];
+ final double worstFitness = fitness[arindex[arindex.length - 1]];
+ if (bestValue > bestFitness) {
+ bestValue = bestFitness;
+ lastResult = optimum;
+ optimum = new PointValuePair(fitfun.repair(bestArx.getColumn(0)),
+ isMinimize ? bestFitness : -bestFitness);
+ if (getConvergenceChecker() != null && lastResult != null &&
+ getConvergenceChecker().converged(iterations, optimum, lastResult)) {
+ break generationLoop;
+ }
+ }
+ // handle termination criteria
+ // Break, if fitness is good enough
+ if (stopFitness != 0 && bestFitness < (isMinimize ? stopFitness : -stopFitness)) {
+ break generationLoop;
+ }
+ final double[] sqrtDiagC = sqrt(diagC).getColumn(0);
+ final double[] pcCol = pc.getColumn(0);
+ for (int i = 0; i < dimension; i++) {
+ if (sigma * FastMath.max(FastMath.abs(pcCol[i]), sqrtDiagC[i]) > stopTolX) {
+ break;
+ }
+ if (i >= dimension - 1) {
+ break generationLoop;
+ }
+ }
+ for (int i = 0; i < dimension; i++) {
+ if (sigma * sqrtDiagC[i] > stopTolUpX) {
+ break generationLoop;
+ }
+ }
+ final double historyBest = min(fitnessHistory);
+ final double historyWorst = max(fitnessHistory);
+ if (iterations > 2 &&
+ FastMath.max(historyWorst, worstFitness) -
+ FastMath.min(historyBest, bestFitness) < stopTolFun) {
+ break generationLoop;
+ }
+ if (iterations > fitnessHistory.length &&
+ historyWorst-historyBest < stopTolHistFun) {
+ break generationLoop;
+ }
+ // condition number of the covariance matrix exceeds 1e14
+ if (max(diagD)/min(diagD) > 1e7) {
+ break generationLoop;
+ }
+ // user defined termination
+ if (getConvergenceChecker() != null) {
+ final PointValuePair current
+ = new PointValuePair(bestArx.getColumn(0),
+ isMinimize ? bestFitness : -bestFitness);
+ if (lastResult != null &&
+ getConvergenceChecker().converged(iterations, current, lastResult)) {
+ break generationLoop;
+ }
+ lastResult = current;
+ }
+ // Adjust step size in case of equal function values (flat fitness)
+ if (bestValue == fitness[arindex[(int)(0.1+lambda/4.)]]) {
+ sigma *= FastMath.exp(0.2 + cs / damps);
+ }
+ if (iterations > 2 && FastMath.max(historyWorst, bestFitness) -
+ FastMath.min(historyBest, bestFitness) == 0) {
+ sigma *= FastMath.exp(0.2 + cs / damps);
+ }
+ // store best in history
+ push(fitnessHistory,bestFitness);
+ fitfun.setValueRange(worstFitness-bestFitness);
+ if (generateStatistics) {
+ statisticsSigmaHistory.add(sigma);
+ statisticsFitnessHistory.add(bestFitness);
+ statisticsMeanHistory.add(xmean.transpose());
+ statisticsDHistory.add(diagD.transpose().scalarMultiply(1E5));
+ }
+ }
+ return optimum;
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link Sigma}</li>
+ * <li>{@link PopulationSize}</li>
+ * </ul>
+ */
+ private void parseOptimizationData(OptimizationData... optData) {
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof Sigma) {
+ inputSigma = ((Sigma) data).getSigma();
+ continue;
+ }
+ if (data instanceof PopulationSize) {
+ lambda = ((PopulationSize) data).getPopulationSize();
+ continue;
+ }
+ }
+ }
+
+ /**
+ * Checks dimensions and values of boundaries and inputSigma if defined.
+ */
+ private void checkParameters() {
+ final double[] init = getStartPoint();
+ final double[] lB = getLowerBound();
+ final double[] uB = getUpperBound();
+
+ if (inputSigma != null) {
+ if (inputSigma.length != init.length) {
+ throw new DimensionMismatchException(inputSigma.length, init.length);
+ }
+ for (int i = 0; i < init.length; i++) {
+ if (inputSigma[i] < 0) {
+ // XXX Remove this block in 4.0 (check performed in "Sigma" class).
+ throw new NotPositiveException(inputSigma[i]);
+ }
+ if (inputSigma[i] > uB[i] - lB[i]) {
+ throw new OutOfRangeException(inputSigma[i], 0, uB[i] - lB[i]);
+ }
+ }
+ }
+ }
+
+ /**
+ * Initialization of the dynamic search parameters
+ *
+ * @param guess Initial guess for the arguments of the fitness function.
+ */
+ private void initializeCMA(double[] guess) {
+ if (lambda <= 0) {
+ // XXX Line below to replace the current one in 4.0 (MATH-879).
+ // throw new NotStrictlyPositiveException(lambda);
+ lambda = 4 + (int) (3 * FastMath.log(dimension));
+ }
+ // initialize sigma
+ final double[][] sigmaArray = new double[guess.length][1];
+ for (int i = 0; i < guess.length; i++) {
+ // XXX Line below to replace the current one in 4.0 (MATH-868).
+ // sigmaArray[i][0] = inputSigma[i];
+ sigmaArray[i][0] = inputSigma == null ? 0.3 : inputSigma[i];
+ }
+ final RealMatrix insigma = new Array2DRowRealMatrix(sigmaArray, false);
+ sigma = max(insigma); // overall standard deviation
+
+ // initialize termination criteria
+ stopTolUpX = 1e3 * max(insigma);
+ stopTolX = 1e-11 * max(insigma);
+ stopTolFun = 1e-12;
+ stopTolHistFun = 1e-13;
+
+ // initialize selection strategy parameters
+ mu = lambda / 2; // number of parents/points for recombination
+ logMu2 = FastMath.log(mu + 0.5);
+ weights = log(sequence(1, mu, 1)).scalarMultiply(-1).scalarAdd(logMu2);
+ double sumw = 0;
+ double sumwq = 0;
+ for (int i = 0; i < mu; i++) {
+ double w = weights.getEntry(i, 0);
+ sumw += w;
+ sumwq += w * w;
+ }
+ weights = weights.scalarMultiply(1 / sumw);
+ mueff = sumw * sumw / sumwq; // variance-effectiveness of sum w_i x_i
+
+ // initialize dynamic strategy parameters and constants
+ cc = (4 + mueff / dimension) /
+ (dimension + 4 + 2 * mueff / dimension);
+ cs = (mueff + 2) / (dimension + mueff + 3.);
+ damps = (1 + 2 * FastMath.max(0, FastMath.sqrt((mueff - 1) /
+ (dimension + 1)) - 1)) *
+ FastMath.max(0.3,
+ 1 - dimension / (1e-6 + maxIterations)) + cs; // minor increment
+ ccov1 = 2 / ((dimension + 1.3) * (dimension + 1.3) + mueff);
+ ccovmu = FastMath.min(1 - ccov1, 2 * (mueff - 2 + 1 / mueff) /
+ ((dimension + 2) * (dimension + 2) + mueff));
+ ccov1Sep = FastMath.min(1, ccov1 * (dimension + 1.5) / 3);
+ ccovmuSep = FastMath.min(1 - ccov1, ccovmu * (dimension + 1.5) / 3);
+ chiN = FastMath.sqrt(dimension) *
+ (1 - 1 / ((double) 4 * dimension) + 1 / ((double) 21 * dimension * dimension));
+ // intialize CMA internal values - updated each generation
+ xmean = MatrixUtils.createColumnRealMatrix(guess); // objective variables
+ diagD = insigma.scalarMultiply(1 / sigma);
+ diagC = square(diagD);
+ pc = zeros(dimension, 1); // evolution paths for C and sigma
+ ps = zeros(dimension, 1); // B defines the coordinate system
+ normps = ps.getFrobeniusNorm();
+
+ B = eye(dimension, dimension);
+ D = ones(dimension, 1); // diagonal D defines the scaling
+ BD = times(B, repmat(diagD.transpose(), dimension, 1));
+ C = B.multiply(diag(square(D)).multiply(B.transpose())); // covariance
+ historySize = 10 + (int) (3 * 10 * dimension / (double) lambda);
+ fitnessHistory = new double[historySize]; // history of fitness values
+ for (int i = 0; i < historySize; i++) {
+ fitnessHistory[i] = Double.MAX_VALUE;
+ }
+ }
+
+ /**
+ * Update of the evolution paths ps and pc.
+ *
+ * @param zmean Weighted row matrix of the gaussian random numbers generating
+ * the current offspring.
+ * @param xold xmean matrix of the previous generation.
+ * @return hsig flag indicating a small correction.
+ */
+ private boolean updateEvolutionPaths(RealMatrix zmean, RealMatrix xold) {
+ ps = ps.scalarMultiply(1 - cs).add(
+ B.multiply(zmean).scalarMultiply(FastMath.sqrt(cs * (2 - cs) * mueff)));
+ normps = ps.getFrobeniusNorm();
+ final boolean hsig = normps /
+ FastMath.sqrt(1 - FastMath.pow(1 - cs, 2 * iterations)) /
+ chiN < 1.4 + 2 / ((double) dimension + 1);
+ pc = pc.scalarMultiply(1 - cc);
+ if (hsig) {
+ pc = pc.add(xmean.subtract(xold).scalarMultiply(FastMath.sqrt(cc * (2 - cc) * mueff) / sigma));
+ }
+ return hsig;
+ }
+
+ /**
+ * Update of the covariance matrix C for diagonalOnly > 0
+ *
+ * @param hsig Flag indicating a small correction.
+ * @param bestArz Fitness-sorted matrix of the gaussian random values of the
+ * current offspring.
+ */
+ private void updateCovarianceDiagonalOnly(boolean hsig,
+ final RealMatrix bestArz) {
+ // minor correction if hsig==false
+ double oldFac = hsig ? 0 : ccov1Sep * cc * (2 - cc);
+ oldFac += 1 - ccov1Sep - ccovmuSep;
+ diagC = diagC.scalarMultiply(oldFac) // regard old matrix
+ .add(square(pc).scalarMultiply(ccov1Sep)) // plus rank one update
+ .add((times(diagC, square(bestArz).multiply(weights))) // plus rank mu update
+ .scalarMultiply(ccovmuSep));
+ diagD = sqrt(diagC); // replaces eig(C)
+ if (diagonalOnly > 1 &&
+ iterations > diagonalOnly) {
+ // full covariance matrix from now on
+ diagonalOnly = 0;
+ B = eye(dimension, dimension);
+ BD = diag(diagD);
+ C = diag(diagC);
+ }
+ }
+
+ /**
+ * Update of the covariance matrix C.
+ *
+ * @param hsig Flag indicating a small correction.
+ * @param bestArx Fitness-sorted matrix of the argument vectors producing the
+ * current offspring.
+ * @param arz Unsorted matrix containing the gaussian random values of the
+ * current offspring.
+ * @param arindex Indices indicating the fitness-order of the current offspring.
+ * @param xold xmean matrix of the previous generation.
+ */
+ private void updateCovariance(boolean hsig, final RealMatrix bestArx,
+ final RealMatrix arz, final int[] arindex,
+ final RealMatrix xold) {
+ double negccov = 0;
+ if (ccov1 + ccovmu > 0) {
+ final RealMatrix arpos = bestArx.subtract(repmat(xold, 1, mu))
+ .scalarMultiply(1 / sigma); // mu difference vectors
+ final RealMatrix roneu = pc.multiply(pc.transpose())
+ .scalarMultiply(ccov1); // rank one update
+ // minor correction if hsig==false
+ double oldFac = hsig ? 0 : ccov1 * cc * (2 - cc);
+ oldFac += 1 - ccov1 - ccovmu;
+ if (isActiveCMA) {
+ // Adapt covariance matrix C active CMA
+ negccov = (1 - ccovmu) * 0.25 * mueff / (FastMath.pow(dimension + 2, 1.5) + 2 * mueff);
+ // keep at least 0.66 in all directions, small popsize are most
+ // critical
+ final double negminresidualvariance = 0.66;
+ // where to make up for the variance loss
+ final double negalphaold = 0.5;
+ // prepare vectors, compute negative updating matrix Cneg
+ final int[] arReverseIndex = reverse(arindex);
+ RealMatrix arzneg = selectColumns(arz, MathArrays.copyOf(arReverseIndex, mu));
+ RealMatrix arnorms = sqrt(sumRows(square(arzneg)));
+ final int[] idxnorms = sortedIndices(arnorms.getRow(0));
+ final RealMatrix arnormsSorted = selectColumns(arnorms, idxnorms);
+ final int[] idxReverse = reverse(idxnorms);
+ final RealMatrix arnormsReverse = selectColumns(arnorms, idxReverse);
+ arnorms = divide(arnormsReverse, arnormsSorted);
+ final int[] idxInv = inverse(idxnorms);
+ final RealMatrix arnormsInv = selectColumns(arnorms, idxInv);
+ // check and set learning rate negccov
+ final double negcovMax = (1 - negminresidualvariance) /
+ square(arnormsInv).multiply(weights).getEntry(0, 0);
+ if (negccov > negcovMax) {
+ negccov = negcovMax;
+ }
+ arzneg = times(arzneg, repmat(arnormsInv, dimension, 1));
+ final RealMatrix artmp = BD.multiply(arzneg);
+ final RealMatrix Cneg = artmp.multiply(diag(weights)).multiply(artmp.transpose());
+ oldFac += negalphaold * negccov;
+ C = C.scalarMultiply(oldFac)
+ .add(roneu) // regard old matrix
+ .add(arpos.scalarMultiply( // plus rank one update
+ ccovmu + (1 - negalphaold) * negccov) // plus rank mu update
+ .multiply(times(repmat(weights, 1, dimension),
+ arpos.transpose())))
+ .subtract(Cneg.scalarMultiply(negccov));
+ } else {
+ // Adapt covariance matrix C - nonactive
+ C = C.scalarMultiply(oldFac) // regard old matrix
+ .add(roneu) // plus rank one update
+ .add(arpos.scalarMultiply(ccovmu) // plus rank mu update
+ .multiply(times(repmat(weights, 1, dimension),
+ arpos.transpose())));
+ }
+ }
+ updateBD(negccov);
+ }
+
+ /**
+ * Update B and D from C.
+ *
+ * @param negccov Negative covariance factor.
+ */
+ private void updateBD(double negccov) {
+ if (ccov1 + ccovmu + negccov > 0 &&
+ (iterations % 1. / (ccov1 + ccovmu + negccov) / dimension / 10.) < 1) {
+ // to achieve O(N^2)
+ C = triu(C, 0).add(triu(C, 1).transpose());
+ // enforce symmetry to prevent complex numbers
+ final EigenDecomposition eig = new EigenDecomposition(C);
+ B = eig.getV(); // eigen decomposition, B==normalized eigenvectors
+ D = eig.getD();
+ diagD = diag(D);
+ if (min(diagD) <= 0) {
+ for (int i = 0; i < dimension; i++) {
+ if (diagD.getEntry(i, 0) < 0) {
+ diagD.setEntry(i, 0, 0);
+ }
+ }
+ final double tfac = max(diagD) / 1e14;
+ C = C.add(eye(dimension, dimension).scalarMultiply(tfac));
+ diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac));
+ }
+ if (max(diagD) > 1e14 * min(diagD)) {
+ final double tfac = max(diagD) / 1e14 - min(diagD);
+ C = C.add(eye(dimension, dimension).scalarMultiply(tfac));
+ diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac));
+ }
+ diagC = diag(C);
+ diagD = sqrt(diagD); // D contains standard deviations now
+ BD = times(B, repmat(diagD.transpose(), dimension, 1)); // O(n^2)
+ }
+ }
+
+ /**
+ * Pushes the current best fitness value in a history queue.
+ *
+ * @param vals History queue.
+ * @param val Current best fitness value.
+ */
+ private static void push(double[] vals, double val) {
+ for (int i = vals.length-1; i > 0; i--) {
+ vals[i] = vals[i-1];
+ }
+ vals[0] = val;
+ }
+
+ /**
+ * Sorts fitness values.
+ *
+ * @param doubles Array of values to be sorted.
+ * @return a sorted array of indices pointing into doubles.
+ */
+ private int[] sortedIndices(final double[] doubles) {
+ final DoubleIndex[] dis = new DoubleIndex[doubles.length];
+ for (int i = 0; i < doubles.length; i++) {
+ dis[i] = new DoubleIndex(doubles[i], i);
+ }
+ Arrays.sort(dis);
+ final int[] indices = new int[doubles.length];
+ for (int i = 0; i < doubles.length; i++) {
+ indices[i] = dis[i].index;
+ }
+ return indices;
+ }
+
+ /**
+ * Used to sort fitness values. Sorting is always in lower value first
+ * order.
+ */
+ private static class DoubleIndex implements Comparable<DoubleIndex> {
+ /** Value to compare. */
+ private final double value;
+ /** Index into sorted array. */
+ private final int index;
+
+ /**
+ * @param value Value to compare.
+ * @param index Index into sorted array.
+ */
+ DoubleIndex(double value, int index) {
+ this.value = value;
+ this.index = index;
+ }
+
+ /** {@inheritDoc} */
+ public int compareTo(DoubleIndex o) {
+ return Double.compare(value, o.value);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof DoubleIndex) {
+ return Double.compare(value, ((DoubleIndex) other).value) == 0;
+ }
+
+ return false;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public int hashCode() {
+ long bits = Double.doubleToLongBits(value);
+ return (int) ((1438542 ^ (bits >>> 32) ^ bits) & 0xffffffff);
+ }
+ }
+
+ /**
+ * Normalizes fitness values to the range [0,1]. Adds a penalty to the
+ * fitness value if out of range. The penalty is adjusted by calling
+ * setValueRange().
+ */
+ private class FitnessFunction {
+ /** Determines the penalty for boundary violations */
+ private double valueRange;
+ /**
+ * Flag indicating whether the objective variables are forced into their
+ * bounds if defined
+ */
+ private final boolean isRepairMode;
+
+ /** Simple constructor.
+ */
+ FitnessFunction() {
+ valueRange = 1;
+ isRepairMode = true;
+ }
+
+ /**
+ * @param point Normalized objective variables.
+ * @return the objective value + penalty for violated bounds.
+ */
+ public double value(final double[] point) {
+ double value;
+ if (isRepairMode) {
+ double[] repaired = repair(point);
+ value = CMAESOptimizer.this.computeObjectiveValue(repaired) +
+ penalty(point, repaired);
+ } else {
+ value = CMAESOptimizer.this.computeObjectiveValue(point);
+ }
+ return isMinimize ? value : -value;
+ }
+
+ /**
+ * @param x Normalized objective variables.
+ * @return {@code true} if in bounds.
+ */
+ public boolean isFeasible(final double[] x) {
+ final double[] lB = CMAESOptimizer.this.getLowerBound();
+ final double[] uB = CMAESOptimizer.this.getUpperBound();
+
+ for (int i = 0; i < x.length; i++) {
+ if (x[i] < lB[i]) {
+ return false;
+ }
+ if (x[i] > uB[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * @param valueRange Adjusts the penalty computation.
+ */
+ public void setValueRange(double valueRange) {
+ this.valueRange = valueRange;
+ }
+
+ /**
+ * @param x Normalized objective variables.
+ * @return the repaired (i.e. all in bounds) objective variables.
+ */
+ private double[] repair(final double[] x) {
+ final double[] lB = CMAESOptimizer.this.getLowerBound();
+ final double[] uB = CMAESOptimizer.this.getUpperBound();
+
+ final double[] repaired = new double[x.length];
+ for (int i = 0; i < x.length; i++) {
+ if (x[i] < lB[i]) {
+ repaired[i] = lB[i];
+ } else if (x[i] > uB[i]) {
+ repaired[i] = uB[i];
+ } else {
+ repaired[i] = x[i];
+ }
+ }
+ return repaired;
+ }
+
+ /**
+ * @param x Normalized objective variables.
+ * @param repaired Repaired objective variables.
+ * @return Penalty value according to the violation of the bounds.
+ */
+ private double penalty(final double[] x, final double[] repaired) {
+ double penalty = 0;
+ for (int i = 0; i < x.length; i++) {
+ double diff = FastMath.abs(x[i] - repaired[i]);
+ penalty += diff * valueRange;
+ }
+ return isMinimize ? penalty : -penalty;
+ }
+ }
+
+ // -----Matrix utility functions similar to the Matlab build in functions------
+
+ /**
+ * @param m Input matrix
+ * @return Matrix representing the element-wise logarithm of m.
+ */
+ private static RealMatrix log(final RealMatrix m) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = FastMath.log(m.getEntry(r, c));
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return Matrix representing the element-wise square root of m.
+ */
+ private static RealMatrix sqrt(final RealMatrix m) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = FastMath.sqrt(m.getEntry(r, c));
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return Matrix representing the element-wise square of m.
+ */
+ private static RealMatrix square(final RealMatrix m) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double e = m.getEntry(r, c);
+ d[r][c] = e * e;
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix 1.
+ * @param n Input matrix 2.
+ * @return the matrix where the elements of m and n are element-wise multiplied.
+ */
+ private static RealMatrix times(final RealMatrix m, final RealMatrix n) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = m.getEntry(r, c) * n.getEntry(r, c);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix 1.
+ * @param n Input matrix 2.
+ * @return Matrix where the elements of m and n are element-wise divided.
+ */
+ private static RealMatrix divide(final RealMatrix m, final RealMatrix n) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = m.getEntry(r, c) / n.getEntry(r, c);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @param cols Columns to select.
+ * @return Matrix representing the selected columns.
+ */
+ private static RealMatrix selectColumns(final RealMatrix m, final int[] cols) {
+ final double[][] d = new double[m.getRowDimension()][cols.length];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < cols.length; c++) {
+ d[r][c] = m.getEntry(r, cols[c]);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @param k Diagonal position.
+ * @return Upper triangular part of matrix.
+ */
+ private static RealMatrix triu(final RealMatrix m, int k) {
+ final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ d[r][c] = r <= c - k ? m.getEntry(r, c) : 0;
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return Row matrix representing the sums of the rows.
+ */
+ private static RealMatrix sumRows(final RealMatrix m) {
+ final double[][] d = new double[1][m.getColumnDimension()];
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double sum = 0;
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ sum += m.getEntry(r, c);
+ }
+ d[0][c] = sum;
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return the diagonal n-by-n matrix if m is a column matrix or the column
+ * matrix representing the diagonal if m is a n-by-n matrix.
+ */
+ private static RealMatrix diag(final RealMatrix m) {
+ if (m.getColumnDimension() == 1) {
+ final double[][] d = new double[m.getRowDimension()][m.getRowDimension()];
+ for (int i = 0; i < m.getRowDimension(); i++) {
+ d[i][i] = m.getEntry(i, 0);
+ }
+ return new Array2DRowRealMatrix(d, false);
+ } else {
+ final double[][] d = new double[m.getRowDimension()][1];
+ for (int i = 0; i < m.getColumnDimension(); i++) {
+ d[i][0] = m.getEntry(i, i);
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+ }
+
+ /**
+ * Copies a column from m1 to m2.
+ *
+ * @param m1 Source matrix.
+ * @param col1 Source column.
+ * @param m2 Target matrix.
+ * @param col2 Target column.
+ */
+ private static void copyColumn(final RealMatrix m1, int col1,
+ RealMatrix m2, int col2) {
+ for (int i = 0; i < m1.getRowDimension(); i++) {
+ m2.setEntry(i, col2, m1.getEntry(i, col1));
+ }
+ }
+
+ /**
+ * @param n Number of rows.
+ * @param m Number of columns.
+ * @return n-by-m matrix filled with 1.
+ */
+ private static RealMatrix ones(int n, int m) {
+ final double[][] d = new double[n][m];
+ for (int r = 0; r < n; r++) {
+ Arrays.fill(d[r], 1);
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param n Number of rows.
+ * @param m Number of columns.
+ * @return n-by-m matrix of 0 values out of diagonal, and 1 values on
+ * the diagonal.
+ */
+ private static RealMatrix eye(int n, int m) {
+ final double[][] d = new double[n][m];
+ for (int r = 0; r < n; r++) {
+ if (r < m) {
+ d[r][r] = 1;
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param n Number of rows.
+ * @param m Number of columns.
+ * @return n-by-m matrix of zero values.
+ */
+ private static RealMatrix zeros(int n, int m) {
+ return new Array2DRowRealMatrix(n, m);
+ }
+
+ /**
+ * @param mat Input matrix.
+ * @param n Number of row replicates.
+ * @param m Number of column replicates.
+ * @return a matrix which replicates the input matrix in both directions.
+ */
+ private static RealMatrix repmat(final RealMatrix mat, int n, int m) {
+ final int rd = mat.getRowDimension();
+ final int cd = mat.getColumnDimension();
+ final double[][] d = new double[n * rd][m * cd];
+ for (int r = 0; r < n * rd; r++) {
+ for (int c = 0; c < m * cd; c++) {
+ d[r][c] = mat.getEntry(r % rd, c % cd);
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param start Start value.
+ * @param end End value.
+ * @param step Step size.
+ * @return a sequence as column matrix.
+ */
+ private static RealMatrix sequence(double start, double end, double step) {
+ final int size = (int) ((end - start) / step + 1);
+ final double[][] d = new double[size][1];
+ double value = start;
+ for (int r = 0; r < size; r++) {
+ d[r][0] = value;
+ value += step;
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return the maximum of the matrix element values.
+ */
+ private static double max(final RealMatrix m) {
+ double max = -Double.MAX_VALUE;
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double e = m.getEntry(r, c);
+ if (max < e) {
+ max = e;
+ }
+ }
+ }
+ return max;
+ }
+
+ /**
+ * @param m Input matrix.
+ * @return the minimum of the matrix element values.
+ */
+ private static double min(final RealMatrix m) {
+ double min = Double.MAX_VALUE;
+ for (int r = 0; r < m.getRowDimension(); r++) {
+ for (int c = 0; c < m.getColumnDimension(); c++) {
+ double e = m.getEntry(r, c);
+ if (min > e) {
+ min = e;
+ }
+ }
+ }
+ return min;
+ }
+
+ /**
+ * @param m Input array.
+ * @return the maximum of the array values.
+ */
+ private static double max(final double[] m) {
+ double max = -Double.MAX_VALUE;
+ for (int r = 0; r < m.length; r++) {
+ if (max < m[r]) {
+ max = m[r];
+ }
+ }
+ return max;
+ }
+
+ /**
+ * @param m Input array.
+ * @return the minimum of the array values.
+ */
+ private static double min(final double[] m) {
+ double min = Double.MAX_VALUE;
+ for (int r = 0; r < m.length; r++) {
+ if (min > m[r]) {
+ min = m[r];
+ }
+ }
+ return min;
+ }
+
+ /**
+ * @param indices Input index array.
+ * @return the inverse of the mapping defined by indices.
+ */
+ private static int[] inverse(final int[] indices) {
+ final int[] inverse = new int[indices.length];
+ for (int i = 0; i < indices.length; i++) {
+ inverse[indices[i]] = i;
+ }
+ return inverse;
+ }
+
+ /**
+ * @param indices Input index array.
+ * @return the indices in inverse order (last is first).
+ */
+ private static int[] reverse(final int[] indices) {
+ final int[] reverse = new int[indices.length];
+ for (int i = 0; i < indices.length; i++) {
+ reverse[i] = indices[indices.length - i - 1];
+ }
+ return reverse;
+ }
+
+ /**
+ * @param size Length of random array.
+ * @return an array of Gaussian random numbers.
+ */
+ private double[] randn(int size) {
+ final double[] randn = new double[size];
+ for (int i = 0; i < size; i++) {
+ randn[i] = random.nextGaussian();
+ }
+ return randn;
+ }
+
+ /**
+ * @param size Number of rows.
+ * @param popSize Population size.
+ * @return a 2-dimensional matrix of Gaussian random numbers.
+ */
+ private RealMatrix randn1(int size, int popSize) {
+ final double[][] d = new double[size][popSize];
+ for (int r = 0; r < size; r++) {
+ for (int c = 0; c < popSize; c++) {
+ d[r][c] = random.nextGaussian();
+ }
+ }
+ return new Array2DRowRealMatrix(d, false);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/MultiDirectionalSimplex.java b/src/main/java/org/apache/commons/math3/optimization/direct/MultiDirectionalSimplex.java
new file mode 100644
index 0000000..c06bf96
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/MultiDirectionalSimplex.java
@@ -0,0 +1,218 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.optimization.PointValuePair;
+
+/**
+ * This class implements the multi-directional direct search method.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class MultiDirectionalSimplex extends AbstractSimplex {
+ /** Default value for {@link #khi}: {@value}. */
+ private static final double DEFAULT_KHI = 2;
+ /** Default value for {@link #gamma}: {@value}. */
+ private static final double DEFAULT_GAMMA = 0.5;
+ /** Expansion coefficient. */
+ private final double khi;
+ /** Contraction coefficient. */
+ private final double gamma;
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param n Dimension of the simplex.
+ */
+ public MultiDirectionalSimplex(final int n) {
+ this(n, 1d);
+ }
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param n Dimension of the simplex.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ */
+ public MultiDirectionalSimplex(final int n, double sideLength) {
+ this(n, sideLength, DEFAULT_KHI, DEFAULT_GAMMA);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ */
+ public MultiDirectionalSimplex(final int n,
+ final double khi, final double gamma) {
+ this(n, 1d, khi, gamma);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ */
+ public MultiDirectionalSimplex(final int n, double sideLength,
+ final double khi, final double gamma) {
+ super(n, sideLength);
+
+ this.khi = khi;
+ this.gamma = gamma;
+ }
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ */
+ public MultiDirectionalSimplex(final double[] steps) {
+ this(steps, DEFAULT_KHI, DEFAULT_GAMMA);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ * {@link AbstractSimplex#AbstractSimplex(double[])}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ */
+ public MultiDirectionalSimplex(final double[] steps,
+ final double khi, final double gamma) {
+ super(steps);
+
+ this.khi = khi;
+ this.gamma = gamma;
+ }
+
+ /**
+ * Build a multi-directional simplex with default coefficients.
+ * The default values are 2.0 for khi and 0.5 for gamma.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ */
+ public MultiDirectionalSimplex(final double[][] referenceSimplex) {
+ this(referenceSimplex, DEFAULT_KHI, DEFAULT_GAMMA);
+ }
+
+ /**
+ * Build a multi-directional simplex with specified coefficients.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
+ * if the reference simplex does not contain at least one point.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if there is a dimension mismatch in the reference simplex.
+ */
+ public MultiDirectionalSimplex(final double[][] referenceSimplex,
+ final double khi, final double gamma) {
+ super(referenceSimplex);
+
+ this.khi = khi;
+ this.gamma = gamma;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void iterate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator) {
+ // Save the original simplex.
+ final PointValuePair[] original = getPoints();
+ final PointValuePair best = original[0];
+
+ // Perform a reflection step.
+ final PointValuePair reflected = evaluateNewSimplex(evaluationFunction,
+ original, 1, comparator);
+ if (comparator.compare(reflected, best) < 0) {
+ // Compute the expanded simplex.
+ final PointValuePair[] reflectedSimplex = getPoints();
+ final PointValuePair expanded = evaluateNewSimplex(evaluationFunction,
+ original, khi, comparator);
+ if (comparator.compare(reflected, expanded) <= 0) {
+ // Keep the reflected simplex.
+ setPoints(reflectedSimplex);
+ }
+ // Keep the expanded simplex.
+ return;
+ }
+
+ // Compute the contracted simplex.
+ evaluateNewSimplex(evaluationFunction, original, gamma, comparator);
+
+ }
+
+ /**
+ * Compute and evaluate a new simplex.
+ *
+ * @param evaluationFunction Evaluation function.
+ * @param original Original simplex (to be preserved).
+ * @param coeff Linear coefficient.
+ * @param comparator Comparator to use to sort simplex vertices from best
+ * to poorest.
+ * @return the best point in the transformed simplex.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ */
+ private PointValuePair evaluateNewSimplex(final MultivariateFunction evaluationFunction,
+ final PointValuePair[] original,
+ final double coeff,
+ final Comparator<PointValuePair> comparator) {
+ final double[] xSmallest = original[0].getPointRef();
+ // Perform a linear transformation on all the simplex points,
+ // except the first one.
+ setPoint(0, original[0]);
+ final int dim = getDimension();
+ for (int i = 1; i < getSize(); i++) {
+ final double[] xOriginal = original[i].getPointRef();
+ final double[] xTransformed = new double[dim];
+ for (int j = 0; j < dim; j++) {
+ xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]);
+ }
+ setPoint(i, new PointValuePair(xTransformed, Double.NaN, false));
+ }
+
+ // Evaluate the simplex.
+ evaluate(evaluationFunction, comparator);
+
+ return getPoint(0);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionMappingAdapter.java b/src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionMappingAdapter.java
new file mode 100644
index 0000000..32f2a2c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionMappingAdapter.java
@@ -0,0 +1,301 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.analysis.function.Logit;
+import org.apache.commons.math3.analysis.function.Sigmoid;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * <p>Adapter for mapping bounded {@link MultivariateFunction} to unbounded ones.</p>
+ *
+ * <p>
+ * This adapter can be used to wrap functions subject to simple bounds on
+ * parameters so they can be used by optimizers that do <em>not</em> directly
+ * support simple bounds.
+ * </p>
+ * <p>
+ * The principle is that the user function that will be wrapped will see its
+ * parameters bounded as required, i.e when its {@code value} method is called
+ * with argument array {@code point}, the elements array will fulfill requirement
+ * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components
+ * may be unbounded or bounded only on one side if the corresponding bound is
+ * set to an infinite value. The optimizer will not manage the user function by
+ * itself, but it will handle this adapter and it is this adapter that will take
+ * care the bounds are fulfilled. The adapter {@link #value(double[])} method will
+ * be called by the optimizer with unbound parameters, and the adapter will map
+ * the unbounded value to the bounded range using appropriate functions like
+ * {@link Sigmoid} for double bounded elements for example.
+ * </p>
+ * <p>
+ * As the optimizer sees only unbounded parameters, it should be noted that the
+ * start point or simplex expected by the optimizer should be unbounded, so the
+ * user is responsible for converting his bounded point to unbounded by calling
+ * {@link #boundedToUnbounded(double[])} before providing them to the optimizer.
+ * For the same reason, the point returned by the {@link
+ * org.apache.commons.math3.optimization.BaseMultivariateOptimizer#optimize(int,
+ * MultivariateFunction, org.apache.commons.math3.optimization.GoalType, double[])}
+ * method is unbounded. So to convert this point to bounded, users must call
+ * {@link #unboundedToBounded(double[])} by themselves!</p>
+ * <p>
+ * This adapter is only a poor man solution to simple bounds optimization constraints
+ * that can be used with simple optimizers like {@link SimplexOptimizer} with {@link
+ * NelderMeadSimplex} or {@link MultiDirectionalSimplex}. A better solution is to use
+ * an optimizer that directly supports simple bounds like {@link CMAESOptimizer} or
+ * {@link BOBYQAOptimizer}. One caveat of this poor man solution is that behavior near
+ * the bounds may be numerically unstable as bounds are mapped from infinite values.
+ * Another caveat is that convergence values are evaluated by the optimizer with respect
+ * to unbounded variables, so there will be scales differences when converted to bounded
+ * variables.
+ * </p>
+ *
+ * @see MultivariateFunctionPenaltyAdapter
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+
+@Deprecated
+public class MultivariateFunctionMappingAdapter implements MultivariateFunction {
+
+ /** Underlying bounded function. */
+ private final MultivariateFunction bounded;
+
+ /** Mapping functions. */
+ private final Mapper[] mappers;
+
+ /** Simple constructor.
+ * @param bounded bounded function
+ * @param lower lower bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for
+ * unbounded values)
+ * @param upper upper bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.POSITIVE_INFINITY} for
+ * unbounded values)
+ * @exception DimensionMismatchException if lower and upper bounds are not
+ * consistent, either according to dimension or to values
+ */
+ public MultivariateFunctionMappingAdapter(final MultivariateFunction bounded,
+ final double[] lower, final double[] upper) {
+
+ // safety checks
+ MathUtils.checkNotNull(lower);
+ MathUtils.checkNotNull(upper);
+ if (lower.length != upper.length) {
+ throw new DimensionMismatchException(lower.length, upper.length);
+ }
+ for (int i = 0; i < lower.length; ++i) {
+ // note the following test is written in such a way it also fails for NaN
+ if (!(upper[i] >= lower[i])) {
+ throw new NumberIsTooSmallException(upper[i], lower[i], true);
+ }
+ }
+
+ this.bounded = bounded;
+ this.mappers = new Mapper[lower.length];
+ for (int i = 0; i < mappers.length; ++i) {
+ if (Double.isInfinite(lower[i])) {
+ if (Double.isInfinite(upper[i])) {
+ // element is unbounded, no transformation is needed
+ mappers[i] = new NoBoundsMapper();
+ } else {
+ // element is simple-bounded on the upper side
+ mappers[i] = new UpperBoundMapper(upper[i]);
+ }
+ } else {
+ if (Double.isInfinite(upper[i])) {
+ // element is simple-bounded on the lower side
+ mappers[i] = new LowerBoundMapper(lower[i]);
+ } else {
+ // element is double-bounded
+ mappers[i] = new LowerUpperBoundMapper(lower[i], upper[i]);
+ }
+ }
+ }
+
+ }
+
+ /** Map an array from unbounded to bounded.
+ * @param point unbounded value
+ * @return bounded value
+ */
+ public double[] unboundedToBounded(double[] point) {
+
+ // map unbounded input point to bounded point
+ final double[] mapped = new double[mappers.length];
+ for (int i = 0; i < mappers.length; ++i) {
+ mapped[i] = mappers[i].unboundedToBounded(point[i]);
+ }
+
+ return mapped;
+
+ }
+
+ /** Map an array from bounded to unbounded.
+ * @param point bounded value
+ * @return unbounded value
+ */
+ public double[] boundedToUnbounded(double[] point) {
+
+ // map bounded input point to unbounded point
+ final double[] mapped = new double[mappers.length];
+ for (int i = 0; i < mappers.length; ++i) {
+ mapped[i] = mappers[i].boundedToUnbounded(point[i]);
+ }
+
+ return mapped;
+
+ }
+
+ /** Compute the underlying function value from an unbounded point.
+ * <p>
+ * This method simply bounds the unbounded point using the mappings
+ * set up at construction and calls the underlying function using
+ * the bounded point.
+ * </p>
+ * @param point unbounded value
+ * @return underlying function value
+ * @see #unboundedToBounded(double[])
+ */
+ public double value(double[] point) {
+ return bounded.value(unboundedToBounded(point));
+ }
+
+ /** Mapping interface. */
+ private interface Mapper {
+
+ /** Map a value from unbounded to bounded.
+ * @param y unbounded value
+ * @return bounded value
+ */
+ double unboundedToBounded(double y);
+
+ /** Map a value from bounded to unbounded.
+ * @param x bounded value
+ * @return unbounded value
+ */
+ double boundedToUnbounded(double x);
+
+ }
+
+ /** Local class for no bounds mapping. */
+ private static class NoBoundsMapper implements Mapper {
+
+ /** Simple constructor.
+ */
+ NoBoundsMapper() {
+ }
+
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return y;
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return x;
+ }
+
+ }
+
+ /** Local class for lower bounds mapping. */
+ private static class LowerBoundMapper implements Mapper {
+
+ /** Low bound. */
+ private final double lower;
+
+ /** Simple constructor.
+ * @param lower lower bound
+ */
+ LowerBoundMapper(final double lower) {
+ this.lower = lower;
+ }
+
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return lower + FastMath.exp(y);
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return FastMath.log(x - lower);
+ }
+
+ }
+
+ /** Local class for upper bounds mapping. */
+ private static class UpperBoundMapper implements Mapper {
+
+ /** Upper bound. */
+ private final double upper;
+
+ /** Simple constructor.
+ * @param upper upper bound
+ */
+ UpperBoundMapper(final double upper) {
+ this.upper = upper;
+ }
+
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return upper - FastMath.exp(-y);
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return -FastMath.log(upper - x);
+ }
+
+ }
+
+ /** Local class for lower and bounds mapping. */
+ private static class LowerUpperBoundMapper implements Mapper {
+
+ /** Function from unbounded to bounded. */
+ private final UnivariateFunction boundingFunction;
+
+ /** Function from bounded to unbounded. */
+ private final UnivariateFunction unboundingFunction;
+
+ /** Simple constructor.
+ * @param lower lower bound
+ * @param upper upper bound
+ */
+ LowerUpperBoundMapper(final double lower, final double upper) {
+ boundingFunction = new Sigmoid(lower, upper);
+ unboundingFunction = new Logit(lower, upper);
+ }
+
+ /** {@inheritDoc} */
+ public double unboundedToBounded(final double y) {
+ return boundingFunction.value(y);
+ }
+
+ /** {@inheritDoc} */
+ public double boundedToUnbounded(final double x) {
+ return unboundingFunction.value(x);
+ }
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionPenaltyAdapter.java b/src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionPenaltyAdapter.java
new file mode 100644
index 0000000..4946487
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/MultivariateFunctionPenaltyAdapter.java
@@ -0,0 +1,190 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * <p>Adapter extending bounded {@link MultivariateFunction} to an unbouded
+ * domain using a penalty function.</p>
+ *
+ * <p>
+ * This adapter can be used to wrap functions subject to simple bounds on
+ * parameters so they can be used by optimizers that do <em>not</em> directly
+ * support simple bounds.
+ * </p>
+ * <p>
+ * The principle is that the user function that will be wrapped will see its
+ * parameters bounded as required, i.e when its {@code value} method is called
+ * with argument array {@code point}, the elements array will fulfill requirement
+ * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components
+ * may be unbounded or bounded only on one side if the corresponding bound is
+ * set to an infinite value. The optimizer will not manage the user function by
+ * itself, but it will handle this adapter and it is this adapter that will take
+ * care the bounds are fulfilled. The adapter {@link #value(double[])} method will
+ * be called by the optimizer with unbound parameters, and the adapter will check
+ * if the parameters is within range or not. If it is in range, then the underlying
+ * user function will be called, and if it is not the value of a penalty function
+ * will be returned instead.
+ * </p>
+ * <p>
+ * This adapter is only a poor man solution to simple bounds optimization constraints
+ * that can be used with simple optimizers like {@link SimplexOptimizer} with {@link
+ * NelderMeadSimplex} or {@link MultiDirectionalSimplex}. A better solution is to use
+ * an optimizer that directly supports simple bounds like {@link CMAESOptimizer} or
+ * {@link BOBYQAOptimizer}. One caveat of this poor man solution is that if start point
+ * or start simplex is completely outside of the allowed range, only the penalty function
+ * is used, and the optimizer may converge without ever entering the range.
+ * </p>
+ *
+ * @see MultivariateFunctionMappingAdapter
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+
+@Deprecated
+public class MultivariateFunctionPenaltyAdapter implements MultivariateFunction {
+
+ /** Underlying bounded function. */
+ private final MultivariateFunction bounded;
+
+ /** Lower bounds. */
+ private final double[] lower;
+
+ /** Upper bounds. */
+ private final double[] upper;
+
+ /** Penalty offset. */
+ private final double offset;
+
+ /** Penalty scales. */
+ private final double[] scale;
+
+ /** Simple constructor.
+ * <p>
+ * When the optimizer provided points are out of range, the value of the
+ * penalty function will be used instead of the value of the underlying
+ * function. In order for this penalty to be effective in rejecting this
+ * point during the optimization process, the penalty function value should
+ * be defined with care. This value is computed as:
+ * <pre>
+ * penalty(point) = offset + &sum;<sub>i</sub>[scale[i] * &radic;|point[i]-boundary[i]|]
+ * </pre>
+ * where indices i correspond to all the components that violates their boundaries.
+ * </p>
+ * <p>
+ * So when attempting a function minimization, offset should be larger than
+ * the maximum expected value of the underlying function and scale components
+ * should all be positive. When attempting a function maximization, offset
+ * should be lesser than the minimum expected value of the underlying function
+ * and scale components should all be negative.
+ * minimization, and lesser than the minimum expected value of the underlying
+ * function when attempting maximization.
+ * </p>
+ * <p>
+ * These choices for the penalty function have two properties. First, all out
+ * of range points will return a function value that is worse than the value
+ * returned by any in range point. Second, the penalty is worse for large
+ * boundaries violation than for small violations, so the optimizer has an hint
+ * about the direction in which it should search for acceptable points.
+ * </p>
+ * @param bounded bounded function
+ * @param lower lower bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for
+ * unbounded values)
+ * @param upper upper bounds for each element of the input parameters array
+ * (some elements may be set to {@code Double.POSITIVE_INFINITY} for
+ * unbounded values)
+ * @param offset base offset of the penalty function
+ * @param scale scale of the penalty function
+ * @exception DimensionMismatchException if lower bounds, upper bounds and
+ * scales are not consistent, either according to dimension or to bounadary
+ * values
+ */
+ public MultivariateFunctionPenaltyAdapter(final MultivariateFunction bounded,
+ final double[] lower, final double[] upper,
+ final double offset, final double[] scale) {
+
+ // safety checks
+ MathUtils.checkNotNull(lower);
+ MathUtils.checkNotNull(upper);
+ MathUtils.checkNotNull(scale);
+ if (lower.length != upper.length) {
+ throw new DimensionMismatchException(lower.length, upper.length);
+ }
+ if (lower.length != scale.length) {
+ throw new DimensionMismatchException(lower.length, scale.length);
+ }
+ for (int i = 0; i < lower.length; ++i) {
+ // note the following test is written in such a way it also fails for NaN
+ if (!(upper[i] >= lower[i])) {
+ throw new NumberIsTooSmallException(upper[i], lower[i], true);
+ }
+ }
+
+ this.bounded = bounded;
+ this.lower = lower.clone();
+ this.upper = upper.clone();
+ this.offset = offset;
+ this.scale = scale.clone();
+
+ }
+
+ /** Compute the underlying function value from an unbounded point.
+ * <p>
+ * This method simply returns the value of the underlying function
+ * if the unbounded point already fulfills the bounds, and compute
+ * a replacement value using the offset and scale if bounds are
+ * violated, without calling the function at all.
+ * </p>
+ * @param point unbounded point
+ * @return either underlying function value or penalty function value
+ */
+ public double value(double[] point) {
+
+ for (int i = 0; i < scale.length; ++i) {
+ if ((point[i] < lower[i]) || (point[i] > upper[i])) {
+ // bound violation starting at this component
+ double sum = 0;
+ for (int j = i; j < scale.length; ++j) {
+ final double overshoot;
+ if (point[j] < lower[j]) {
+ overshoot = scale[j] * (lower[j] - point[j]);
+ } else if (point[j] > upper[j]) {
+ overshoot = scale[j] * (point[j] - upper[j]);
+ } else {
+ overshoot = 0;
+ }
+ sum += FastMath.sqrt(overshoot);
+ }
+ return offset + sum;
+ }
+ }
+
+ // all boundaries are fulfilled, we are in the expected
+ // domain of the underlying function
+ return bounded.value(point);
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/NelderMeadSimplex.java b/src/main/java/org/apache/commons/math3/optimization/direct/NelderMeadSimplex.java
new file mode 100644
index 0000000..a17586b
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/NelderMeadSimplex.java
@@ -0,0 +1,283 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import java.util.Comparator;
+
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.analysis.MultivariateFunction;
+
+/**
+ * This class implements the Nelder-Mead simplex algorithm.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class NelderMeadSimplex extends AbstractSimplex {
+ /** Default value for {@link #rho}: {@value}. */
+ private static final double DEFAULT_RHO = 1;
+ /** Default value for {@link #khi}: {@value}. */
+ private static final double DEFAULT_KHI = 2;
+ /** Default value for {@link #gamma}: {@value}. */
+ private static final double DEFAULT_GAMMA = 0.5;
+ /** Default value for {@link #sigma}: {@value}. */
+ private static final double DEFAULT_SIGMA = 0.5;
+ /** Reflection coefficient. */
+ private final double rho;
+ /** Expansion coefficient. */
+ private final double khi;
+ /** Contraction coefficient. */
+ private final double gamma;
+ /** Shrinkage coefficient. */
+ private final double sigma;
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param n Dimension of the simplex.
+ */
+ public NelderMeadSimplex(final int n) {
+ this(n, 1d);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param n Dimension of the simplex.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ */
+ public NelderMeadSimplex(final int n, double sideLength) {
+ this(n, sideLength,
+ DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param sideLength Length of the sides of the default (hypercube)
+ * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ */
+ public NelderMeadSimplex(final int n, double sideLength,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ super(n, sideLength);
+
+ this.rho = rho;
+ this.khi = khi;
+ this.gamma = gamma;
+ this.sigma = sigma;
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param n Dimension of the simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(int)}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ */
+ public NelderMeadSimplex(final int n,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ this(n, 1d, rho, khi, gamma, sigma);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ */
+ public NelderMeadSimplex(final double[] steps) {
+ this(steps, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param steps Steps along the canonical axes representing box edges.
+ * They may be negative but not zero. See
+ * {@link AbstractSimplex#AbstractSimplex(double[])}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ * @throws IllegalArgumentException if one of the steps is zero.
+ */
+ public NelderMeadSimplex(final double[] steps,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ super(steps);
+
+ this.rho = rho;
+ this.khi = khi;
+ this.gamma = gamma;
+ this.sigma = sigma;
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with default coefficients.
+ * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
+ * for both gamma and sigma.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ */
+ public NelderMeadSimplex(final double[][] referenceSimplex) {
+ this(referenceSimplex, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
+ }
+
+ /**
+ * Build a Nelder-Mead simplex with specified coefficients.
+ *
+ * @param referenceSimplex Reference simplex. See
+ * {@link AbstractSimplex#AbstractSimplex(double[][])}.
+ * @param rho Reflection coefficient.
+ * @param khi Expansion coefficient.
+ * @param gamma Contraction coefficient.
+ * @param sigma Shrinkage coefficient.
+ * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
+ * if the reference simplex does not contain at least one point.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if there is a dimension mismatch in the reference simplex.
+ */
+ public NelderMeadSimplex(final double[][] referenceSimplex,
+ final double rho, final double khi,
+ final double gamma, final double sigma) {
+ super(referenceSimplex);
+
+ this.rho = rho;
+ this.khi = khi;
+ this.gamma = gamma;
+ this.sigma = sigma;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void iterate(final MultivariateFunction evaluationFunction,
+ final Comparator<PointValuePair> comparator) {
+ // The simplex has n + 1 points if dimension is n.
+ final int n = getDimension();
+
+ // Interesting values.
+ final PointValuePair best = getPoint(0);
+ final PointValuePair secondBest = getPoint(n - 1);
+ final PointValuePair worst = getPoint(n);
+ final double[] xWorst = worst.getPointRef();
+
+ // Compute the centroid of the best vertices (dismissing the worst
+ // point at index n).
+ final double[] centroid = new double[n];
+ for (int i = 0; i < n; i++) {
+ final double[] x = getPoint(i).getPointRef();
+ for (int j = 0; j < n; j++) {
+ centroid[j] += x[j];
+ }
+ }
+ final double scaling = 1.0 / n;
+ for (int j = 0; j < n; j++) {
+ centroid[j] *= scaling;
+ }
+
+ // compute the reflection point
+ final double[] xR = new double[n];
+ for (int j = 0; j < n; j++) {
+ xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]);
+ }
+ final PointValuePair reflected
+ = new PointValuePair(xR, evaluationFunction.value(xR), false);
+
+ if (comparator.compare(best, reflected) <= 0 &&
+ comparator.compare(reflected, secondBest) < 0) {
+ // Accept the reflected point.
+ replaceWorstPoint(reflected, comparator);
+ } else if (comparator.compare(reflected, best) < 0) {
+ // Compute the expansion point.
+ final double[] xE = new double[n];
+ for (int j = 0; j < n; j++) {
+ xE[j] = centroid[j] + khi * (xR[j] - centroid[j]);
+ }
+ final PointValuePair expanded
+ = new PointValuePair(xE, evaluationFunction.value(xE), false);
+
+ if (comparator.compare(expanded, reflected) < 0) {
+ // Accept the expansion point.
+ replaceWorstPoint(expanded, comparator);
+ } else {
+ // Accept the reflected point.
+ replaceWorstPoint(reflected, comparator);
+ }
+ } else {
+ if (comparator.compare(reflected, worst) < 0) {
+ // Perform an outside contraction.
+ final double[] xC = new double[n];
+ for (int j = 0; j < n; j++) {
+ xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]);
+ }
+ final PointValuePair outContracted
+ = new PointValuePair(xC, evaluationFunction.value(xC), false);
+ if (comparator.compare(outContracted, reflected) <= 0) {
+ // Accept the contraction point.
+ replaceWorstPoint(outContracted, comparator);
+ return;
+ }
+ } else {
+ // Perform an inside contraction.
+ final double[] xC = new double[n];
+ for (int j = 0; j < n; j++) {
+ xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]);
+ }
+ final PointValuePair inContracted
+ = new PointValuePair(xC, evaluationFunction.value(xC), false);
+
+ if (comparator.compare(inContracted, worst) < 0) {
+ // Accept the contraction point.
+ replaceWorstPoint(inContracted, comparator);
+ return;
+ }
+ }
+
+ // Perform a shrink.
+ final double[] xSmallest = getPoint(0).getPointRef();
+ for (int i = 1; i <= n; i++) {
+ final double[] x = getPoint(i).getPoint();
+ for (int j = 0; j < n; j++) {
+ x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]);
+ }
+ setPoint(i, new PointValuePair(x, Double.NaN, false));
+ }
+ evaluate(evaluationFunction, comparator);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/PowellOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/direct/PowellOptimizer.java
new file mode 100644
index 0000000..8f5dd2b
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/PowellOptimizer.java
@@ -0,0 +1,353 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.MultivariateOptimizer;
+import org.apache.commons.math3.optimization.univariate.BracketFinder;
+import org.apache.commons.math3.optimization.univariate.BrentOptimizer;
+import org.apache.commons.math3.optimization.univariate.UnivariatePointValuePair;
+import org.apache.commons.math3.optimization.univariate.SimpleUnivariateValueChecker;
+
+/**
+ * Powell algorithm.
+ * This code is translated and adapted from the Python version of this
+ * algorithm (as implemented in module {@code optimize.py} v0.5 of
+ * <em>SciPy</em>).
+ * <br/>
+ * The default stopping criterion is based on the differences of the
+ * function value between two successive iterations. It is however possible
+ * to define a custom convergence checker that might terminate the algorithm
+ * earlier.
+ * <br/>
+ * The internal line search optimizer is a {@link BrentOptimizer} with a
+ * convergence checker set to {@link SimpleUnivariateValueChecker}.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.2
+ */
+@Deprecated
+public class PowellOptimizer
+ extends BaseAbstractMultivariateOptimizer<MultivariateFunction>
+ implements MultivariateOptimizer {
+ /**
+ * Minimum relative tolerance.
+ */
+ private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d);
+ /**
+ * Relative threshold.
+ */
+ private final double relativeThreshold;
+ /**
+ * Absolute threshold.
+ */
+ private final double absoluteThreshold;
+ /**
+ * Line search.
+ */
+ private final LineSearch line;
+
+ /**
+ * This constructor allows to specify a user-defined convergence checker,
+ * in addition to the parameters that control the default convergence
+ * checking procedure.
+ * <br/>
+ * The internal line search tolerances are set to the square-root of their
+ * corresponding value in the multivariate optimizer.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @param checker Convergence checker.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public PowellOptimizer(double rel,
+ double abs,
+ ConvergenceChecker<PointValuePair> checker) {
+ this(rel, abs, FastMath.sqrt(rel), FastMath.sqrt(abs), checker);
+ }
+
+ /**
+ * This constructor allows to specify a user-defined convergence checker,
+ * in addition to the parameters that control the default convergence
+ * checking procedure and the line search tolerances.
+ *
+ * @param rel Relative threshold for this optimizer.
+ * @param abs Absolute threshold for this optimizer.
+ * @param lineRel Relative threshold for the internal line search optimizer.
+ * @param lineAbs Absolute threshold for the internal line search optimizer.
+ * @param checker Convergence checker.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public PowellOptimizer(double rel,
+ double abs,
+ double lineRel,
+ double lineAbs,
+ ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+
+ if (rel < MIN_RELATIVE_TOLERANCE) {
+ throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true);
+ }
+ if (abs <= 0) {
+ throw new NotStrictlyPositiveException(abs);
+ }
+ relativeThreshold = rel;
+ absoluteThreshold = abs;
+
+ // Create the line search optimizer.
+ line = new LineSearch(lineRel,
+ lineAbs);
+ }
+
+ /**
+ * The parameters control the default convergence checking procedure.
+ * <br/>
+ * The internal line search tolerances are set to the square-root of their
+ * corresponding value in the multivariate optimizer.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public PowellOptimizer(double rel,
+ double abs) {
+ this(rel, abs, null);
+ }
+
+ /**
+ * Builds an instance with the default convergence checking procedure.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @param lineRel Relative threshold for the internal line search optimizer.
+ * @param lineAbs Absolute threshold for the internal line search optimizer.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ * @since 3.1
+ */
+ public PowellOptimizer(double rel,
+ double abs,
+ double lineRel,
+ double lineAbs) {
+ this(rel, abs, lineRel, lineAbs, null);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ final GoalType goal = getGoalType();
+ final double[] guess = getStartPoint();
+ final int n = guess.length;
+
+ final double[][] direc = new double[n][n];
+ for (int i = 0; i < n; i++) {
+ direc[i][i] = 1;
+ }
+
+ final ConvergenceChecker<PointValuePair> checker
+ = getConvergenceChecker();
+
+ double[] x = guess;
+ double fVal = computeObjectiveValue(x);
+ double[] x1 = x.clone();
+ int iter = 0;
+ while (true) {
+ ++iter;
+
+ double fX = fVal;
+ double fX2 = 0;
+ double delta = 0;
+ int bigInd = 0;
+ double alphaMin = 0;
+
+ for (int i = 0; i < n; i++) {
+ final double[] d = MathArrays.copyOf(direc[i]);
+
+ fX2 = fVal;
+
+ final UnivariatePointValuePair optimum = line.search(x, d);
+ fVal = optimum.getValue();
+ alphaMin = optimum.getPoint();
+ final double[][] result = newPointAndDirection(x, d, alphaMin);
+ x = result[0];
+
+ if ((fX2 - fVal) > delta) {
+ delta = fX2 - fVal;
+ bigInd = i;
+ }
+ }
+
+ // Default convergence check.
+ boolean stop = 2 * (fX - fVal) <=
+ (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) +
+ absoluteThreshold);
+
+ final PointValuePair previous = new PointValuePair(x1, fX);
+ final PointValuePair current = new PointValuePair(x, fVal);
+ if (!stop && checker != null) {
+ stop = checker.converged(iter, previous, current);
+ }
+ if (stop) {
+ if (goal == GoalType.MINIMIZE) {
+ return (fVal < fX) ? current : previous;
+ } else {
+ return (fVal > fX) ? current : previous;
+ }
+ }
+
+ final double[] d = new double[n];
+ final double[] x2 = new double[n];
+ for (int i = 0; i < n; i++) {
+ d[i] = x[i] - x1[i];
+ x2[i] = 2 * x[i] - x1[i];
+ }
+
+ x1 = x.clone();
+ fX2 = computeObjectiveValue(x2);
+
+ if (fX > fX2) {
+ double t = 2 * (fX + fX2 - 2 * fVal);
+ double temp = fX - fVal - delta;
+ t *= temp * temp;
+ temp = fX - fX2;
+ t -= delta * temp * temp;
+
+ if (t < 0.0) {
+ final UnivariatePointValuePair optimum = line.search(x, d);
+ fVal = optimum.getValue();
+ alphaMin = optimum.getPoint();
+ final double[][] result = newPointAndDirection(x, d, alphaMin);
+ x = result[0];
+
+ final int lastInd = n - 1;
+ direc[bigInd] = direc[lastInd];
+ direc[lastInd] = result[1];
+ }
+ }
+ }
+ }
+
+ /**
+ * Compute a new point (in the original space) and a new direction
+ * vector, resulting from the line search.
+ *
+ * @param p Point used in the line search.
+ * @param d Direction used in the line search.
+ * @param optimum Optimum found by the line search.
+ * @return a 2-element array containing the new point (at index 0) and
+ * the new direction (at index 1).
+ */
+ private double[][] newPointAndDirection(double[] p,
+ double[] d,
+ double optimum) {
+ final int n = p.length;
+ final double[] nP = new double[n];
+ final double[] nD = new double[n];
+ for (int i = 0; i < n; i++) {
+ nD[i] = d[i] * optimum;
+ nP[i] = p[i] + nD[i];
+ }
+
+ final double[][] result = new double[2][];
+ result[0] = nP;
+ result[1] = nD;
+
+ return result;
+ }
+
+ /**
+ * Class for finding the minimum of the objective function along a given
+ * direction.
+ */
+ private class LineSearch extends BrentOptimizer {
+ /**
+ * Value that will pass the precondition check for {@link BrentOptimizer}
+ * but will not pass the convergence check, so that the custom checker
+ * will always decide when to stop the line search.
+ */
+ private static final double REL_TOL_UNUSED = 1e-15;
+ /**
+ * Value that will pass the precondition check for {@link BrentOptimizer}
+ * but will not pass the convergence check, so that the custom checker
+ * will always decide when to stop the line search.
+ */
+ private static final double ABS_TOL_UNUSED = Double.MIN_VALUE;
+ /**
+ * Automatic bracketing.
+ */
+ private final BracketFinder bracket = new BracketFinder();
+
+ /**
+ * The "BrentOptimizer" default stopping criterion uses the tolerances
+ * to check the domain (point) values, not the function values.
+ * We thus create a custom checker to use function values.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ */
+ LineSearch(double rel,
+ double abs) {
+ super(REL_TOL_UNUSED,
+ ABS_TOL_UNUSED,
+ new SimpleUnivariateValueChecker(rel, abs));
+ }
+
+ /**
+ * Find the minimum of the function {@code f(p + alpha * d)}.
+ *
+ * @param p Starting point.
+ * @param d Search direction.
+ * @return the optimum.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the number of evaluations is exceeded.
+ */
+ public UnivariatePointValuePair search(final double[] p, final double[] d) {
+ final int n = p.length;
+ final UnivariateFunction f = new UnivariateFunction() {
+ /** {@inheritDoc} */
+ public double value(double alpha) {
+ final double[] x = new double[n];
+ for (int i = 0; i < n; i++) {
+ x[i] = p[i] + alpha * d[i];
+ }
+ final double obj = PowellOptimizer.this.computeObjectiveValue(x);
+ return obj;
+ }
+ };
+
+ final GoalType goal = PowellOptimizer.this.getGoalType();
+ bracket.search(f, goal, 0, 1);
+ // Passing "MAX_VALUE" as a dummy value because it is the enclosing
+ // class that counts the number of evaluations (and will eventually
+ // generate the exception).
+ return optimize(Integer.MAX_VALUE, f, goal,
+ bracket.getLo(), bracket.getHi(), bracket.getMid());
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/SimplexOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/direct/SimplexOptimizer.java
new file mode 100644
index 0000000..8136704
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/SimplexOptimizer.java
@@ -0,0 +1,235 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.direct;
+
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.MultivariateFunction;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.SimpleValueChecker;
+import org.apache.commons.math3.optimization.MultivariateOptimizer;
+import org.apache.commons.math3.optimization.OptimizationData;
+
+/**
+ * This class implements simplex-based direct search optimization.
+ *
+ * <p>
+ * Direct search methods only use objective function values, they do
+ * not need derivatives and don't either try to compute approximation
+ * of the derivatives. According to a 1996 paper by Margaret H. Wright
+ * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
+ * Search Methods: Once Scorned, Now Respectable</a>), they are used
+ * when either the computation of the derivative is impossible (noisy
+ * functions, unpredictable discontinuities) or difficult (complexity,
+ * computation cost). In the first cases, rather than an optimum, a
+ * <em>not too bad</em> point is desired. In the latter cases, an
+ * optimum is desired but cannot be reasonably found. In all cases
+ * direct search methods can be useful.
+ * </p>
+ * <p>
+ * Simplex-based direct search methods are based on comparison of
+ * the objective function values at the vertices of a simplex (which is a
+ * set of n+1 points in dimension n) that is updated by the algorithms
+ * steps.
+ * <p>
+ * <p>
+ * The {@link #setSimplex(AbstractSimplex) setSimplex} method <em>must</em>
+ * be called prior to calling the {@code optimize} method.
+ * </p>
+ * <p>
+ * Each call to {@link #optimize(int,MultivariateFunction,GoalType,double[])
+ * optimize} will re-use the start configuration of the current simplex and
+ * move it such that its first vertex is at the provided start point of the
+ * optimization. If the {@code optimize} method is called to solve a different
+ * problem and the number of parameters change, the simplex must be
+ * re-initialized to one with the appropriate dimensions.
+ * </p>
+ * <p>
+ * Convergence is checked by providing the <em>worst</em> points of
+ * previous and current simplex to the convergence checker, not the best
+ * ones.
+ * </p>
+ * <p>
+ * This simplex optimizer implementation does not directly support constrained
+ * optimization with simple bounds, so for such optimizations, either a more
+ * dedicated method must be used like {@link CMAESOptimizer} or {@link
+ * BOBYQAOptimizer}, or the optimized method must be wrapped in an adapter like
+ * {@link MultivariateFunctionMappingAdapter} or {@link
+ * MultivariateFunctionPenaltyAdapter}.
+ * </p>
+ *
+ * @see AbstractSimplex
+ * @see MultivariateFunctionMappingAdapter
+ * @see MultivariateFunctionPenaltyAdapter
+ * @see CMAESOptimizer
+ * @see BOBYQAOptimizer
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@SuppressWarnings("boxing") // deprecated anyway
+@Deprecated
+public class SimplexOptimizer
+ extends BaseAbstractMultivariateOptimizer<MultivariateFunction>
+ implements MultivariateOptimizer {
+ /** Simplex. */
+ private AbstractSimplex simplex;
+
+ /**
+ * Constructor using a default {@link SimpleValueChecker convergence
+ * checker}.
+ * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ public SimplexOptimizer() {
+ this(new SimpleValueChecker());
+ }
+
+ /**
+ * @param checker Convergence checker.
+ */
+ public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ */
+ public SimplexOptimizer(double rel, double abs) {
+ this(new SimpleValueChecker(rel, abs));
+ }
+
+ /**
+ * Set the simplex algorithm.
+ *
+ * @param simplex Simplex.
+ * @deprecated As of 3.1. The initial simplex can now be passed as an
+ * argument of the {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
+ * method.
+ */
+ @Deprecated
+ public void setSimplex(AbstractSimplex simplex) {
+ parseOptimizationData(simplex);
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param goalType Optimization type.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.InitialGuess InitialGuess}</li>
+ * <li>{@link AbstractSimplex}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value for objective
+ * function.
+ */
+ @Override
+ protected PointValuePair optimizeInternal(int maxEval, MultivariateFunction f,
+ GoalType goalType,
+ OptimizationData... optData) {
+ // Scan "optData" for the input specific to this optimizer.
+ parseOptimizationData(optData);
+
+ // The parent's method will retrieve the common parameters from
+ // "optData" and call "doOptimize".
+ return super.optimizeInternal(maxEval, f, goalType, optData);
+ }
+
+ /**
+ * Scans the list of (required and optional) optimization data that
+ * characterize the problem.
+ *
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link AbstractSimplex}</li>
+ * </ul>
+ */
+ private void parseOptimizationData(OptimizationData... optData) {
+ // The existing values (as set by the previous call) are reused if
+ // not provided in the argument list.
+ for (OptimizationData data : optData) {
+ if (data instanceof AbstractSimplex) {
+ simplex = (AbstractSimplex) data;
+ continue;
+ }
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ if (simplex == null) {
+ throw new NullArgumentException();
+ }
+
+ // Indirect call to "computeObjectiveValue" in order to update the
+ // evaluations counter.
+ final MultivariateFunction evalFunc
+ = new MultivariateFunction() {
+ /** {@inheritDoc} */
+ public double value(double[] point) {
+ return computeObjectiveValue(point);
+ }
+ };
+
+ final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
+ final Comparator<PointValuePair> comparator
+ = new Comparator<PointValuePair>() {
+ /** {@inheritDoc} */
+ public int compare(final PointValuePair o1,
+ final PointValuePair o2) {
+ final double v1 = o1.getValue();
+ final double v2 = o2.getValue();
+ return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
+ }
+ };
+
+ // Initialize search.
+ simplex.build(getStartPoint());
+ simplex.evaluate(evalFunc, comparator);
+
+ PointValuePair[] previous = null;
+ int iteration = 0;
+ final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
+ while (true) {
+ if (iteration > 0) {
+ boolean converged = true;
+ for (int i = 0; i < simplex.getSize(); i++) {
+ PointValuePair prev = previous[i];
+ converged = converged &&
+ checker.converged(iteration, prev, simplex.getPoint(i));
+ }
+ if (converged) {
+ // We have found an optimum.
+ return simplex.getPoint(0);
+ }
+ }
+
+ // We still need to search.
+ previous = simplex.getPoints();
+ simplex.iterate(evalFunc, comparator);
+ ++iteration;
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/direct/package-info.java b/src/main/java/org/apache/commons/math3/optimization/direct/package-info.java
new file mode 100644
index 0000000..a587bcf
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/direct/package-info.java
@@ -0,0 +1,24 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * <p>
+ * This package provides optimization algorithms that don't require derivatives.
+ * </p>
+ *
+ */
+package org.apache.commons.math3.optimization.direct;
diff --git a/src/main/java/org/apache/commons/math3/optimization/fitting/CurveFitter.java b/src/main/java/org/apache/commons/math3/optimization/fitting/CurveFitter.java
new file mode 100644
index 0000000..26e39f5
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/fitting/CurveFitter.java
@@ -0,0 +1,299 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.fitting;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateVectorFunction;
+import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
+import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
+import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
+import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
+import org.apache.commons.math3.optimization.MultivariateDifferentiableVectorOptimizer;
+import org.apache.commons.math3.optimization.PointVectorValuePair;
+
+/** Fitter for parametric univariate real functions y = f(x).
+ * <br/>
+ * When a univariate real function y = f(x) does depend on some
+ * unknown parameters p<sub>0</sub>, p<sub>1</sub> ... p<sub>n-1</sub>,
+ * this class can be used to find these parameters. It does this
+ * by <em>fitting</em> the curve so it remains very close to a set of
+ * observed points (x<sub>0</sub>, y<sub>0</sub>), (x<sub>1</sub>,
+ * y<sub>1</sub>) ... (x<sub>k-1</sub>, y<sub>k-1</sub>). This fitting
+ * is done by finding the parameters values that minimizes the objective
+ * function &sum;(y<sub>i</sub>-f(x<sub>i</sub>))<sup>2</sup>. This is
+ * really a least squares problem.
+ *
+ * @param <T> Function to use for the fit.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class CurveFitter<T extends ParametricUnivariateFunction> {
+
+ /** Optimizer to use for the fitting.
+ * @deprecated as of 3.1 replaced by {@link #optimizer}
+ */
+ @Deprecated
+ private final DifferentiableMultivariateVectorOptimizer oldOptimizer;
+
+ /** Optimizer to use for the fitting. */
+ private final MultivariateDifferentiableVectorOptimizer optimizer;
+
+ /** Observed points. */
+ private final List<WeightedObservedPoint> observations;
+
+ /** Simple constructor.
+ * @param optimizer optimizer to use for the fitting
+ * @deprecated as of 3.1 replaced by {@link #CurveFitter(MultivariateDifferentiableVectorOptimizer)}
+ */
+ @Deprecated
+ public CurveFitter(final DifferentiableMultivariateVectorOptimizer optimizer) {
+ this.oldOptimizer = optimizer;
+ this.optimizer = null;
+ observations = new ArrayList<WeightedObservedPoint>();
+ }
+
+ /** Simple constructor.
+ * @param optimizer optimizer to use for the fitting
+ * @since 3.1
+ */
+ public CurveFitter(final MultivariateDifferentiableVectorOptimizer optimizer) {
+ this.oldOptimizer = null;
+ this.optimizer = optimizer;
+ observations = new ArrayList<WeightedObservedPoint>();
+ }
+
+ /** Add an observed (x,y) point to the sample with unit weight.
+ * <p>Calling this method is equivalent to call
+ * {@code addObservedPoint(1.0, x, y)}.</p>
+ * @param x abscissa of the point
+ * @param y observed value of the point at x, after fitting we should
+ * have f(x) as close as possible to this value
+ * @see #addObservedPoint(double, double, double)
+ * @see #addObservedPoint(WeightedObservedPoint)
+ * @see #getObservations()
+ */
+ public void addObservedPoint(double x, double y) {
+ addObservedPoint(1.0, x, y);
+ }
+
+ /** Add an observed weighted (x,y) point to the sample.
+ * @param weight weight of the observed point in the fit
+ * @param x abscissa of the point
+ * @param y observed value of the point at x, after fitting we should
+ * have f(x) as close as possible to this value
+ * @see #addObservedPoint(double, double)
+ * @see #addObservedPoint(WeightedObservedPoint)
+ * @see #getObservations()
+ */
+ public void addObservedPoint(double weight, double x, double y) {
+ observations.add(new WeightedObservedPoint(weight, x, y));
+ }
+
+ /** Add an observed weighted (x,y) point to the sample.
+ * @param observed observed point to add
+ * @see #addObservedPoint(double, double)
+ * @see #addObservedPoint(double, double, double)
+ * @see #getObservations()
+ */
+ public void addObservedPoint(WeightedObservedPoint observed) {
+ observations.add(observed);
+ }
+
+ /** Get the observed points.
+ * @return observed points
+ * @see #addObservedPoint(double, double)
+ * @see #addObservedPoint(double, double, double)
+ * @see #addObservedPoint(WeightedObservedPoint)
+ */
+ public WeightedObservedPoint[] getObservations() {
+ return observations.toArray(new WeightedObservedPoint[observations.size()]);
+ }
+
+ /**
+ * Remove all observations.
+ */
+ public void clearObservations() {
+ observations.clear();
+ }
+
+ /**
+ * Fit a curve.
+ * This method compute the coefficients of the curve that best
+ * fit the sample of observed points previously given through calls
+ * to the {@link #addObservedPoint(WeightedObservedPoint)
+ * addObservedPoint} method.
+ *
+ * @param f parametric function to fit.
+ * @param initialGuess first guess of the function parameters.
+ * @return the fitted parameters.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if the start point dimension is wrong.
+ */
+ public double[] fit(T f, final double[] initialGuess) {
+ return fit(Integer.MAX_VALUE, f, initialGuess);
+ }
+
+ /**
+ * Fit a curve.
+ * This method compute the coefficients of the curve that best
+ * fit the sample of observed points previously given through calls
+ * to the {@link #addObservedPoint(WeightedObservedPoint)
+ * addObservedPoint} method.
+ *
+ * @param f parametric function to fit.
+ * @param initialGuess first guess of the function parameters.
+ * @param maxEval Maximum number of function evaluations.
+ * @return the fitted parameters.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the number of allowed evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if the start point dimension is wrong.
+ * @since 3.0
+ */
+ public double[] fit(int maxEval, T f,
+ final double[] initialGuess) {
+ // prepare least squares problem
+ double[] target = new double[observations.size()];
+ double[] weights = new double[observations.size()];
+ int i = 0;
+ for (WeightedObservedPoint point : observations) {
+ target[i] = point.getY();
+ weights[i] = point.getWeight();
+ ++i;
+ }
+
+ // perform the fit
+ final PointVectorValuePair optimum;
+ if (optimizer == null) {
+ // to be removed in 4.0
+ optimum = oldOptimizer.optimize(maxEval, new OldTheoreticalValuesFunction(f),
+ target, weights, initialGuess);
+ } else {
+ optimum = optimizer.optimize(maxEval, new TheoreticalValuesFunction(f),
+ target, weights, initialGuess);
+ }
+
+ // extract the coefficients
+ return optimum.getPointRef();
+ }
+
+ /** Vectorial function computing function theoretical values. */
+ @Deprecated
+ private class OldTheoreticalValuesFunction
+ implements DifferentiableMultivariateVectorFunction {
+ /** Function to fit. */
+ private final ParametricUnivariateFunction f;
+
+ /** Simple constructor.
+ * @param f function to fit.
+ */
+ OldTheoreticalValuesFunction(final ParametricUnivariateFunction f) {
+ this.f = f;
+ }
+
+ /** {@inheritDoc} */
+ public MultivariateMatrixFunction jacobian() {
+ return new MultivariateMatrixFunction() {
+ /** {@inheritDoc} */
+ public double[][] value(double[] point) {
+ final double[][] jacobian = new double[observations.size()][];
+
+ int i = 0;
+ for (WeightedObservedPoint observed : observations) {
+ jacobian[i++] = f.gradient(observed.getX(), point);
+ }
+
+ return jacobian;
+ }
+ };
+ }
+
+ /** {@inheritDoc} */
+ public double[] value(double[] point) {
+ // compute the residuals
+ final double[] values = new double[observations.size()];
+ int i = 0;
+ for (WeightedObservedPoint observed : observations) {
+ values[i++] = f.value(observed.getX(), point);
+ }
+
+ return values;
+ }
+ }
+
+ /** Vectorial function computing function theoretical values. */
+ private class TheoreticalValuesFunction implements MultivariateDifferentiableVectorFunction {
+
+ /** Function to fit. */
+ private final ParametricUnivariateFunction f;
+
+ /** Simple constructor.
+ * @param f function to fit.
+ */
+ TheoreticalValuesFunction(final ParametricUnivariateFunction f) {
+ this.f = f;
+ }
+
+ /** {@inheritDoc} */
+ public double[] value(double[] point) {
+ // compute the residuals
+ final double[] values = new double[observations.size()];
+ int i = 0;
+ for (WeightedObservedPoint observed : observations) {
+ values[i++] = f.value(observed.getX(), point);
+ }
+
+ return values;
+ }
+
+ /** {@inheritDoc} */
+ public DerivativeStructure[] value(DerivativeStructure[] point) {
+
+ // extract parameters
+ final double[] parameters = new double[point.length];
+ for (int k = 0; k < point.length; ++k) {
+ parameters[k] = point[k].getValue();
+ }
+
+ // compute the residuals
+ final DerivativeStructure[] values = new DerivativeStructure[observations.size()];
+ int i = 0;
+ for (WeightedObservedPoint observed : observations) {
+
+ // build the DerivativeStructure by adding first the value as a constant
+ // and then adding derivatives
+ DerivativeStructure vi = new DerivativeStructure(point.length, 1, f.value(observed.getX(), parameters));
+ for (int k = 0; k < point.length; ++k) {
+ vi = vi.add(new DerivativeStructure(point.length, 1, k, 0.0));
+ }
+
+ values[i++] = vi;
+
+ }
+
+ return values;
+ }
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java b/src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java
new file mode 100644
index 0000000..375f12e
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/fitting/GaussianFitter.java
@@ -0,0 +1,371 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.fitting;
+
+import java.util.Arrays;
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.function.Gaussian;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Fits points to a {@link
+ * org.apache.commons.math3.analysis.function.Gaussian.Parametric Gaussian} function.
+ * <p>
+ * Usage example:
+ * <pre>
+ * GaussianFitter fitter = new GaussianFitter(
+ * new LevenbergMarquardtOptimizer());
+ * fitter.addObservedPoint(4.0254623, 531026.0);
+ * fitter.addObservedPoint(4.03128248, 984167.0);
+ * fitter.addObservedPoint(4.03839603, 1887233.0);
+ * fitter.addObservedPoint(4.04421621, 2687152.0);
+ * fitter.addObservedPoint(4.05132976, 3461228.0);
+ * fitter.addObservedPoint(4.05326982, 3580526.0);
+ * fitter.addObservedPoint(4.05779662, 3439750.0);
+ * fitter.addObservedPoint(4.0636168, 2877648.0);
+ * fitter.addObservedPoint(4.06943698, 2175960.0);
+ * fitter.addObservedPoint(4.07525716, 1447024.0);
+ * fitter.addObservedPoint(4.08237071, 717104.0);
+ * fitter.addObservedPoint(4.08366408, 620014.0);
+ * double[] parameters = fitter.fit();
+ * </pre>
+ *
+ * @since 2.2
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ */
+@Deprecated
+public class GaussianFitter extends CurveFitter<Gaussian.Parametric> {
+ /**
+ * Constructs an instance using the specified optimizer.
+ *
+ * @param optimizer Optimizer to use for the fitting.
+ */
+ public GaussianFitter(DifferentiableMultivariateVectorOptimizer optimizer) {
+ super(optimizer);
+ }
+
+ /**
+ * Fits a Gaussian function to the observed points.
+ *
+ * @param initialGuess First guess values in the following order:
+ * <ul>
+ * <li>Norm</li>
+ * <li>Mean</li>
+ * <li>Sigma</li>
+ * </ul>
+ * @return the parameters of the Gaussian function that best fits the
+ * observed points (in the same order as above).
+ * @since 3.0
+ */
+ public double[] fit(double[] initialGuess) {
+ final Gaussian.Parametric f = new Gaussian.Parametric() {
+ /** {@inheritDoc} */
+ @Override
+ public double value(double x, double ... p) {
+ double v = Double.POSITIVE_INFINITY;
+ try {
+ v = super.value(x, p);
+ } catch (NotStrictlyPositiveException e) { // NOPMD
+ // Do nothing.
+ }
+ return v;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public double[] gradient(double x, double ... p) {
+ double[] v = { Double.POSITIVE_INFINITY,
+ Double.POSITIVE_INFINITY,
+ Double.POSITIVE_INFINITY };
+ try {
+ v = super.gradient(x, p);
+ } catch (NotStrictlyPositiveException e) { // NOPMD
+ // Do nothing.
+ }
+ return v;
+ }
+ };
+
+ return fit(f, initialGuess);
+ }
+
+ /**
+ * Fits a Gaussian function to the observed points.
+ *
+ * @return the parameters of the Gaussian function that best fits the
+ * observed points (in the same order as above).
+ */
+ public double[] fit() {
+ final double[] guess = (new ParameterGuesser(getObservations())).guess();
+ return fit(guess);
+ }
+
+ /**
+ * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
+ * of a {@link org.apache.commons.math3.analysis.function.Gaussian.Parametric}
+ * based on the specified observed points.
+ */
+ public static class ParameterGuesser {
+ /** Normalization factor. */
+ private final double norm;
+ /** Mean. */
+ private final double mean;
+ /** Standard deviation. */
+ private final double sigma;
+
+ /**
+ * Constructs instance with the specified observed points.
+ *
+ * @param observations Observed points from which to guess the
+ * parameters of the Gaussian.
+ * @throws NullArgumentException if {@code observations} is
+ * {@code null}.
+ * @throws NumberIsTooSmallException if there are less than 3
+ * observations.
+ */
+ public ParameterGuesser(WeightedObservedPoint[] observations) {
+ if (observations == null) {
+ throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
+ }
+ if (observations.length < 3) {
+ throw new NumberIsTooSmallException(observations.length, 3, true);
+ }
+
+ final WeightedObservedPoint[] sorted = sortObservations(observations);
+ final double[] params = basicGuess(sorted);
+
+ norm = params[0];
+ mean = params[1];
+ sigma = params[2];
+ }
+
+ /**
+ * Gets an estimation of the parameters.
+ *
+ * @return the guessed parameters, in the following order:
+ * <ul>
+ * <li>Normalization factor</li>
+ * <li>Mean</li>
+ * <li>Standard deviation</li>
+ * </ul>
+ */
+ public double[] guess() {
+ return new double[] { norm, mean, sigma };
+ }
+
+ /**
+ * Sort the observations.
+ *
+ * @param unsorted Input observations.
+ * @return the input observations, sorted.
+ */
+ private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
+ final WeightedObservedPoint[] observations = unsorted.clone();
+ final Comparator<WeightedObservedPoint> cmp
+ = new Comparator<WeightedObservedPoint>() {
+ /** {@inheritDoc} */
+ public int compare(WeightedObservedPoint p1,
+ WeightedObservedPoint p2) {
+ if (p1 == null && p2 == null) {
+ return 0;
+ }
+ if (p1 == null) {
+ return -1;
+ }
+ if (p2 == null) {
+ return 1;
+ }
+ final int cmpX = Double.compare(p1.getX(), p2.getX());
+ if (cmpX < 0) {
+ return -1;
+ }
+ if (cmpX > 0) {
+ return 1;
+ }
+ final int cmpY = Double.compare(p1.getY(), p2.getY());
+ if (cmpY < 0) {
+ return -1;
+ }
+ if (cmpY > 0) {
+ return 1;
+ }
+ final int cmpW = Double.compare(p1.getWeight(), p2.getWeight());
+ if (cmpW < 0) {
+ return -1;
+ }
+ if (cmpW > 0) {
+ return 1;
+ }
+ return 0;
+ }
+ };
+
+ Arrays.sort(observations, cmp);
+ return observations;
+ }
+
+ /**
+ * Guesses the parameters based on the specified observed points.
+ *
+ * @param points Observed points, sorted.
+ * @return the guessed parameters (normalization factor, mean and
+ * sigma).
+ */
+ private double[] basicGuess(WeightedObservedPoint[] points) {
+ final int maxYIdx = findMaxY(points);
+ final double n = points[maxYIdx].getY();
+ final double m = points[maxYIdx].getX();
+
+ double fwhmApprox;
+ try {
+ final double halfY = n + ((m - n) / 2);
+ final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
+ final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
+ fwhmApprox = fwhmX2 - fwhmX1;
+ } catch (OutOfRangeException e) {
+ // TODO: Exceptions should not be used for flow control.
+ fwhmApprox = points[points.length - 1].getX() - points[0].getX();
+ }
+ final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2)));
+
+ return new double[] { n, m, s };
+ }
+
+ /**
+ * Finds index of point in specified points with the largest Y.
+ *
+ * @param points Points to search.
+ * @return the index in specified points array.
+ */
+ private int findMaxY(WeightedObservedPoint[] points) {
+ int maxYIdx = 0;
+ for (int i = 1; i < points.length; i++) {
+ if (points[i].getY() > points[maxYIdx].getY()) {
+ maxYIdx = i;
+ }
+ }
+ return maxYIdx;
+ }
+
+ /**
+ * Interpolates using the specified points to determine X at the
+ * specified Y.
+ *
+ * @param points Points to use for interpolation.
+ * @param startIdx Index within points from which to start the search for
+ * interpolation bounds points.
+ * @param idxStep Index step for searching interpolation bounds points.
+ * @param y Y value for which X should be determined.
+ * @return the value of X for the specified Y.
+ * @throws ZeroException if {@code idxStep} is 0.
+ * @throws OutOfRangeException if specified {@code y} is not within the
+ * range of the specified {@code points}.
+ */
+ private double interpolateXAtY(WeightedObservedPoint[] points,
+ int startIdx,
+ int idxStep,
+ double y)
+ throws OutOfRangeException {
+ if (idxStep == 0) {
+ throw new ZeroException();
+ }
+ final WeightedObservedPoint[] twoPoints
+ = getInterpolationPointsForY(points, startIdx, idxStep, y);
+ final WeightedObservedPoint p1 = twoPoints[0];
+ final WeightedObservedPoint p2 = twoPoints[1];
+ if (p1.getY() == y) {
+ return p1.getX();
+ }
+ if (p2.getY() == y) {
+ return p2.getX();
+ }
+ return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
+ (p2.getY() - p1.getY()));
+ }
+
+ /**
+ * Gets the two bounding interpolation points from the specified points
+ * suitable for determining X at the specified Y.
+ *
+ * @param points Points to use for interpolation.
+ * @param startIdx Index within points from which to start search for
+ * interpolation bounds points.
+ * @param idxStep Index step for search for interpolation bounds points.
+ * @param y Y value for which X should be determined.
+ * @return the array containing two points suitable for determining X at
+ * the specified Y.
+ * @throws ZeroException if {@code idxStep} is 0.
+ * @throws OutOfRangeException if specified {@code y} is not within the
+ * range of the specified {@code points}.
+ */
+ private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
+ int startIdx,
+ int idxStep,
+ double y)
+ throws OutOfRangeException {
+ if (idxStep == 0) {
+ throw new ZeroException();
+ }
+ for (int i = startIdx;
+ idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
+ i += idxStep) {
+ final WeightedObservedPoint p1 = points[i];
+ final WeightedObservedPoint p2 = points[i + idxStep];
+ if (isBetween(y, p1.getY(), p2.getY())) {
+ if (idxStep < 0) {
+ return new WeightedObservedPoint[] { p2, p1 };
+ } else {
+ return new WeightedObservedPoint[] { p1, p2 };
+ }
+ }
+ }
+
+ // Boundaries are replaced by dummy values because the raised
+ // exception is caught and the message never displayed.
+ // TODO: Exceptions should not be used for flow control.
+ throw new OutOfRangeException(y,
+ Double.NEGATIVE_INFINITY,
+ Double.POSITIVE_INFINITY);
+ }
+
+ /**
+ * Determines whether a value is between two other values.
+ *
+ * @param value Value to test whether it is between {@code boundary1}
+ * and {@code boundary2}.
+ * @param boundary1 One end of the range.
+ * @param boundary2 Other end of the range.
+ * @return {@code true} if {@code value} is between {@code boundary1} and
+ * {@code boundary2} (inclusive), {@code false} otherwise.
+ */
+ private boolean isBetween(double value,
+ double boundary1,
+ double boundary2) {
+ return (value >= boundary1 && value <= boundary2) ||
+ (value >= boundary2 && value <= boundary1);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/fitting/HarmonicFitter.java b/src/main/java/org/apache/commons/math3/optimization/fitting/HarmonicFitter.java
new file mode 100644
index 0000000..85c6d18
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/fitting/HarmonicFitter.java
@@ -0,0 +1,384 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.fitting;
+
+import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
+import org.apache.commons.math3.analysis.function.HarmonicOscillator;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Class that implements a curve fitting specialized for sinusoids.
+ *
+ * Harmonic fitting is a very simple case of curve fitting. The
+ * estimated coefficients are the amplitude a, the pulsation &omega; and
+ * the phase &phi;: <code>f (t) = a cos (&omega; t + &phi;)</code>. They are
+ * searched by a least square estimator initialized with a rough guess
+ * based on integrals.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class HarmonicFitter extends CurveFitter<HarmonicOscillator.Parametric> {
+ /**
+ * Simple constructor.
+ * @param optimizer Optimizer to use for the fitting.
+ */
+ public HarmonicFitter(final DifferentiableMultivariateVectorOptimizer optimizer) {
+ super(optimizer);
+ }
+
+ /**
+ * Fit an harmonic function to the observed points.
+ *
+ * @param initialGuess First guess values in the following order:
+ * <ul>
+ * <li>Amplitude</li>
+ * <li>Angular frequency</li>
+ * <li>Phase</li>
+ * </ul>
+ * @return the parameters of the harmonic function that best fits the
+ * observed points (in the same order as above).
+ */
+ public double[] fit(double[] initialGuess) {
+ return fit(new HarmonicOscillator.Parametric(), initialGuess);
+ }
+
+ /**
+ * Fit an harmonic function to the observed points.
+ * An initial guess will be automatically computed.
+ *
+ * @return the parameters of the harmonic function that best fits the
+ * observed points (see the other {@link #fit(double[]) fit} method.
+ * @throws NumberIsTooSmallException if the sample is too short for the
+ * the first guess to be computed.
+ * @throws ZeroException if the first guess cannot be computed because
+ * the abscissa range is zero.
+ */
+ public double[] fit() {
+ return fit((new ParameterGuesser(getObservations())).guess());
+ }
+
+ /**
+ * This class guesses harmonic coefficients from a sample.
+ * <p>The algorithm used to guess the coefficients is as follows:</p>
+ *
+ * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a,
+ * &omega; and &phi; such that f (t) = a cos (&omega; t + &phi;).
+ * </p>
+ *
+ * <p>From the analytical expression, we can compute two primitives :
+ * <pre>
+ * If2 (t) = &int; f<sup>2</sup> = a<sup>2</sup> &times; [t + S (t)] / 2
+ * If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
+ * where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
+ * </pre>
+ * </p>
+ *
+ * <p>We can remove S between these expressions :
+ * <pre>
+ * If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
+ * </pre>
+ * </p>
+ *
+ * <p>The preceding expression shows that If'2 (t) is a linear
+ * combination of both t and If2 (t): If'2 (t) = A &times; t + B &times; If2 (t)
+ * </p>
+ *
+ * <p>From the primitive, we can deduce the same form for definite
+ * integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
+ * <pre>
+ * If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
+ * </pre>
+ * </p>
+ *
+ * <p>We can find the coefficients A and B that best fit the sample
+ * to this linear expression by computing the definite integrals for
+ * each sample points.
+ * </p>
+ *
+ * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B &times; y<sub>i</sub>, the
+ * coefficients A and B that minimize a least square criterion
+ * &sum; (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p>
+ * <pre>
+ *
+ * &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ * A = ------------------------
+ * &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+ *
+ * &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
+ * B = ------------------------
+ * &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+ * </pre>
+ * </p>
+ *
+ *
+ * <p>In fact, we can assume both a and &omega; are positive and
+ * compute them directly, knowing that A = a<sup>2</sup> &omega;<sup>2</sup> and that
+ * B = - &omega;<sup>2</sup>. The complete algorithm is therefore:</p>
+ * <pre>
+ *
+ * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
+ * f (t<sub>i</sub>)
+ * f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
+ * x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
+ * y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
+ * z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
+ * update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
+ * end for
+ *
+ * |--------------------------
+ * \ | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ * a = \ | ------------------------
+ * \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ *
+ *
+ * |--------------------------
+ * \ | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+ * &omega; = \ | ------------------------
+ * \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+ *
+ * </pre>
+ * </p>
+ *
+ * <p>Once we know &omega;, we can compute:
+ * <pre>
+ * fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
+ * fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
+ * </pre>
+ * </p>
+ *
+ * <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and
+ * <code>fs = -a &omega; sin (&phi;)</code>, so we can use these
+ * expressions to compute &phi;. The best estimate over the sample is
+ * given by averaging these expressions.
+ * </p>
+ *
+ * <p>Since integrals and means are involved in the preceding
+ * estimations, these operations run in O(n) time, where n is the
+ * number of measurements.</p>
+ */
+ public static class ParameterGuesser {
+ /** Amplitude. */
+ private final double a;
+ /** Angular frequency. */
+ private final double omega;
+ /** Phase. */
+ private final double phi;
+
+ /**
+ * Simple constructor.
+ *
+ * @param observations Sampled observations.
+ * @throws NumberIsTooSmallException if the sample is too short.
+ * @throws ZeroException if the abscissa range is zero.
+ * @throws MathIllegalStateException when the guessing procedure cannot
+ * produce sensible results.
+ */
+ public ParameterGuesser(WeightedObservedPoint[] observations) {
+ if (observations.length < 4) {
+ throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
+ observations.length, 4, true);
+ }
+
+ final WeightedObservedPoint[] sorted = sortObservations(observations);
+
+ final double aOmega[] = guessAOmega(sorted);
+ a = aOmega[0];
+ omega = aOmega[1];
+
+ phi = guessPhi(sorted);
+ }
+
+ /**
+ * Gets an estimation of the parameters.
+ *
+ * @return the guessed parameters, in the following order:
+ * <ul>
+ * <li>Amplitude</li>
+ * <li>Angular frequency</li>
+ * <li>Phase</li>
+ * </ul>
+ */
+ public double[] guess() {
+ return new double[] { a, omega, phi };
+ }
+
+ /**
+ * Sort the observations with respect to the abscissa.
+ *
+ * @param unsorted Input observations.
+ * @return the input observations, sorted.
+ */
+ private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
+ final WeightedObservedPoint[] observations = unsorted.clone();
+
+ // Since the samples are almost always already sorted, this
+ // method is implemented as an insertion sort that reorders the
+ // elements in place. Insertion sort is very efficient in this case.
+ WeightedObservedPoint curr = observations[0];
+ for (int j = 1; j < observations.length; ++j) {
+ WeightedObservedPoint prec = curr;
+ curr = observations[j];
+ if (curr.getX() < prec.getX()) {
+ // the current element should be inserted closer to the beginning
+ int i = j - 1;
+ WeightedObservedPoint mI = observations[i];
+ while ((i >= 0) && (curr.getX() < mI.getX())) {
+ observations[i + 1] = mI;
+ if (i-- != 0) {
+ mI = observations[i];
+ }
+ }
+ observations[i + 1] = curr;
+ curr = observations[j];
+ }
+ }
+
+ return observations;
+ }
+
+ /**
+ * Estimate a first guess of the amplitude and angular frequency.
+ * This method assumes that the {@link #sortObservations(WeightedObservedPoint[])} method
+ * has been called previously.
+ *
+ * @param observations Observations, sorted w.r.t. abscissa.
+ * @throws ZeroException if the abscissa range is zero.
+ * @throws MathIllegalStateException when the guessing procedure cannot
+ * produce sensible results.
+ * @return the guessed amplitude (at index 0) and circular frequency
+ * (at index 1).
+ */
+ private double[] guessAOmega(WeightedObservedPoint[] observations) {
+ final double[] aOmega = new double[2];
+
+ // initialize the sums for the linear model between the two integrals
+ double sx2 = 0;
+ double sy2 = 0;
+ double sxy = 0;
+ double sxz = 0;
+ double syz = 0;
+
+ double currentX = observations[0].getX();
+ double currentY = observations[0].getY();
+ double f2Integral = 0;
+ double fPrime2Integral = 0;
+ final double startX = currentX;
+ for (int i = 1; i < observations.length; ++i) {
+ // one step forward
+ final double previousX = currentX;
+ final double previousY = currentY;
+ currentX = observations[i].getX();
+ currentY = observations[i].getY();
+
+ // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
+ // considering a linear model for f (and therefore constant f')
+ final double dx = currentX - previousX;
+ final double dy = currentY - previousY;
+ final double f2StepIntegral =
+ dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
+ final double fPrime2StepIntegral = dy * dy / dx;
+
+ final double x = currentX - startX;
+ f2Integral += f2StepIntegral;
+ fPrime2Integral += fPrime2StepIntegral;
+
+ sx2 += x * x;
+ sy2 += f2Integral * f2Integral;
+ sxy += x * f2Integral;
+ sxz += x * fPrime2Integral;
+ syz += f2Integral * fPrime2Integral;
+ }
+
+ // compute the amplitude and pulsation coefficients
+ double c1 = sy2 * sxz - sxy * syz;
+ double c2 = sxy * sxz - sx2 * syz;
+ double c3 = sx2 * sy2 - sxy * sxy;
+ if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
+ final int last = observations.length - 1;
+ // Range of the observations, assuming that the
+ // observations are sorted.
+ final double xRange = observations[last].getX() - observations[0].getX();
+ if (xRange == 0) {
+ throw new ZeroException();
+ }
+ aOmega[1] = 2 * Math.PI / xRange;
+
+ double yMin = Double.POSITIVE_INFINITY;
+ double yMax = Double.NEGATIVE_INFINITY;
+ for (int i = 1; i < observations.length; ++i) {
+ final double y = observations[i].getY();
+ if (y < yMin) {
+ yMin = y;
+ }
+ if (y > yMax) {
+ yMax = y;
+ }
+ }
+ aOmega[0] = 0.5 * (yMax - yMin);
+ } else {
+ if (c2 == 0) {
+ // In some ill-conditioned cases (cf. MATH-844), the guesser
+ // procedure cannot produce sensible results.
+ throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR);
+ }
+
+ aOmega[0] = FastMath.sqrt(c1 / c2);
+ aOmega[1] = FastMath.sqrt(c2 / c3);
+ }
+
+ return aOmega;
+ }
+
+ /**
+ * Estimate a first guess of the phase.
+ *
+ * @param observations Observations, sorted w.r.t. abscissa.
+ * @return the guessed phase.
+ */
+ private double guessPhi(WeightedObservedPoint[] observations) {
+ // initialize the means
+ double fcMean = 0;
+ double fsMean = 0;
+
+ double currentX = observations[0].getX();
+ double currentY = observations[0].getY();
+ for (int i = 1; i < observations.length; ++i) {
+ // one step forward
+ final double previousX = currentX;
+ final double previousY = currentY;
+ currentX = observations[i].getX();
+ currentY = observations[i].getY();
+ final double currentYPrime = (currentY - previousY) / (currentX - previousX);
+
+ double omegaX = omega * currentX;
+ double cosine = FastMath.cos(omegaX);
+ double sine = FastMath.sin(omegaX);
+ fcMean += omega * currentY * cosine - currentYPrime * sine;
+ fsMean += omega * currentY * sine + currentYPrime * cosine;
+ }
+
+ return FastMath.atan2(-fsMean, fcMean);
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/fitting/PolynomialFitter.java b/src/main/java/org/apache/commons/math3/optimization/fitting/PolynomialFitter.java
new file mode 100644
index 0000000..dbefcc2
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/fitting/PolynomialFitter.java
@@ -0,0 +1,111 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.fitting;
+
+import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
+import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
+
+/**
+ * Polynomial fitting is a very simple case of {@link CurveFitter curve fitting}.
+ * The estimated coefficients are the polynomial coefficients (see the
+ * {@link #fit(double[]) fit} method).
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class PolynomialFitter extends CurveFitter<PolynomialFunction.Parametric> {
+ /** Polynomial degree.
+ * @deprecated
+ */
+ @Deprecated
+ private final int degree;
+
+ /**
+ * Simple constructor.
+ * <p>The polynomial fitter built this way are complete polynomials,
+ * ie. a n-degree polynomial has n+1 coefficients.</p>
+ *
+ * @param degree Maximal degree of the polynomial.
+ * @param optimizer Optimizer to use for the fitting.
+ * @deprecated Since 3.1 (to be removed in 4.0). Please use
+ * {@link #PolynomialFitter(DifferentiableMultivariateVectorOptimizer)} instead.
+ */
+ @Deprecated
+ public PolynomialFitter(int degree, final DifferentiableMultivariateVectorOptimizer optimizer) {
+ super(optimizer);
+ this.degree = degree;
+ }
+
+ /**
+ * Simple constructor.
+ *
+ * @param optimizer Optimizer to use for the fitting.
+ * @since 3.1
+ */
+ public PolynomialFitter(DifferentiableMultivariateVectorOptimizer optimizer) {
+ super(optimizer);
+ degree = -1; // To avoid compilation error until the instance variable is removed.
+ }
+
+ /**
+ * Get the polynomial fitting the weighted (x, y) points.
+ *
+ * @return the coefficients of the polynomial that best fits the observed points.
+ * @throws org.apache.commons.math3.exception.ConvergenceException
+ * if the algorithm failed to converge.
+ * @deprecated Since 3.1 (to be removed in 4.0). Please use {@link #fit(double[])} instead.
+ */
+ @Deprecated
+ public double[] fit() {
+ return fit(new PolynomialFunction.Parametric(), new double[degree + 1]);
+ }
+
+ /**
+ * Get the coefficients of the polynomial fitting the weighted data points.
+ * The degree of the fitting polynomial is {@code guess.length - 1}.
+ *
+ * @param guess First guess for the coefficients. They must be sorted in
+ * increasing order of the polynomial's degree.
+ * @param maxEval Maximum number of evaluations of the polynomial.
+ * @return the coefficients of the polynomial that best fits the observed points.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException if
+ * the number of evaluations exceeds {@code maxEval}.
+ * @throws org.apache.commons.math3.exception.ConvergenceException
+ * if the algorithm failed to converge.
+ * @since 3.1
+ */
+ public double[] fit(int maxEval, double[] guess) {
+ return fit(maxEval, new PolynomialFunction.Parametric(), guess);
+ }
+
+ /**
+ * Get the coefficients of the polynomial fitting the weighted data points.
+ * The degree of the fitting polynomial is {@code guess.length - 1}.
+ *
+ * @param guess First guess for the coefficients. They must be sorted in
+ * increasing order of the polynomial's degree.
+ * @return the coefficients of the polynomial that best fits the observed points.
+ * @throws org.apache.commons.math3.exception.ConvergenceException
+ * if the algorithm failed to converge.
+ * @since 3.1
+ */
+ public double[] fit(double[] guess) {
+ return fit(new PolynomialFunction.Parametric(), guess);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/fitting/WeightedObservedPoint.java b/src/main/java/org/apache/commons/math3/optimization/fitting/WeightedObservedPoint.java
new file mode 100644
index 0000000..899a502
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/fitting/WeightedObservedPoint.java
@@ -0,0 +1,76 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.fitting;
+
+import java.io.Serializable;
+
+/** This class is a simple container for weighted observed point in
+ * {@link CurveFitter curve fitting}.
+ * <p>Instances of this class are guaranteed to be immutable.</p>
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class WeightedObservedPoint implements Serializable {
+
+ /** Serializable version id. */
+ private static final long serialVersionUID = 5306874947404636157L;
+
+ /** Weight of the measurement in the fitting process. */
+ private final double weight;
+
+ /** Abscissa of the point. */
+ private final double x;
+
+ /** Observed value of the function at x. */
+ private final double y;
+
+ /** Simple constructor.
+ * @param weight weight of the measurement in the fitting process
+ * @param x abscissa of the measurement
+ * @param y ordinate of the measurement
+ */
+ public WeightedObservedPoint(final double weight, final double x, final double y) {
+ this.weight = weight;
+ this.x = x;
+ this.y = y;
+ }
+
+ /** Get the weight of the measurement in the fitting process.
+ * @return weight of the measurement in the fitting process
+ */
+ public double getWeight() {
+ return weight;
+ }
+
+ /** Get the abscissa of the point.
+ * @return abscissa of the point
+ */
+ public double getX() {
+ return x;
+ }
+
+ /** Get the observed value of the function at x.
+ * @return observed value of the function at x
+ */
+ public double getY() {
+ return y;
+ }
+
+}
+
diff --git a/src/main/java/org/apache/commons/math3/optimization/fitting/package-info.java b/src/main/java/org/apache/commons/math3/optimization/fitting/package-info.java
new file mode 100644
index 0000000..b25e5fd
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/fitting/package-info.java
@@ -0,0 +1,30 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * This package provides classes to perform curve fitting.
+ *
+ * <p>Curve fitting is a special case of a least squares problem
+ * were the parameters are the coefficients of a function <code>f</code>
+ * whose graph <code>y=f(x)</code> should pass through sample points, and
+ * were the objective function is the squared sum of residuals
+ * <code>f(x<sub>i</sub>)-y<sub>i</sub></code> for observed points
+ * (x<sub>i</sub>, y<sub>i</sub>).</p>
+ *
+ *
+ */
+package org.apache.commons.math3.optimization.fitting;
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/AbstractDifferentiableOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/AbstractDifferentiableOptimizer.java
new file mode 100644
index 0000000..d175863
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/AbstractDifferentiableOptimizer.java
@@ -0,0 +1,90 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.analysis.differentiation.GradientFunction;
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.OptimizationData;
+import org.apache.commons.math3.optimization.InitialGuess;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer;
+
+/**
+ * Base class for implementing optimizers for multivariate scalar
+ * differentiable functions.
+ * It contains boiler-plate code for dealing with gradient evaluation.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public abstract class AbstractDifferentiableOptimizer
+ extends BaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction> {
+ /**
+ * Objective function gradient.
+ */
+ private MultivariateVectorFunction gradient;
+
+ /**
+ * @param checker Convergence checker.
+ */
+ protected AbstractDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * Compute the gradient vector.
+ *
+ * @param evaluationPoint Point at which the gradient must be evaluated.
+ * @return the gradient at the specified point.
+ */
+ protected double[] computeObjectiveGradient(final double[] evaluationPoint) {
+ return gradient.value(evaluationPoint);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @deprecated In 3.1. Please use
+ * {@link #optimizeInternal(int,MultivariateDifferentiableFunction,GoalType,OptimizationData[])}
+ * instead.
+ */
+ @Override@Deprecated
+ protected PointValuePair optimizeInternal(final int maxEval,
+ final MultivariateDifferentiableFunction f,
+ final GoalType goalType,
+ final double[] startPoint) {
+ return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint));
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair optimizeInternal(final int maxEval,
+ final MultivariateDifferentiableFunction f,
+ final GoalType goalType,
+ final OptimizationData... optData) {
+ // Store optimization problem characteristics.
+ gradient = new GradientFunction(f);
+
+ // Perform optimization.
+ return super.optimizeInternal(maxEval, f, goalType, optData);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java
new file mode 100644
index 0000000..96f7fb2
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java
@@ -0,0 +1,577 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateVectorFunction;
+import org.apache.commons.math3.analysis.FunctionUtils;
+import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.linear.DiagonalMatrix;
+import org.apache.commons.math3.linear.DecompositionSolver;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.QRDecomposition;
+import org.apache.commons.math3.linear.EigenDecomposition;
+import org.apache.commons.math3.optimization.OptimizationData;
+import org.apache.commons.math3.optimization.InitialGuess;
+import org.apache.commons.math3.optimization.Target;
+import org.apache.commons.math3.optimization.Weight;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
+import org.apache.commons.math3.optimization.PointVectorValuePair;
+import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateVectorOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Base class for implementing least squares optimizers.
+ * It handles the boilerplate methods associated to thresholds settings,
+ * Jacobian and error estimation.
+ * <br/>
+ * This class constructs the Jacobian matrix of the function argument in method
+ * {@link BaseAbstractMultivariateVectorOptimizer#optimize(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * optimize} and assumes that the rows of that matrix iterate on the model
+ * functions while the columns iterate on the parameters; thus, the numbers
+ * of rows is equal to the dimension of the
+ * {@link org.apache.commons.math3.optimization.Target Target} while
+ * the number of columns is equal to the dimension of the
+ * {@link org.apache.commons.math3.optimization.InitialGuess InitialGuess}.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 1.2
+ */
+@Deprecated
+public abstract class AbstractLeastSquaresOptimizer
+ extends BaseAbstractMultivariateVectorOptimizer<DifferentiableMultivariateVectorFunction>
+ implements DifferentiableMultivariateVectorOptimizer {
+ /**
+ * Singularity threshold (cf. {@link #getCovariances(double)}).
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ private static final double DEFAULT_SINGULARITY_THRESHOLD = 1e-14;
+ /**
+ * Jacobian matrix of the weighted residuals.
+ * This matrix is in canonical form just after the calls to
+ * {@link #updateJacobian()}, but may be modified by the solver
+ * in the derived class (the {@link LevenbergMarquardtOptimizer
+ * Levenberg-Marquardt optimizer} does this).
+ * @deprecated As of 3.1. To be removed in 4.0. Please use
+ * {@link #computeWeightedJacobian(double[])} instead.
+ */
+ @Deprecated
+ protected double[][] weightedResidualJacobian;
+ /** Number of columns of the jacobian matrix.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected int cols;
+ /** Number of rows of the jacobian matrix.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected int rows;
+ /** Current point.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] point;
+ /** Current objective function value.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] objective;
+ /** Weighted residuals
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] weightedResiduals;
+ /** Cost value (square root of the sum of the residuals).
+ * @deprecated As of 3.1. Field to become "private" in 4.0.
+ * Please use {@link #setCost(double)}.
+ */
+ @Deprecated
+ protected double cost;
+ /** Objective function derivatives. */
+ private MultivariateDifferentiableVectorFunction jF;
+ /** Number of evaluations of the Jacobian. */
+ private int jacobianEvaluations;
+ /** Square-root of the weight matrix. */
+ private RealMatrix weightMatrixSqrt;
+
+ /**
+ * Simple constructor with default settings.
+ * The convergence check is set to a {@link
+ * org.apache.commons.math3.optimization.SimpleVectorValueChecker}.
+ * @deprecated See {@link org.apache.commons.math3.optimization.SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ protected AbstractLeastSquaresOptimizer() {}
+
+ /**
+ * @param checker Convergence checker.
+ */
+ protected AbstractLeastSquaresOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * @return the number of evaluations of the Jacobian function.
+ */
+ public int getJacobianEvaluations() {
+ return jacobianEvaluations;
+ }
+
+ /**
+ * Update the jacobian matrix.
+ *
+ * @throws DimensionMismatchException if the Jacobian dimension does not
+ * match problem dimension.
+ * @deprecated As of 3.1. Please use {@link #computeWeightedJacobian(double[])}
+ * instead.
+ */
+ @Deprecated
+ protected void updateJacobian() {
+ final RealMatrix weightedJacobian = computeWeightedJacobian(point);
+ weightedResidualJacobian = weightedJacobian.scalarMultiply(-1).getData();
+ }
+
+ /**
+ * Computes the Jacobian matrix.
+ *
+ * @param params Model parameters at which to compute the Jacobian.
+ * @return the weighted Jacobian: W<sup>1/2</sup> J.
+ * @throws DimensionMismatchException if the Jacobian dimension does not
+ * match problem dimension.
+ * @since 3.1
+ */
+ protected RealMatrix computeWeightedJacobian(double[] params) {
+ ++jacobianEvaluations;
+
+ final DerivativeStructure[] dsPoint = new DerivativeStructure[params.length];
+ final int nC = params.length;
+ for (int i = 0; i < nC; ++i) {
+ dsPoint[i] = new DerivativeStructure(nC, 1, i, params[i]);
+ }
+ final DerivativeStructure[] dsValue = jF.value(dsPoint);
+ final int nR = getTarget().length;
+ if (dsValue.length != nR) {
+ throw new DimensionMismatchException(dsValue.length, nR);
+ }
+ final double[][] jacobianData = new double[nR][nC];
+ for (int i = 0; i < nR; ++i) {
+ int[] orders = new int[nC];
+ for (int j = 0; j < nC; ++j) {
+ orders[j] = 1;
+ jacobianData[i][j] = dsValue[i].getPartialDerivative(orders);
+ orders[j] = 0;
+ }
+ }
+
+ return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(jacobianData));
+ }
+
+ /**
+ * Update the residuals array and cost function value.
+ * @throws DimensionMismatchException if the dimension does not match the
+ * problem dimension.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ * @deprecated As of 3.1. Please use {@link #computeResiduals(double[])},
+ * {@link #computeObjectiveValue(double[])}, {@link #computeCost(double[])}
+ * and {@link #setCost(double)} instead.
+ */
+ @Deprecated
+ protected void updateResidualsAndCost() {
+ objective = computeObjectiveValue(point);
+ final double[] res = computeResiduals(objective);
+
+ // Compute cost.
+ cost = computeCost(res);
+
+ // Compute weighted residuals.
+ final ArrayRealVector residuals = new ArrayRealVector(res);
+ weightedResiduals = weightMatrixSqrt.operate(residuals).toArray();
+ }
+
+ /**
+ * Computes the cost.
+ *
+ * @param residuals Residuals.
+ * @return the cost.
+ * @see #computeResiduals(double[])
+ * @since 3.1
+ */
+ protected double computeCost(double[] residuals) {
+ final ArrayRealVector r = new ArrayRealVector(residuals);
+ return FastMath.sqrt(r.dotProduct(getWeight().operate(r)));
+ }
+
+ /**
+ * Get the Root Mean Square value.
+ * Get the Root Mean Square value, i.e. the root of the arithmetic
+ * mean of the square of all weighted residuals. This is related to the
+ * criterion that is minimized by the optimizer as follows: if
+ * <em>c</em> if the criterion, and <em>n</em> is the number of
+ * measurements, then the RMS is <em>sqrt (c/n)</em>.
+ *
+ * @return RMS value
+ */
+ public double getRMS() {
+ return FastMath.sqrt(getChiSquare() / rows);
+ }
+
+ /**
+ * Get a Chi-Square-like value assuming the N residuals follow N
+ * distinct normal distributions centered on 0 and whose variances are
+ * the reciprocal of the weights.
+ * @return chi-square value
+ */
+ public double getChiSquare() {
+ return cost * cost;
+ }
+
+ /**
+ * Gets the square-root of the weight matrix.
+ *
+ * @return the square-root of the weight matrix.
+ * @since 3.1
+ */
+ public RealMatrix getWeightSquareRoot() {
+ return weightMatrixSqrt.copy();
+ }
+
+ /**
+ * Sets the cost.
+ *
+ * @param cost Cost value.
+ * @since 3.1
+ */
+ protected void setCost(double cost) {
+ this.cost = cost;
+ }
+
+ /**
+ * Get the covariance matrix of the optimized parameters.
+ *
+ * @return the covariance matrix.
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed (singular problem).
+ * @see #getCovariances(double)
+ * @deprecated As of 3.1. Please use {@link #computeCovariances(double[],double)}
+ * instead.
+ */
+ @Deprecated
+ public double[][] getCovariances() {
+ return getCovariances(DEFAULT_SINGULARITY_THRESHOLD);
+ }
+
+ /**
+ * Get the covariance matrix of the optimized parameters.
+ * <br/>
+ * Note that this operation involves the inversion of the
+ * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the
+ * Jacobian matrix.
+ * The {@code threshold} parameter is a way for the caller to specify
+ * that the result of this computation should be considered meaningless,
+ * and thus trigger an exception.
+ *
+ * @param threshold Singularity threshold.
+ * @return the covariance matrix.
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed (singular problem).
+ * @deprecated As of 3.1. Please use {@link #computeCovariances(double[],double)}
+ * instead.
+ */
+ @Deprecated
+ public double[][] getCovariances(double threshold) {
+ return computeCovariances(point, threshold);
+ }
+
+ /**
+ * Get the covariance matrix of the optimized parameters.
+ * <br/>
+ * Note that this operation involves the inversion of the
+ * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the
+ * Jacobian matrix.
+ * The {@code threshold} parameter is a way for the caller to specify
+ * that the result of this computation should be considered meaningless,
+ * and thus trigger an exception.
+ *
+ * @param params Model parameters.
+ * @param threshold Singularity threshold.
+ * @return the covariance matrix.
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed (singular problem).
+ * @since 3.1
+ */
+ public double[][] computeCovariances(double[] params,
+ double threshold) {
+ // Set up the Jacobian.
+ final RealMatrix j = computeWeightedJacobian(params);
+
+ // Compute transpose(J)J.
+ final RealMatrix jTj = j.transpose().multiply(j);
+
+ // Compute the covariances matrix.
+ final DecompositionSolver solver
+ = new QRDecomposition(jTj, threshold).getSolver();
+ return solver.getInverse().getData();
+ }
+
+ /**
+ * <p>
+ * Returns an estimate of the standard deviation of each parameter. The
+ * returned values are the so-called (asymptotic) standard errors on the
+ * parameters, defined as {@code sd(a[i]) = sqrt(S / (n - m) * C[i][i])},
+ * where {@code a[i]} is the optimized value of the {@code i}-th parameter,
+ * {@code S} is the minimized value of the sum of squares objective function
+ * (as returned by {@link #getChiSquare()}), {@code n} is the number of
+ * observations, {@code m} is the number of parameters and {@code C} is the
+ * covariance matrix.
+ * </p>
+ * <p>
+ * See also
+ * <a href="http://en.wikipedia.org/wiki/Least_squares">Wikipedia</a>,
+ * or
+ * <a href="http://mathworld.wolfram.com/LeastSquaresFitting.html">MathWorld</a>,
+ * equations (34) and (35) for a particular case.
+ * </p>
+ *
+ * @return an estimate of the standard deviation of the optimized parameters
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed.
+ * @throws NumberIsTooSmallException if the number of degrees of freedom is not
+ * positive, i.e. the number of measurements is less or equal to the number of
+ * parameters.
+ * @deprecated as of version 3.1, {@link #computeSigma(double[],double)} should be used
+ * instead. It should be emphasized that {@code guessParametersErrors} and
+ * {@code computeSigma} are <em>not</em> strictly equivalent.
+ */
+ @Deprecated
+ public double[] guessParametersErrors() {
+ if (rows <= cols) {
+ throw new NumberIsTooSmallException(LocalizedFormats.NO_DEGREES_OF_FREEDOM,
+ rows, cols, false);
+ }
+ double[] errors = new double[cols];
+ final double c = FastMath.sqrt(getChiSquare() / (rows - cols));
+ double[][] covar = computeCovariances(point, 1e-14);
+ for (int i = 0; i < errors.length; ++i) {
+ errors[i] = FastMath.sqrt(covar[i][i]) * c;
+ }
+ return errors;
+ }
+
+ /**
+ * Computes an estimate of the standard deviation of the parameters. The
+ * returned values are the square root of the diagonal coefficients of the
+ * covariance matrix, {@code sd(a[i]) ~= sqrt(C[i][i])}, where {@code a[i]}
+ * is the optimized value of the {@code i}-th parameter, and {@code C} is
+ * the covariance matrix.
+ *
+ * @param params Model parameters.
+ * @param covarianceSingularityThreshold Singularity threshold (see
+ * {@link #computeCovariances(double[],double) computeCovariances}).
+ * @return an estimate of the standard deviation of the optimized parameters
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed.
+ * @since 3.1
+ */
+ public double[] computeSigma(double[] params,
+ double covarianceSingularityThreshold) {
+ final int nC = params.length;
+ final double[] sig = new double[nC];
+ final double[][] cov = computeCovariances(params, covarianceSingularityThreshold);
+ for (int i = 0; i < nC; ++i) {
+ sig[i] = FastMath.sqrt(cov[i][i]);
+ }
+ return sig;
+ }
+
+ /** {@inheritDoc}
+ * @deprecated As of 3.1. Please use
+ * {@link BaseAbstractMultivariateVectorOptimizer#optimize(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)}
+ * instead.
+ */
+ @Override
+ @Deprecated
+ public PointVectorValuePair optimize(int maxEval,
+ final DifferentiableMultivariateVectorFunction f,
+ final double[] target, final double[] weights,
+ final double[] startPoint) {
+ return optimizeInternal(maxEval,
+ FunctionUtils.toMultivariateDifferentiableVectorFunction(f),
+ new Target(target),
+ new Weight(weights),
+ new InitialGuess(startPoint));
+ }
+
+ /**
+ * Optimize an objective function.
+ * Optimization is considered to be a weighted least-squares minimization.
+ * The cost function to be minimized is
+ * <code>&sum;weight<sub>i</sub>(objective<sub>i</sub> - target<sub>i</sub>)<sup>2</sup></code>
+ *
+ * @param f Objective function.
+ * @param target Target value for the objective functions at optimum.
+ * @param weights Weights for the least squares cost computation.
+ * @param startPoint Start point for optimization.
+ * @return the point/value pair giving the optimal value for objective
+ * function.
+ * @param maxEval Maximum number of function evaluations.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if the start point dimension is wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if
+ * any argument is {@code null}.
+ * @deprecated As of 3.1. Please use
+ * {@link BaseAbstractMultivariateVectorOptimizer#optimize(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)}
+ * instead.
+ */
+ @Deprecated
+ public PointVectorValuePair optimize(final int maxEval,
+ final MultivariateDifferentiableVectorFunction f,
+ final double[] target, final double[] weights,
+ final double[] startPoint) {
+ return optimizeInternal(maxEval, f,
+ new Target(target),
+ new Weight(weights),
+ new InitialGuess(startPoint));
+ }
+
+ /**
+ * Optimize an objective function.
+ * Optimization is considered to be a weighted least-squares minimization.
+ * The cost function to be minimized is
+ * <code>&sum;weight<sub>i</sub>(objective<sub>i</sub> - target<sub>i</sub>)<sup>2</sup></code>
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link Target}</li>
+ * <li>{@link Weight}</li>
+ * <li>{@link InitialGuess}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value of the objective
+ * function.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException if
+ * the maximal number of evaluations is exceeded.
+ * @throws DimensionMismatchException if the target, and weight arguments
+ * have inconsistent dimensions.
+ * @see BaseAbstractMultivariateVectorOptimizer#optimizeInternal(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * @since 3.1
+ * @deprecated As of 3.1. Override is necessary only until this class's generic
+ * argument is changed to {@code MultivariateDifferentiableVectorFunction}.
+ */
+ @Deprecated
+ protected PointVectorValuePair optimizeInternal(final int maxEval,
+ final MultivariateDifferentiableVectorFunction f,
+ OptimizationData... optData) {
+ // XXX Conversion will be removed when the generic argument of the
+ // base class becomes "MultivariateDifferentiableVectorFunction".
+ return super.optimizeInternal(maxEval, FunctionUtils.toDifferentiableMultivariateVectorFunction(f), optData);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected void setUp() {
+ super.setUp();
+
+ // Reset counter.
+ jacobianEvaluations = 0;
+
+ // Square-root of the weight matrix.
+ weightMatrixSqrt = squareRoot(getWeight());
+
+ // Store least squares problem characteristics.
+ // XXX The conversion won't be necessary when the generic argument of
+ // the base class becomes "MultivariateDifferentiableVectorFunction".
+ // XXX "jF" is not strictly necessary anymore but is currently more
+ // efficient than converting the value returned from "getObjectiveFunction()"
+ // every time it is used.
+ jF = FunctionUtils.toMultivariateDifferentiableVectorFunction((DifferentiableMultivariateVectorFunction) getObjectiveFunction());
+
+ // Arrays shared with "private" and "protected" methods.
+ point = getStartPoint();
+ rows = getTarget().length;
+ cols = point.length;
+ }
+
+ /**
+ * Computes the residuals.
+ * The residual is the difference between the observed (target)
+ * values and the model (objective function) value.
+ * There is one residual for each element of the vector-valued
+ * function.
+ *
+ * @param objectiveValue Value of the the objective function. This is
+ * the value returned from a call to
+ * {@link #computeObjectiveValue(double[]) computeObjectiveValue}
+ * (whose array argument contains the model parameters).
+ * @return the residuals.
+ * @throws DimensionMismatchException if {@code params} has a wrong
+ * length.
+ * @since 3.1
+ */
+ protected double[] computeResiduals(double[] objectiveValue) {
+ final double[] target = getTarget();
+ if (objectiveValue.length != target.length) {
+ throw new DimensionMismatchException(target.length,
+ objectiveValue.length);
+ }
+
+ final double[] residuals = new double[target.length];
+ for (int i = 0; i < target.length; i++) {
+ residuals[i] = target[i] - objectiveValue[i];
+ }
+
+ return residuals;
+ }
+
+ /**
+ * Computes the square-root of the weight matrix.
+ *
+ * @param m Symmetric, positive-definite (weight) matrix.
+ * @return the square-root of the weight matrix.
+ */
+ private RealMatrix squareRoot(RealMatrix m) {
+ if (m instanceof DiagonalMatrix) {
+ final int dim = m.getRowDimension();
+ final RealMatrix sqrtM = new DiagonalMatrix(dim);
+ for (int i = 0; i < dim; i++) {
+ sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
+ }
+ return sqrtM;
+ } else {
+ final EigenDecomposition dec = new EigenDecomposition(m);
+ return dec.getSquareRoot();
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/AbstractScalarDifferentiableOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/AbstractScalarDifferentiableOptimizer.java
new file mode 100644
index 0000000..3947c2c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/AbstractScalarDifferentiableOptimizer.java
@@ -0,0 +1,114 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateFunction;
+import org.apache.commons.math3.analysis.MultivariateVectorFunction;
+import org.apache.commons.math3.analysis.FunctionUtils;
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
+import org.apache.commons.math3.optimization.DifferentiableMultivariateOptimizer;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer;
+
+/**
+ * Base class for implementing optimizers for multivariate scalar
+ * differentiable functions.
+ * It contains boiler-plate code for dealing with gradient evaluation.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public abstract class AbstractScalarDifferentiableOptimizer
+ extends BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction>
+ implements DifferentiableMultivariateOptimizer {
+ /**
+ * Objective function gradient.
+ */
+ private MultivariateVectorFunction gradient;
+
+ /**
+ * Simple constructor with default settings.
+ * The convergence check is set to a
+ * {@link org.apache.commons.math3.optimization.SimpleValueChecker
+ * SimpleValueChecker}.
+ * @deprecated See {@link org.apache.commons.math3.optimization.SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ protected AbstractScalarDifferentiableOptimizer() {}
+
+ /**
+ * @param checker Convergence checker.
+ */
+ protected AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * Compute the gradient vector.
+ *
+ * @param evaluationPoint Point at which the gradient must be evaluated.
+ * @return the gradient at the specified point.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the allowed number of evaluations is exceeded.
+ */
+ protected double[] computeObjectiveGradient(final double[] evaluationPoint) {
+ return gradient.value(evaluationPoint);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair optimizeInternal(int maxEval,
+ final DifferentiableMultivariateFunction f,
+ final GoalType goalType,
+ final double[] startPoint) {
+ // Store optimization problem characteristics.
+ gradient = f.gradient();
+
+ return super.optimizeInternal(maxEval, f, goalType, startPoint);
+ }
+
+ /**
+ * Optimize an objective function.
+ *
+ * @param f Objective function.
+ * @param goalType Type of optimization goal: either
+ * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
+ * @param startPoint Start point for optimization.
+ * @param maxEval Maximum number of function evaluations.
+ * @return the point/value pair giving the optimal value for objective
+ * function.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if the start point dimension is wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if
+ * any argument is {@code null}.
+ */
+ public PointValuePair optimize(final int maxEval,
+ final MultivariateDifferentiableFunction f,
+ final GoalType goalType,
+ final double[] startPoint) {
+ return optimizeInternal(maxEval,
+ FunctionUtils.toDifferentiableMultivariateFunction(f),
+ goalType,
+ startPoint);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/ConjugateGradientFormula.java b/src/main/java/org/apache/commons/math3/optimization/general/ConjugateGradientFormula.java
new file mode 100644
index 0000000..5fee40a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/ConjugateGradientFormula.java
@@ -0,0 +1,50 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+/**
+ * Available choices of update formulas for the &beta; parameter
+ * in {@link NonLinearConjugateGradientOptimizer}.
+ * <p>
+ * The &beta; parameter is used to compute the successive conjugate
+ * search directions. For non-linear conjugate gradients, there are
+ * two formulas to compute &beta;:
+ * <ul>
+ * <li>Fletcher-Reeves formula</li>
+ * <li>Polak-Ribi&egrave;re formula</li>
+ * </ul>
+ * On the one hand, the Fletcher-Reeves formula is guaranteed to converge
+ * if the start point is close enough of the optimum whether the
+ * Polak-Ribi&egrave;re formula may not converge in rare cases. On the
+ * other hand, the Polak-Ribi&egrave;re formula is often faster when it
+ * does converge. Polak-Ribi&egrave;re is often used.
+ * <p>
+ * @see NonLinearConjugateGradientOptimizer
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public enum ConjugateGradientFormula {
+
+ /** Fletcher-Reeves formula. */
+ FLETCHER_REEVES,
+
+ /** Polak-Ribi&egrave;re formula. */
+ POLAK_RIBIERE
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/GaussNewtonOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/GaussNewtonOptimizer.java
new file mode 100644
index 0000000..464a0f0
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/GaussNewtonOptimizer.java
@@ -0,0 +1,194 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+import org.apache.commons.math3.exception.ConvergenceException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.BlockRealMatrix;
+import org.apache.commons.math3.linear.DecompositionSolver;
+import org.apache.commons.math3.linear.LUDecomposition;
+import org.apache.commons.math3.linear.QRDecomposition;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.linear.SingularMatrixException;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.SimpleVectorValueChecker;
+import org.apache.commons.math3.optimization.PointVectorValuePair;
+
+/**
+ * Gauss-Newton least-squares solver.
+ * <p>
+ * This class solve a least-square problem by solving the normal equations
+ * of the linearized problem at each iteration. Either LU decomposition or
+ * QR decomposition can be used to solve the normal equations. LU decomposition
+ * is faster but QR decomposition is more robust for difficult problems.
+ * </p>
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ *
+ */
+@Deprecated
+public class GaussNewtonOptimizer extends AbstractLeastSquaresOptimizer {
+ /** Indicator for using LU decomposition. */
+ private final boolean useLU;
+
+ /**
+ * Simple constructor with default settings.
+ * The normal equations will be solved using LU decomposition and the
+ * convergence check is set to a {@link SimpleVectorValueChecker}
+ * with default tolerances.
+ * @deprecated See {@link SimpleVectorValueChecker#SimpleVectorValueChecker()}
+ */
+ @Deprecated
+ public GaussNewtonOptimizer() {
+ this(true);
+ }
+
+ /**
+ * Simple constructor with default settings.
+ * The normal equations will be solved using LU decomposition.
+ *
+ * @param checker Convergence checker.
+ */
+ public GaussNewtonOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
+ this(true, checker);
+ }
+
+ /**
+ * Simple constructor with default settings.
+ * The convergence check is set to a {@link SimpleVectorValueChecker}
+ * with default tolerances.
+ *
+ * @param useLU If {@code true}, the normal equations will be solved
+ * using LU decomposition, otherwise they will be solved using QR
+ * decomposition.
+ * @deprecated See {@link SimpleVectorValueChecker#SimpleVectorValueChecker()}
+ */
+ @Deprecated
+ public GaussNewtonOptimizer(final boolean useLU) {
+ this(useLU, new SimpleVectorValueChecker());
+ }
+
+ /**
+ * @param useLU If {@code true}, the normal equations will be solved
+ * using LU decomposition, otherwise they will be solved using QR
+ * decomposition.
+ * @param checker Convergence checker.
+ */
+ public GaussNewtonOptimizer(final boolean useLU,
+ ConvergenceChecker<PointVectorValuePair> checker) {
+ super(checker);
+ this.useLU = useLU;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public PointVectorValuePair doOptimize() {
+ final ConvergenceChecker<PointVectorValuePair> checker
+ = getConvergenceChecker();
+
+ // Computation will be useless without a checker (see "for-loop").
+ if (checker == null) {
+ throw new NullArgumentException();
+ }
+
+ final double[] targetValues = getTarget();
+ final int nR = targetValues.length; // Number of observed data.
+
+ final RealMatrix weightMatrix = getWeight();
+ // Diagonal of the weight matrix.
+ final double[] residualsWeights = new double[nR];
+ for (int i = 0; i < nR; i++) {
+ residualsWeights[i] = weightMatrix.getEntry(i, i);
+ }
+
+ final double[] currentPoint = getStartPoint();
+ final int nC = currentPoint.length;
+
+ // iterate until convergence is reached
+ PointVectorValuePair current = null;
+ int iter = 0;
+ for (boolean converged = false; !converged;) {
+ ++iter;
+
+ // evaluate the objective function and its jacobian
+ PointVectorValuePair previous = current;
+ // Value of the objective function at "currentPoint".
+ final double[] currentObjective = computeObjectiveValue(currentPoint);
+ final double[] currentResiduals = computeResiduals(currentObjective);
+ final RealMatrix weightedJacobian = computeWeightedJacobian(currentPoint);
+ current = new PointVectorValuePair(currentPoint, currentObjective);
+
+ // build the linear problem
+ final double[] b = new double[nC];
+ final double[][] a = new double[nC][nC];
+ for (int i = 0; i < nR; ++i) {
+
+ final double[] grad = weightedJacobian.getRow(i);
+ final double weight = residualsWeights[i];
+ final double residual = currentResiduals[i];
+
+ // compute the normal equation
+ final double wr = weight * residual;
+ for (int j = 0; j < nC; ++j) {
+ b[j] += wr * grad[j];
+ }
+
+ // build the contribution matrix for measurement i
+ for (int k = 0; k < nC; ++k) {
+ double[] ak = a[k];
+ double wgk = weight * grad[k];
+ for (int l = 0; l < nC; ++l) {
+ ak[l] += wgk * grad[l];
+ }
+ }
+ }
+
+ try {
+ // solve the linearized least squares problem
+ RealMatrix mA = new BlockRealMatrix(a);
+ DecompositionSolver solver = useLU ?
+ new LUDecomposition(mA).getSolver() :
+ new QRDecomposition(mA).getSolver();
+ final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray();
+ // update the estimated parameters
+ for (int i = 0; i < nC; ++i) {
+ currentPoint[i] += dX[i];
+ }
+ } catch (SingularMatrixException e) {
+ throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM);
+ }
+
+ // Check convergence.
+ if (previous != null) {
+ converged = checker.converged(iter, previous, current);
+ if (converged) {
+ cost = computeCost(currentResiduals);
+ // Update (deprecated) "point" field.
+ point = current.getPoint();
+ return current;
+ }
+ }
+ }
+ // Must never happen.
+ throw new MathInternalError();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/LevenbergMarquardtOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/LevenbergMarquardtOptimizer.java
new file mode 100644
index 0000000..a29cafc
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/LevenbergMarquardtOptimizer.java
@@ -0,0 +1,943 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optimization.general;
+
+import java.util.Arrays;
+
+import org.apache.commons.math3.exception.ConvergenceException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optimization.PointVectorValuePair;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.util.Precision;
+import org.apache.commons.math3.util.FastMath;
+
+
+/**
+ * This class solves a least squares problem using the Levenberg-Marquardt algorithm.
+ *
+ * <p>This implementation <em>should</em> work even for over-determined systems
+ * (i.e. systems having more point than equations). Over-determined systems
+ * are solved by ignoring the point which have the smallest impact according
+ * to their jacobian column norm. Only the rank of the matrix and some loop bounds
+ * are changed to implement this.</p>
+ *
+ * <p>The resolution engine is a simple translation of the MINPACK <a
+ * href="http://www.netlib.org/minpack/lmder.f">lmder</a> routine with minor
+ * changes. The changes include the over-determined resolution, the use of
+ * inherited convergence checker and the Q.R. decomposition which has been
+ * rewritten following the algorithm described in the
+ * P. Lascaux and R. Theodor book <i>Analyse num&eacute;rique matricielle
+ * appliqu&eacute;e &agrave; l'art de l'ing&eacute;nieur</i>, Masson 1986.</p>
+ * <p>The authors of the original fortran version are:
+ * <ul>
+ * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
+ * <li>Burton S. Garbow</li>
+ * <li>Kenneth E. Hillstrom</li>
+ * <li>Jorge J. More</li>
+ * </ul>
+ * The redistribution policy for MINPACK is available <a
+ * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
+ * is reproduced below.</p>
+ *
+ * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
+ * <tr><td>
+ * Minpack Copyright Notice (1999) University of Chicago.
+ * All rights reserved
+ * </td></tr>
+ * <tr><td>
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * <ol>
+ * <li>Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.</li>
+ * <li>Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.</li>
+ * <li>The end-user documentation included with the redistribution, if any,
+ * must include the following acknowledgment:
+ * <code>This product includes software developed by the University of
+ * Chicago, as Operator of Argonne National Laboratory.</code>
+ * Alternately, this acknowledgment may appear in the software itself,
+ * if and wherever such third-party acknowledgments normally appear.</li>
+ * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
+ * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
+ * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
+ * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
+ * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
+ * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
+ * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
+ * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
+ * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
+ * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
+ * BE CORRECTED.</strong></li>
+ * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
+ * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
+ * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
+ * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
+ * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
+ * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
+ * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
+ * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
+ * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
+ * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
+ * <ol></td></tr>
+ * </table>
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ *
+ */
+@Deprecated
+public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
+ /** Number of solved point. */
+ private int solvedCols;
+ /** Diagonal elements of the R matrix in the Q.R. decomposition. */
+ private double[] diagR;
+ /** Norms of the columns of the jacobian matrix. */
+ private double[] jacNorm;
+ /** Coefficients of the Householder transforms vectors. */
+ private double[] beta;
+ /** Columns permutation array. */
+ private int[] permutation;
+ /** Rank of the jacobian matrix. */
+ private int rank;
+ /** Levenberg-Marquardt parameter. */
+ private double lmPar;
+ /** Parameters evolution direction associated with lmPar. */
+ private double[] lmDir;
+ /** Positive input variable used in determining the initial step bound. */
+ private final double initialStepBoundFactor;
+ /** Desired relative error in the sum of squares. */
+ private final double costRelativeTolerance;
+ /** Desired relative error in the approximate solution parameters. */
+ private final double parRelativeTolerance;
+ /** Desired max cosine on the orthogonality between the function vector
+ * and the columns of the jacobian. */
+ private final double orthoTolerance;
+ /** Threshold for QR ranking. */
+ private final double qrRankingThreshold;
+ /** Weighted residuals. */
+ private double[] weightedResidual;
+ /** Weighted Jacobian. */
+ private double[][] weightedJacobian;
+
+ /**
+ * Build an optimizer for least squares problems with default values
+ * for all the tuning parameters (see the {@link
+ * #LevenbergMarquardtOptimizer(double,double,double,double,double)
+ * other contructor}.
+ * The default values for the algorithm settings are:
+ * <ul>
+ * <li>Initial step bound factor: 100</li>
+ * <li>Cost relative tolerance: 1e-10</li>
+ * <li>Parameters relative tolerance: 1e-10</li>
+ * <li>Orthogonality tolerance: 1e-10</li>
+ * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li>
+ * </ul>
+ */
+ public LevenbergMarquardtOptimizer() {
+ this(100, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN);
+ }
+
+ /**
+ * Constructor that allows the specification of a custom convergence
+ * checker.
+ * Note that all the usual convergence checks will be <em>disabled</em>.
+ * The default values for the algorithm settings are:
+ * <ul>
+ * <li>Initial step bound factor: 100</li>
+ * <li>Cost relative tolerance: 1e-10</li>
+ * <li>Parameters relative tolerance: 1e-10</li>
+ * <li>Orthogonality tolerance: 1e-10</li>
+ * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li>
+ * </ul>
+ *
+ * @param checker Convergence checker.
+ */
+ public LevenbergMarquardtOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
+ this(100, checker, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN);
+ }
+
+ /**
+ * Constructor that allows the specification of a custom convergence
+ * checker, in addition to the standard ones.
+ *
+ * @param initialStepBoundFactor Positive input variable used in
+ * determining the initial step bound. This bound is set to the
+ * product of initialStepBoundFactor and the euclidean norm of
+ * {@code diag * x} if non-zero, or else to {@code initialStepBoundFactor}
+ * itself. In most cases factor should lie in the interval
+ * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value.
+ * @param checker Convergence checker.
+ * @param costRelativeTolerance Desired relative error in the sum of
+ * squares.
+ * @param parRelativeTolerance Desired relative error in the approximate
+ * solution parameters.
+ * @param orthoTolerance Desired max cosine on the orthogonality between
+ * the function vector and the columns of the Jacobian.
+ * @param threshold Desired threshold for QR ranking. If the squared norm
+ * of a column vector is smaller or equal to this threshold during QR
+ * decomposition, it is considered to be a zero vector and hence the rank
+ * of the matrix is reduced.
+ */
+ public LevenbergMarquardtOptimizer(double initialStepBoundFactor,
+ ConvergenceChecker<PointVectorValuePair> checker,
+ double costRelativeTolerance,
+ double parRelativeTolerance,
+ double orthoTolerance,
+ double threshold) {
+ super(checker);
+ this.initialStepBoundFactor = initialStepBoundFactor;
+ this.costRelativeTolerance = costRelativeTolerance;
+ this.parRelativeTolerance = parRelativeTolerance;
+ this.orthoTolerance = orthoTolerance;
+ this.qrRankingThreshold = threshold;
+ }
+
+ /**
+ * Build an optimizer for least squares problems with default values
+ * for some of the tuning parameters (see the {@link
+ * #LevenbergMarquardtOptimizer(double,double,double,double,double)
+ * other contructor}.
+ * The default values for the algorithm settings are:
+ * <ul>
+ * <li>Initial step bound factor}: 100</li>
+ * <li>QR ranking threshold}: {@link Precision#SAFE_MIN}</li>
+ * </ul>
+ *
+ * @param costRelativeTolerance Desired relative error in the sum of
+ * squares.
+ * @param parRelativeTolerance Desired relative error in the approximate
+ * solution parameters.
+ * @param orthoTolerance Desired max cosine on the orthogonality between
+ * the function vector and the columns of the Jacobian.
+ */
+ public LevenbergMarquardtOptimizer(double costRelativeTolerance,
+ double parRelativeTolerance,
+ double orthoTolerance) {
+ this(100,
+ costRelativeTolerance, parRelativeTolerance, orthoTolerance,
+ Precision.SAFE_MIN);
+ }
+
+ /**
+ * The arguments control the behaviour of the default convergence checking
+ * procedure.
+ * Additional criteria can defined through the setting of a {@link
+ * ConvergenceChecker}.
+ *
+ * @param initialStepBoundFactor Positive input variable used in
+ * determining the initial step bound. This bound is set to the
+ * product of initialStepBoundFactor and the euclidean norm of
+ * {@code diag * x} if non-zero, or else to {@code initialStepBoundFactor}
+ * itself. In most cases factor should lie in the interval
+ * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value.
+ * @param costRelativeTolerance Desired relative error in the sum of
+ * squares.
+ * @param parRelativeTolerance Desired relative error in the approximate
+ * solution parameters.
+ * @param orthoTolerance Desired max cosine on the orthogonality between
+ * the function vector and the columns of the Jacobian.
+ * @param threshold Desired threshold for QR ranking. If the squared norm
+ * of a column vector is smaller or equal to this threshold during QR
+ * decomposition, it is considered to be a zero vector and hence the rank
+ * of the matrix is reduced.
+ */
+ public LevenbergMarquardtOptimizer(double initialStepBoundFactor,
+ double costRelativeTolerance,
+ double parRelativeTolerance,
+ double orthoTolerance,
+ double threshold) {
+ super(null); // No custom convergence criterion.
+ this.initialStepBoundFactor = initialStepBoundFactor;
+ this.costRelativeTolerance = costRelativeTolerance;
+ this.parRelativeTolerance = parRelativeTolerance;
+ this.orthoTolerance = orthoTolerance;
+ this.qrRankingThreshold = threshold;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointVectorValuePair doOptimize() {
+ final int nR = getTarget().length; // Number of observed data.
+ final double[] currentPoint = getStartPoint();
+ final int nC = currentPoint.length; // Number of parameters.
+
+ // arrays shared with the other private methods
+ solvedCols = FastMath.min(nR, nC);
+ diagR = new double[nC];
+ jacNorm = new double[nC];
+ beta = new double[nC];
+ permutation = new int[nC];
+ lmDir = new double[nC];
+
+ // local point
+ double delta = 0;
+ double xNorm = 0;
+ double[] diag = new double[nC];
+ double[] oldX = new double[nC];
+ double[] oldRes = new double[nR];
+ double[] oldObj = new double[nR];
+ double[] qtf = new double[nR];
+ double[] work1 = new double[nC];
+ double[] work2 = new double[nC];
+ double[] work3 = new double[nC];
+
+ final RealMatrix weightMatrixSqrt = getWeightSquareRoot();
+
+ // Evaluate the function at the starting point and calculate its norm.
+ double[] currentObjective = computeObjectiveValue(currentPoint);
+ double[] currentResiduals = computeResiduals(currentObjective);
+ PointVectorValuePair current = new PointVectorValuePair(currentPoint, currentObjective);
+ double currentCost = computeCost(currentResiduals);
+
+ // Outer loop.
+ lmPar = 0;
+ boolean firstIteration = true;
+ int iter = 0;
+ final ConvergenceChecker<PointVectorValuePair> checker = getConvergenceChecker();
+ while (true) {
+ ++iter;
+ final PointVectorValuePair previous = current;
+
+ // QR decomposition of the jacobian matrix
+ qrDecomposition(computeWeightedJacobian(currentPoint));
+
+ weightedResidual = weightMatrixSqrt.operate(currentResiduals);
+ for (int i = 0; i < nR; i++) {
+ qtf[i] = weightedResidual[i];
+ }
+
+ // compute Qt.res
+ qTy(qtf);
+
+ // now we don't need Q anymore,
+ // so let jacobian contain the R matrix with its diagonal elements
+ for (int k = 0; k < solvedCols; ++k) {
+ int pk = permutation[k];
+ weightedJacobian[k][pk] = diagR[pk];
+ }
+
+ if (firstIteration) {
+ // scale the point according to the norms of the columns
+ // of the initial jacobian
+ xNorm = 0;
+ for (int k = 0; k < nC; ++k) {
+ double dk = jacNorm[k];
+ if (dk == 0) {
+ dk = 1.0;
+ }
+ double xk = dk * currentPoint[k];
+ xNorm += xk * xk;
+ diag[k] = dk;
+ }
+ xNorm = FastMath.sqrt(xNorm);
+
+ // initialize the step bound delta
+ delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
+ }
+
+ // check orthogonality between function vector and jacobian columns
+ double maxCosine = 0;
+ if (currentCost != 0) {
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = jacNorm[pj];
+ if (s != 0) {
+ double sum = 0;
+ for (int i = 0; i <= j; ++i) {
+ sum += weightedJacobian[i][pj] * qtf[i];
+ }
+ maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost));
+ }
+ }
+ }
+ if (maxCosine <= orthoTolerance) {
+ // Convergence has been reached.
+ setCost(currentCost);
+ // Update (deprecated) "point" field.
+ point = current.getPoint();
+ return current;
+ }
+
+ // rescale if necessary
+ for (int j = 0; j < nC; ++j) {
+ diag[j] = FastMath.max(diag[j], jacNorm[j]);
+ }
+
+ // Inner loop.
+ for (double ratio = 0; ratio < 1.0e-4;) {
+
+ // save the state
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ oldX[pj] = currentPoint[pj];
+ }
+ final double previousCost = currentCost;
+ double[] tmpVec = weightedResidual;
+ weightedResidual = oldRes;
+ oldRes = tmpVec;
+ tmpVec = currentObjective;
+ currentObjective = oldObj;
+ oldObj = tmpVec;
+
+ // determine the Levenberg-Marquardt parameter
+ determineLMParameter(qtf, delta, diag, work1, work2, work3);
+
+ // compute the new point and the norm of the evolution direction
+ double lmNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ lmDir[pj] = -lmDir[pj];
+ currentPoint[pj] = oldX[pj] + lmDir[pj];
+ double s = diag[pj] * lmDir[pj];
+ lmNorm += s * s;
+ }
+ lmNorm = FastMath.sqrt(lmNorm);
+ // on the first iteration, adjust the initial step bound.
+ if (firstIteration) {
+ delta = FastMath.min(delta, lmNorm);
+ }
+
+ // Evaluate the function at x + p and calculate its norm.
+ currentObjective = computeObjectiveValue(currentPoint);
+ currentResiduals = computeResiduals(currentObjective);
+ current = new PointVectorValuePair(currentPoint, currentObjective);
+ currentCost = computeCost(currentResiduals);
+
+ // compute the scaled actual reduction
+ double actRed = -1.0;
+ if (0.1 * currentCost < previousCost) {
+ double r = currentCost / previousCost;
+ actRed = 1.0 - r * r;
+ }
+
+ // compute the scaled predicted reduction
+ // and the scaled directional derivative
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double dirJ = lmDir[pj];
+ work1[j] = 0;
+ for (int i = 0; i <= j; ++i) {
+ work1[i] += weightedJacobian[i][pj] * dirJ;
+ }
+ }
+ double coeff1 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ coeff1 += work1[j] * work1[j];
+ }
+ double pc2 = previousCost * previousCost;
+ coeff1 /= pc2;
+ double coeff2 = lmPar * lmNorm * lmNorm / pc2;
+ double preRed = coeff1 + 2 * coeff2;
+ double dirDer = -(coeff1 + coeff2);
+
+ // ratio of the actual to the predicted reduction
+ ratio = (preRed == 0) ? 0 : (actRed / preRed);
+
+ // update the step bound
+ if (ratio <= 0.25) {
+ double tmp =
+ (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
+ if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) {
+ tmp = 0.1;
+ }
+ delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
+ lmPar /= tmp;
+ } else if ((lmPar == 0) || (ratio >= 0.75)) {
+ delta = 2 * lmNorm;
+ lmPar *= 0.5;
+ }
+
+ // test for successful iteration.
+ if (ratio >= 1.0e-4) {
+ // successful iteration, update the norm
+ firstIteration = false;
+ xNorm = 0;
+ for (int k = 0; k < nC; ++k) {
+ double xK = diag[k] * currentPoint[k];
+ xNorm += xK * xK;
+ }
+ xNorm = FastMath.sqrt(xNorm);
+
+ // tests for convergence.
+ if (checker != null && checker.converged(iter, previous, current)) {
+ setCost(currentCost);
+ // Update (deprecated) "point" field.
+ point = current.getPoint();
+ return current;
+ }
+ } else {
+ // failed iteration, reset the previous values
+ currentCost = previousCost;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ currentPoint[pj] = oldX[pj];
+ }
+ tmpVec = weightedResidual;
+ weightedResidual = oldRes;
+ oldRes = tmpVec;
+ tmpVec = currentObjective;
+ currentObjective = oldObj;
+ oldObj = tmpVec;
+ // Reset "current" to previous values.
+ current = new PointVectorValuePair(currentPoint, currentObjective);
+ }
+
+ // Default convergence criteria.
+ if ((FastMath.abs(actRed) <= costRelativeTolerance &&
+ preRed <= costRelativeTolerance &&
+ ratio <= 2.0) ||
+ delta <= parRelativeTolerance * xNorm) {
+ setCost(currentCost);
+ // Update (deprecated) "point" field.
+ point = current.getPoint();
+ return current;
+ }
+
+ // tests for termination and stringent tolerances
+ // (2.2204e-16 is the machine epsilon for IEEE754)
+ if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
+ throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
+ costRelativeTolerance);
+ } else if (delta <= 2.2204e-16 * xNorm) {
+ throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
+ parRelativeTolerance);
+ } else if (maxCosine <= 2.2204e-16) {
+ throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
+ orthoTolerance);
+ }
+ }
+ }
+ }
+
+ /**
+ * Determine the Levenberg-Marquardt parameter.
+ * <p>This implementation is a translation in Java of the MINPACK
+ * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a>
+ * routine.</p>
+ * <p>This method sets the lmPar and lmDir attributes.</p>
+ * <p>The authors of the original fortran function are:</p>
+ * <ul>
+ * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
+ * <li>Burton S. Garbow</li>
+ * <li>Kenneth E. Hillstrom</li>
+ * <li>Jorge J. More</li>
+ * </ul>
+ * <p>Luc Maisonobe did the Java translation.</p>
+ *
+ * @param qy array containing qTy
+ * @param delta upper bound on the euclidean norm of diagR * lmDir
+ * @param diag diagonal matrix
+ * @param work1 work array
+ * @param work2 work array
+ * @param work3 work array
+ */
+ private void determineLMParameter(double[] qy, double delta, double[] diag,
+ double[] work1, double[] work2, double[] work3) {
+ final int nC = weightedJacobian[0].length;
+
+ // compute and store in x the gauss-newton direction, if the
+ // jacobian is rank-deficient, obtain a least squares solution
+ for (int j = 0; j < rank; ++j) {
+ lmDir[permutation[j]] = qy[j];
+ }
+ for (int j = rank; j < nC; ++j) {
+ lmDir[permutation[j]] = 0;
+ }
+ for (int k = rank - 1; k >= 0; --k) {
+ int pk = permutation[k];
+ double ypk = lmDir[pk] / diagR[pk];
+ for (int i = 0; i < k; ++i) {
+ lmDir[permutation[i]] -= ypk * weightedJacobian[i][pk];
+ }
+ lmDir[pk] = ypk;
+ }
+
+ // evaluate the function at the origin, and test
+ // for acceptance of the Gauss-Newton direction
+ double dxNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = diag[pj] * lmDir[pj];
+ work1[pj] = s;
+ dxNorm += s * s;
+ }
+ dxNorm = FastMath.sqrt(dxNorm);
+ double fp = dxNorm - delta;
+ if (fp <= 0.1 * delta) {
+ lmPar = 0;
+ return;
+ }
+
+ // if the jacobian is not rank deficient, the Newton step provides
+ // a lower bound, parl, for the zero of the function,
+ // otherwise set this bound to zero
+ double sum2;
+ double parl = 0;
+ if (rank == solvedCols) {
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] *= diag[pj] / dxNorm;
+ }
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = 0; i < j; ++i) {
+ sum += weightedJacobian[i][pj] * work1[permutation[i]];
+ }
+ double s = (work1[pj] - sum) / diagR[pj];
+ work1[pj] = s;
+ sum2 += s * s;
+ }
+ parl = fp / (delta * sum2);
+ }
+
+ // calculate an upper bound, paru, for the zero of the function
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = 0; i <= j; ++i) {
+ sum += weightedJacobian[i][pj] * qy[i];
+ }
+ sum /= diag[pj];
+ sum2 += sum * sum;
+ }
+ double gNorm = FastMath.sqrt(sum2);
+ double paru = gNorm / delta;
+ if (paru == 0) {
+ // 2.2251e-308 is the smallest positive real for IEE754
+ paru = 2.2251e-308 / FastMath.min(delta, 0.1);
+ }
+
+ // if the input par lies outside of the interval (parl,paru),
+ // set par to the closer endpoint
+ lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
+ if (lmPar == 0) {
+ lmPar = gNorm / dxNorm;
+ }
+
+ for (int countdown = 10; countdown >= 0; --countdown) {
+
+ // evaluate the function at the current value of lmPar
+ if (lmPar == 0) {
+ lmPar = FastMath.max(2.2251e-308, 0.001 * paru);
+ }
+ double sPar = FastMath.sqrt(lmPar);
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] = sPar * diag[pj];
+ }
+ determineLMDirection(qy, work1, work2, work3);
+
+ dxNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = diag[pj] * lmDir[pj];
+ work3[pj] = s;
+ dxNorm += s * s;
+ }
+ dxNorm = FastMath.sqrt(dxNorm);
+ double previousFP = fp;
+ fp = dxNorm - delta;
+
+ // if the function is small enough, accept the current value
+ // of lmPar, also test for the exceptional cases where parl is zero
+ if ((FastMath.abs(fp) <= 0.1 * delta) ||
+ ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) {
+ return;
+ }
+
+ // compute the Newton correction
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] = work3[pj] * diag[pj] / dxNorm;
+ }
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] /= work2[j];
+ double tmp = work1[pj];
+ for (int i = j + 1; i < solvedCols; ++i) {
+ work1[permutation[i]] -= weightedJacobian[i][pj] * tmp;
+ }
+ }
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ double s = work1[permutation[j]];
+ sum2 += s * s;
+ }
+ double correction = fp / (delta * sum2);
+
+ // depending on the sign of the function, update parl or paru.
+ if (fp > 0) {
+ parl = FastMath.max(parl, lmPar);
+ } else if (fp < 0) {
+ paru = FastMath.min(paru, lmPar);
+ }
+
+ // compute an improved estimate for lmPar
+ lmPar = FastMath.max(parl, lmPar + correction);
+
+ }
+ }
+
+ /**
+ * Solve a*x = b and d*x = 0 in the least squares sense.
+ * <p>This implementation is a translation in Java of the MINPACK
+ * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv</a>
+ * routine.</p>
+ * <p>This method sets the lmDir and lmDiag attributes.</p>
+ * <p>The authors of the original fortran function are:</p>
+ * <ul>
+ * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
+ * <li>Burton S. Garbow</li>
+ * <li>Kenneth E. Hillstrom</li>
+ * <li>Jorge J. More</li>
+ * </ul>
+ * <p>Luc Maisonobe did the Java translation.</p>
+ *
+ * @param qy array containing qTy
+ * @param diag diagonal matrix
+ * @param lmDiag diagonal elements associated with lmDir
+ * @param work work array
+ */
+ private void determineLMDirection(double[] qy, double[] diag,
+ double[] lmDiag, double[] work) {
+
+ // copy R and Qty to preserve input and initialize s
+ // in particular, save the diagonal elements of R in lmDir
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ for (int i = j + 1; i < solvedCols; ++i) {
+ weightedJacobian[i][pj] = weightedJacobian[j][permutation[i]];
+ }
+ lmDir[j] = diagR[pj];
+ work[j] = qy[j];
+ }
+
+ // eliminate the diagonal matrix d using a Givens rotation
+ for (int j = 0; j < solvedCols; ++j) {
+
+ // prepare the row of d to be eliminated, locating the
+ // diagonal element using p from the Q.R. factorization
+ int pj = permutation[j];
+ double dpj = diag[pj];
+ if (dpj != 0) {
+ Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
+ }
+ lmDiag[j] = dpj;
+
+ // the transformations to eliminate the row of d
+ // modify only a single element of Qty
+ // beyond the first n, which is initially zero.
+ double qtbpj = 0;
+ for (int k = j; k < solvedCols; ++k) {
+ int pk = permutation[k];
+
+ // determine a Givens rotation which eliminates the
+ // appropriate element in the current row of d
+ if (lmDiag[k] != 0) {
+
+ final double sin;
+ final double cos;
+ double rkk = weightedJacobian[k][pk];
+ if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
+ final double cotan = rkk / lmDiag[k];
+ sin = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
+ cos = sin * cotan;
+ } else {
+ final double tan = lmDiag[k] / rkk;
+ cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
+ sin = cos * tan;
+ }
+
+ // compute the modified diagonal element of R and
+ // the modified element of (Qty,0)
+ weightedJacobian[k][pk] = cos * rkk + sin * lmDiag[k];
+ final double temp = cos * work[k] + sin * qtbpj;
+ qtbpj = -sin * work[k] + cos * qtbpj;
+ work[k] = temp;
+
+ // accumulate the tranformation in the row of s
+ for (int i = k + 1; i < solvedCols; ++i) {
+ double rik = weightedJacobian[i][pk];
+ final double temp2 = cos * rik + sin * lmDiag[i];
+ lmDiag[i] = -sin * rik + cos * lmDiag[i];
+ weightedJacobian[i][pk] = temp2;
+ }
+ }
+ }
+
+ // store the diagonal element of s and restore
+ // the corresponding diagonal element of R
+ lmDiag[j] = weightedJacobian[j][permutation[j]];
+ weightedJacobian[j][permutation[j]] = lmDir[j];
+ }
+
+ // solve the triangular system for z, if the system is
+ // singular, then obtain a least squares solution
+ int nSing = solvedCols;
+ for (int j = 0; j < solvedCols; ++j) {
+ if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
+ nSing = j;
+ }
+ if (nSing < solvedCols) {
+ work[j] = 0;
+ }
+ }
+ if (nSing > 0) {
+ for (int j = nSing - 1; j >= 0; --j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = j + 1; i < nSing; ++i) {
+ sum += weightedJacobian[i][pj] * work[i];
+ }
+ work[j] = (work[j] - sum) / lmDiag[j];
+ }
+ }
+
+ // permute the components of z back to components of lmDir
+ for (int j = 0; j < lmDir.length; ++j) {
+ lmDir[permutation[j]] = work[j];
+ }
+ }
+
+ /**
+ * Decompose a matrix A as A.P = Q.R using Householder transforms.
+ * <p>As suggested in the P. Lascaux and R. Theodor book
+ * <i>Analyse num&eacute;rique matricielle appliqu&eacute;e &agrave;
+ * l'art de l'ing&eacute;nieur</i> (Masson, 1986), instead of representing
+ * the Householder transforms with u<sub>k</sub> unit vectors such that:
+ * <pre>
+ * H<sub>k</sub> = I - 2u<sub>k</sub>.u<sub>k</sub><sup>t</sup>
+ * </pre>
+ * we use <sub>k</sub> non-unit vectors such that:
+ * <pre>
+ * H<sub>k</sub> = I - beta<sub>k</sub>v<sub>k</sub>.v<sub>k</sub><sup>t</sup>
+ * </pre>
+ * where v<sub>k</sub> = a<sub>k</sub> - alpha<sub>k</sub> e<sub>k</sub>.
+ * The beta<sub>k</sub> coefficients are provided upon exit as recomputing
+ * them from the v<sub>k</sub> vectors would be costly.</p>
+ * <p>This decomposition handles rank deficient cases since the tranformations
+ * are performed in non-increasing columns norms order thanks to columns
+ * pivoting. The diagonal elements of the R matrix are therefore also in
+ * non-increasing absolute values order.</p>
+ *
+ * @param jacobian Weighted Jacobian matrix at the current point.
+ * @exception ConvergenceException if the decomposition cannot be performed
+ */
+ private void qrDecomposition(RealMatrix jacobian) throws ConvergenceException {
+ // Code in this class assumes that the weighted Jacobian is -(W^(1/2) J),
+ // hence the multiplication by -1.
+ weightedJacobian = jacobian.scalarMultiply(-1).getData();
+
+ final int nR = weightedJacobian.length;
+ final int nC = weightedJacobian[0].length;
+
+ // initializations
+ for (int k = 0; k < nC; ++k) {
+ permutation[k] = k;
+ double norm2 = 0;
+ for (int i = 0; i < nR; ++i) {
+ double akk = weightedJacobian[i][k];
+ norm2 += akk * akk;
+ }
+ jacNorm[k] = FastMath.sqrt(norm2);
+ }
+
+ // transform the matrix column after column
+ for (int k = 0; k < nC; ++k) {
+
+ // select the column with the greatest norm on active components
+ int nextColumn = -1;
+ double ak2 = Double.NEGATIVE_INFINITY;
+ for (int i = k; i < nC; ++i) {
+ double norm2 = 0;
+ for (int j = k; j < nR; ++j) {
+ double aki = weightedJacobian[j][permutation[i]];
+ norm2 += aki * aki;
+ }
+ if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
+ throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
+ nR, nC);
+ }
+ if (norm2 > ak2) {
+ nextColumn = i;
+ ak2 = norm2;
+ }
+ }
+ if (ak2 <= qrRankingThreshold) {
+ rank = k;
+ return;
+ }
+ int pk = permutation[nextColumn];
+ permutation[nextColumn] = permutation[k];
+ permutation[k] = pk;
+
+ // choose alpha such that Hk.u = alpha ek
+ double akk = weightedJacobian[k][pk];
+ double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
+ double betak = 1.0 / (ak2 - akk * alpha);
+ beta[pk] = betak;
+
+ // transform the current column
+ diagR[pk] = alpha;
+ weightedJacobian[k][pk] -= alpha;
+
+ // transform the remaining columns
+ for (int dk = nC - 1 - k; dk > 0; --dk) {
+ double gamma = 0;
+ for (int j = k; j < nR; ++j) {
+ gamma += weightedJacobian[j][pk] * weightedJacobian[j][permutation[k + dk]];
+ }
+ gamma *= betak;
+ for (int j = k; j < nR; ++j) {
+ weightedJacobian[j][permutation[k + dk]] -= gamma * weightedJacobian[j][pk];
+ }
+ }
+ }
+ rank = solvedCols;
+ }
+
+ /**
+ * Compute the product Qt.y for some Q.R. decomposition.
+ *
+ * @param y vector to multiply (will be overwritten with the result)
+ */
+ private void qTy(double[] y) {
+ final int nR = weightedJacobian.length;
+ final int nC = weightedJacobian[0].length;
+
+ for (int k = 0; k < nC; ++k) {
+ int pk = permutation[k];
+ double gamma = 0;
+ for (int i = k; i < nR; ++i) {
+ gamma += weightedJacobian[i][pk] * y[i];
+ }
+ gamma *= beta[pk];
+ for (int i = k; i < nR; ++i) {
+ y[i] -= gamma * weightedJacobian[i][pk];
+ }
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java
new file mode 100644
index 0000000..ee16472
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/NonLinearConjugateGradientOptimizer.java
@@ -0,0 +1,311 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.analysis.solvers.BrentSolver;
+import org.apache.commons.math3.analysis.solvers.UnivariateSolver;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.optimization.SimpleValueChecker;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Non-linear conjugate gradient optimizer.
+ * <p>
+ * This class supports both the Fletcher-Reeves and the Polak-Ribi&egrave;re
+ * update formulas for the conjugate search directions. It also supports
+ * optional preconditioning.
+ * </p>
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ *
+ */
+@Deprecated
+public class NonLinearConjugateGradientOptimizer
+ extends AbstractScalarDifferentiableOptimizer {
+ /** Update formula for the beta parameter. */
+ private final ConjugateGradientFormula updateFormula;
+ /** Preconditioner (may be null). */
+ private final Preconditioner preconditioner;
+ /** solver to use in the line search (may be null). */
+ private final UnivariateSolver solver;
+ /** Initial step used to bracket the optimum in line search. */
+ private double initialStep;
+ /** Current point. */
+ private double[] point;
+
+ /**
+ * Constructor with default {@link SimpleValueChecker checker},
+ * {@link BrentSolver line search solver} and
+ * {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula) {
+ this(updateFormula,
+ new SimpleValueChecker());
+ }
+
+ /**
+ * Constructor with default {@link BrentSolver line search solver} and
+ * {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ */
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
+ ConvergenceChecker<PointValuePair> checker) {
+ this(updateFormula,
+ checker,
+ new BrentSolver(),
+ new IdentityPreconditioner());
+ }
+
+
+ /**
+ * Constructor with default {@link IdentityPreconditioner preconditioner}.
+ *
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param lineSearchSolver Solver to use during line search.
+ */
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ final UnivariateSolver lineSearchSolver) {
+ this(updateFormula,
+ checker,
+ lineSearchSolver,
+ new IdentityPreconditioner());
+ }
+
+ /**
+ * @param updateFormula formula to use for updating the &beta; parameter,
+ * must be one of {@link ConjugateGradientFormula#FLETCHER_REEVES} or {@link
+ * ConjugateGradientFormula#POLAK_RIBIERE}.
+ * @param checker Convergence checker.
+ * @param lineSearchSolver Solver to use during line search.
+ * @param preconditioner Preconditioner.
+ */
+ public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
+ ConvergenceChecker<PointValuePair> checker,
+ final UnivariateSolver lineSearchSolver,
+ final Preconditioner preconditioner) {
+ super(checker);
+
+ this.updateFormula = updateFormula;
+ solver = lineSearchSolver;
+ this.preconditioner = preconditioner;
+ initialStep = 1.0;
+ }
+
+ /**
+ * Set the initial step used to bracket the optimum in line search.
+ * <p>
+ * The initial step is a factor with respect to the search direction,
+ * which itself is roughly related to the gradient of the function
+ * </p>
+ * @param initialStep initial step used to bracket the optimum in line search,
+ * if a non-positive value is used, the initial step is reset to its
+ * default value of 1.0
+ */
+ public void setInitialStep(final double initialStep) {
+ if (initialStep <= 0) {
+ this.initialStep = 1.0;
+ } else {
+ this.initialStep = initialStep;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointValuePair doOptimize() {
+ final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
+ point = getStartPoint();
+ final GoalType goal = getGoalType();
+ final int n = point.length;
+ double[] r = computeObjectiveGradient(point);
+ if (goal == GoalType.MINIMIZE) {
+ for (int i = 0; i < n; ++i) {
+ r[i] = -r[i];
+ }
+ }
+
+ // Initial search direction.
+ double[] steepestDescent = preconditioner.precondition(point, r);
+ double[] searchDirection = steepestDescent.clone();
+
+ double delta = 0;
+ for (int i = 0; i < n; ++i) {
+ delta += r[i] * searchDirection[i];
+ }
+
+ PointValuePair current = null;
+ int iter = 0;
+ int maxEval = getMaxEvaluations();
+ while (true) {
+ ++iter;
+
+ final double objective = computeObjectiveValue(point);
+ PointValuePair previous = current;
+ current = new PointValuePair(point, objective);
+ if (previous != null && checker.converged(iter, previous, current)) {
+ // We have found an optimum.
+ return current;
+ }
+
+ // Find the optimal step in the search direction.
+ final UnivariateFunction lsf = new LineSearchFunction(searchDirection);
+ final double uB = findUpperBound(lsf, 0, initialStep);
+ // XXX Last parameters is set to a value close to zero in order to
+ // work around the divergence problem in the "testCircleFitting"
+ // unit test (see MATH-439).
+ final double step = solver.solve(maxEval, lsf, 0, uB, 1e-15);
+ maxEval -= solver.getEvaluations(); // Subtract used up evaluations.
+
+ // Validate new point.
+ for (int i = 0; i < point.length; ++i) {
+ point[i] += step * searchDirection[i];
+ }
+
+ r = computeObjectiveGradient(point);
+ if (goal == GoalType.MINIMIZE) {
+ for (int i = 0; i < n; ++i) {
+ r[i] = -r[i];
+ }
+ }
+
+ // Compute beta.
+ final double deltaOld = delta;
+ final double[] newSteepestDescent = preconditioner.precondition(point, r);
+ delta = 0;
+ for (int i = 0; i < n; ++i) {
+ delta += r[i] * newSteepestDescent[i];
+ }
+
+ final double beta;
+ if (updateFormula == ConjugateGradientFormula.FLETCHER_REEVES) {
+ beta = delta / deltaOld;
+ } else {
+ double deltaMid = 0;
+ for (int i = 0; i < r.length; ++i) {
+ deltaMid += r[i] * steepestDescent[i];
+ }
+ beta = (delta - deltaMid) / deltaOld;
+ }
+ steepestDescent = newSteepestDescent;
+
+ // Compute conjugate search direction.
+ if (iter % n == 0 ||
+ beta < 0) {
+ // Break conjugation: reset search direction.
+ searchDirection = steepestDescent.clone();
+ } else {
+ // Compute new conjugate search direction.
+ for (int i = 0; i < n; ++i) {
+ searchDirection[i] = steepestDescent[i] + beta * searchDirection[i];
+ }
+ }
+ }
+ }
+
+ /**
+ * Find the upper bound b ensuring bracketing of a root between a and b.
+ *
+ * @param f function whose root must be bracketed.
+ * @param a lower bound of the interval.
+ * @param h initial step to try.
+ * @return b such that f(a) and f(b) have opposite signs.
+ * @throws MathIllegalStateException if no bracket can be found.
+ */
+ private double findUpperBound(final UnivariateFunction f,
+ final double a, final double h) {
+ final double yA = f.value(a);
+ double yB = yA;
+ for (double step = h; step < Double.MAX_VALUE; step *= FastMath.max(2, yA / yB)) {
+ final double b = a + step;
+ yB = f.value(b);
+ if (yA * yB <= 0) {
+ return b;
+ }
+ }
+ throw new MathIllegalStateException(LocalizedFormats.UNABLE_TO_BRACKET_OPTIMUM_IN_LINE_SEARCH);
+ }
+
+ /** Default identity preconditioner. */
+ public static class IdentityPreconditioner implements Preconditioner {
+
+ /** {@inheritDoc} */
+ public double[] precondition(double[] variables, double[] r) {
+ return r.clone();
+ }
+ }
+
+ /** Internal class for line search.
+ * <p>
+ * The function represented by this class is the dot product of
+ * the objective function gradient and the search direction. Its
+ * value is zero when the gradient is orthogonal to the search
+ * direction, i.e. when the objective function value is a local
+ * extremum along the search direction.
+ * </p>
+ */
+ private class LineSearchFunction implements UnivariateFunction {
+ /** Search direction. */
+ private final double[] searchDirection;
+
+ /** Simple constructor.
+ * @param searchDirection search direction
+ */
+ LineSearchFunction(final double[] searchDirection) {
+ this.searchDirection = searchDirection;
+ }
+
+ /** {@inheritDoc} */
+ public double value(double x) {
+ // current point in the search direction
+ final double[] shiftedPoint = point.clone();
+ for (int i = 0; i < shiftedPoint.length; ++i) {
+ shiftedPoint[i] += x * searchDirection[i];
+ }
+
+ // gradient of the objective function
+ final double[] gradient = computeObjectiveGradient(shiftedPoint);
+
+ // dot product with the search direction
+ double dotProduct = 0;
+ for (int i = 0; i < gradient.length; ++i) {
+ dotProduct += gradient[i] * searchDirection[i];
+ }
+
+ return dotProduct;
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/Preconditioner.java b/src/main/java/org/apache/commons/math3/optimization/general/Preconditioner.java
new file mode 100644
index 0000000..7142e76
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/Preconditioner.java
@@ -0,0 +1,46 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+/**
+ * This interface represents a preconditioner for differentiable scalar
+ * objective function optimizers.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public interface Preconditioner {
+ /**
+ * Precondition a search direction.
+ * <p>
+ * The returned preconditioned search direction must be computed fast or
+ * the algorithm performances will drop drastically. A classical approach
+ * is to compute only the diagonal elements of the hessian and to divide
+ * the raw search direction by these elements if they are all positive.
+ * If at least one of them is negative, it is safer to return a clone of
+ * the raw search direction as if the hessian was the identity matrix. The
+ * rationale for this simplified choice is that a negative diagonal element
+ * means the current point is far from the optimum and preconditioning will
+ * not be efficient anyway in this case.
+ * </p>
+ * @param point current point at which the search direction was computed
+ * @param r raw search direction (i.e. opposite of the gradient)
+ * @return approximation of H<sup>-1</sup>r where H is the objective function hessian
+ */
+ double[] precondition(double[] point, double[] r);
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/package-info.java b/src/main/java/org/apache/commons/math3/optimization/general/package-info.java
new file mode 100644
index 0000000..ba140ce
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/package-info.java
@@ -0,0 +1,22 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * This package provides optimization algorithms that require derivatives.
+ *
+ */
+package org.apache.commons.math3.optimization.general;
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/AbstractLinearOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/linear/AbstractLinearOptimizer.java
new file mode 100644
index 0000000..921d877
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/AbstractLinearOptimizer.java
@@ -0,0 +1,162 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import java.util.Collection;
+import java.util.Collections;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.PointValuePair;
+
+/**
+ * Base class for implementing linear optimizers.
+ * <p>
+ * This base class handles the boilerplate methods associated to thresholds
+ * settings and iterations counters.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public abstract class AbstractLinearOptimizer implements LinearOptimizer {
+
+ /** Default maximal number of iterations allowed. */
+ public static final int DEFAULT_MAX_ITERATIONS = 100;
+
+ /**
+ * Linear objective function.
+ * @since 2.1
+ */
+ private LinearObjectiveFunction function;
+
+ /**
+ * Linear constraints.
+ * @since 2.1
+ */
+ private Collection<LinearConstraint> linearConstraints;
+
+ /**
+ * Type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
+ * @since 2.1
+ */
+ private GoalType goal;
+
+ /**
+ * Whether to restrict the variables to non-negative values.
+ * @since 2.1
+ */
+ private boolean nonNegative;
+
+ /** Maximal number of iterations allowed. */
+ private int maxIterations;
+
+ /** Number of iterations already performed. */
+ private int iterations;
+
+ /**
+ * Simple constructor with default settings.
+ * <p>The maximal number of evaluation is set to its default value.</p>
+ */
+ protected AbstractLinearOptimizer() {
+ setMaxIterations(DEFAULT_MAX_ITERATIONS);
+ }
+
+ /**
+ * @return {@code true} if the variables are restricted to non-negative values.
+ */
+ protected boolean restrictToNonNegative() {
+ return nonNegative;
+ }
+
+ /**
+ * @return the optimization type.
+ */
+ protected GoalType getGoalType() {
+ return goal;
+ }
+
+ /**
+ * @return the optimization type.
+ */
+ protected LinearObjectiveFunction getFunction() {
+ return function;
+ }
+
+ /**
+ * @return the optimization type.
+ */
+ protected Collection<LinearConstraint> getConstraints() {
+ return Collections.unmodifiableCollection(linearConstraints);
+ }
+
+ /** {@inheritDoc} */
+ public void setMaxIterations(int maxIterations) {
+ this.maxIterations = maxIterations;
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxIterations() {
+ return maxIterations;
+ }
+
+ /** {@inheritDoc} */
+ public int getIterations() {
+ return iterations;
+ }
+
+ /**
+ * Increment the iterations counter by 1.
+ * @exception MaxCountExceededException if the maximal number of iterations is exceeded
+ */
+ protected void incrementIterationsCounter()
+ throws MaxCountExceededException {
+ if (++iterations > maxIterations) {
+ throw new MaxCountExceededException(maxIterations);
+ }
+ }
+
+ /** {@inheritDoc} */
+ public PointValuePair optimize(final LinearObjectiveFunction f,
+ final Collection<LinearConstraint> constraints,
+ final GoalType goalType, final boolean restrictToNonNegative)
+ throws MathIllegalStateException {
+
+ // store linear problem characteristics
+ this.function = f;
+ this.linearConstraints = constraints;
+ this.goal = goalType;
+ this.nonNegative = restrictToNonNegative;
+
+ iterations = 0;
+
+ // solve the problem
+ return doOptimize();
+
+ }
+
+ /**
+ * Perform the bulk of optimization algorithm.
+ * @return the point/value pair giving the optimal value for objective function
+ * @exception MathIllegalStateException if no solution fulfilling the constraints
+ * can be found in the allowed number of iterations
+ */
+ protected abstract PointValuePair doOptimize() throws MathIllegalStateException;
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/LinearConstraint.java b/src/main/java/org/apache/commons/math3/optimization/linear/LinearConstraint.java
new file mode 100644
index 0000000..b3d70d4
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/LinearConstraint.java
@@ -0,0 +1,236 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+import java.io.Serializable;
+
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.RealVector;
+import org.apache.commons.math3.linear.ArrayRealVector;
+
+
+/**
+ * A linear constraint for a linear optimization problem.
+ * <p>
+ * A linear constraint has one of the forms:
+ * <ul>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> = v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> &lt;= v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> >= v</li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> =
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> &lt;=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> >=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * </ul>
+ * The c<sub>i</sub>, l<sub>i</sub> or r<sub>i</sub> are the coefficients of the constraints, the x<sub>i</sub>
+ * are the coordinates of the current point and v is the value of the constraint.
+ * </p>
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class LinearConstraint implements Serializable {
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -764632794033034092L;
+
+ /** Coefficients of the constraint (left hand side). */
+ private final transient RealVector coefficients;
+
+ /** Relationship between left and right hand sides (=, &lt;=, >=). */
+ private final Relationship relationship;
+
+ /** Value of the constraint (right hand side). */
+ private final double value;
+
+ /**
+ * Build a constraint involving a single linear equation.
+ * <p>
+ * A linear constraint with a single linear equation has one of the forms:
+ * <ul>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> = v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> &lt;= v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> >= v</li>
+ * </ul>
+ * </p>
+ * @param coefficients The coefficients of the constraint (left hand side)
+ * @param relationship The type of (in)equality used in the constraint
+ * @param value The value of the constraint (right hand side)
+ */
+ public LinearConstraint(final double[] coefficients, final Relationship relationship,
+ final double value) {
+ this(new ArrayRealVector(coefficients), relationship, value);
+ }
+
+ /**
+ * Build a constraint involving a single linear equation.
+ * <p>
+ * A linear constraint with a single linear equation has one of the forms:
+ * <ul>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> = v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> &lt;= v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> >= v</li>
+ * </ul>
+ * </p>
+ * @param coefficients The coefficients of the constraint (left hand side)
+ * @param relationship The type of (in)equality used in the constraint
+ * @param value The value of the constraint (right hand side)
+ */
+ public LinearConstraint(final RealVector coefficients, final Relationship relationship,
+ final double value) {
+ this.coefficients = coefficients;
+ this.relationship = relationship;
+ this.value = value;
+ }
+
+ /**
+ * Build a constraint involving two linear equations.
+ * <p>
+ * A linear constraint with two linear equation has one of the forms:
+ * <ul>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> =
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> &lt;=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> >=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * </ul>
+ * </p>
+ * @param lhsCoefficients The coefficients of the linear expression on the left hand side of the constraint
+ * @param lhsConstant The constant term of the linear expression on the left hand side of the constraint
+ * @param relationship The type of (in)equality used in the constraint
+ * @param rhsCoefficients The coefficients of the linear expression on the right hand side of the constraint
+ * @param rhsConstant The constant term of the linear expression on the right hand side of the constraint
+ */
+ public LinearConstraint(final double[] lhsCoefficients, final double lhsConstant,
+ final Relationship relationship,
+ final double[] rhsCoefficients, final double rhsConstant) {
+ double[] sub = new double[lhsCoefficients.length];
+ for (int i = 0; i < sub.length; ++i) {
+ sub[i] = lhsCoefficients[i] - rhsCoefficients[i];
+ }
+ this.coefficients = new ArrayRealVector(sub, false);
+ this.relationship = relationship;
+ this.value = rhsConstant - lhsConstant;
+ }
+
+ /**
+ * Build a constraint involving two linear equations.
+ * <p>
+ * A linear constraint with two linear equation has one of the forms:
+ * <ul>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> =
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> &lt;=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> >=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * </ul>
+ * </p>
+ * @param lhsCoefficients The coefficients of the linear expression on the left hand side of the constraint
+ * @param lhsConstant The constant term of the linear expression on the left hand side of the constraint
+ * @param relationship The type of (in)equality used in the constraint
+ * @param rhsCoefficients The coefficients of the linear expression on the right hand side of the constraint
+ * @param rhsConstant The constant term of the linear expression on the right hand side of the constraint
+ */
+ public LinearConstraint(final RealVector lhsCoefficients, final double lhsConstant,
+ final Relationship relationship,
+ final RealVector rhsCoefficients, final double rhsConstant) {
+ this.coefficients = lhsCoefficients.subtract(rhsCoefficients);
+ this.relationship = relationship;
+ this.value = rhsConstant - lhsConstant;
+ }
+
+ /**
+ * Get the coefficients of the constraint (left hand side).
+ * @return coefficients of the constraint (left hand side)
+ */
+ public RealVector getCoefficients() {
+ return coefficients;
+ }
+
+ /**
+ * Get the relationship between left and right hand sides.
+ * @return relationship between left and right hand sides
+ */
+ public Relationship getRelationship() {
+ return relationship;
+ }
+
+ /**
+ * Get the value of the constraint (right hand side).
+ * @return value of the constraint (right hand side)
+ */
+ public double getValue() {
+ return value;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof LinearConstraint) {
+ LinearConstraint rhs = (LinearConstraint) other;
+ return (relationship == rhs.relationship) &&
+ (value == rhs.value) &&
+ coefficients.equals(rhs.coefficients);
+ }
+ return false;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public int hashCode() {
+ return relationship.hashCode() ^
+ Double.valueOf(value).hashCode() ^
+ coefficients.hashCode();
+ }
+
+ /**
+ * Serialize the instance.
+ * @param oos stream where object should be written
+ * @throws IOException if object cannot be written to stream
+ */
+ private void writeObject(ObjectOutputStream oos)
+ throws IOException {
+ oos.defaultWriteObject();
+ MatrixUtils.serializeRealVector(coefficients, oos);
+ }
+
+ /**
+ * Deserialize the instance.
+ * @param ois stream from which the object should be read
+ * @throws ClassNotFoundException if a class in the stream cannot be found
+ * @throws IOException if object cannot be read from the stream
+ */
+ private void readObject(ObjectInputStream ois)
+ throws ClassNotFoundException, IOException {
+ ois.defaultReadObject();
+ MatrixUtils.deserializeRealVector(this, "coefficients", ois);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/LinearObjectiveFunction.java b/src/main/java/org/apache/commons/math3/optimization/linear/LinearObjectiveFunction.java
new file mode 100644
index 0000000..824a139
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/LinearObjectiveFunction.java
@@ -0,0 +1,150 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+import java.io.Serializable;
+
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.RealVector;
+import org.apache.commons.math3.linear.ArrayRealVector;
+
+/**
+ * An objective function for a linear optimization problem.
+ * <p>
+ * A linear objective function has one the form:
+ * <pre>
+ * c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> + d
+ * </pre>
+ * The c<sub>i</sub> and d are the coefficients of the equation,
+ * the x<sub>i</sub> are the coordinates of the current point.
+ * </p>
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class LinearObjectiveFunction implements Serializable {
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -4531815507568396090L;
+
+ /** Coefficients of the constraint (c<sub>i</sub>). */
+ private final transient RealVector coefficients;
+
+ /** Constant term of the linear equation. */
+ private final double constantTerm;
+
+ /**
+ * @param coefficients The coefficients for the linear equation being optimized
+ * @param constantTerm The constant term of the linear equation
+ */
+ public LinearObjectiveFunction(double[] coefficients, double constantTerm) {
+ this(new ArrayRealVector(coefficients), constantTerm);
+ }
+
+ /**
+ * @param coefficients The coefficients for the linear equation being optimized
+ * @param constantTerm The constant term of the linear equation
+ */
+ public LinearObjectiveFunction(RealVector coefficients, double constantTerm) {
+ this.coefficients = coefficients;
+ this.constantTerm = constantTerm;
+ }
+
+ /**
+ * Get the coefficients of the linear equation being optimized.
+ * @return coefficients of the linear equation being optimized
+ */
+ public RealVector getCoefficients() {
+ return coefficients;
+ }
+
+ /**
+ * Get the constant of the linear equation being optimized.
+ * @return constant of the linear equation being optimized
+ */
+ public double getConstantTerm() {
+ return constantTerm;
+ }
+
+ /**
+ * Compute the value of the linear equation at the current point
+ * @param point point at which linear equation must be evaluated
+ * @return value of the linear equation at the current point
+ */
+ public double getValue(final double[] point) {
+ return coefficients.dotProduct(new ArrayRealVector(point, false)) + constantTerm;
+ }
+
+ /**
+ * Compute the value of the linear equation at the current point
+ * @param point point at which linear equation must be evaluated
+ * @return value of the linear equation at the current point
+ */
+ public double getValue(final RealVector point) {
+ return coefficients.dotProduct(point) + constantTerm;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof LinearObjectiveFunction) {
+ LinearObjectiveFunction rhs = (LinearObjectiveFunction) other;
+ return (constantTerm == rhs.constantTerm) && coefficients.equals(rhs.coefficients);
+ }
+
+ return false;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public int hashCode() {
+ return Double.valueOf(constantTerm).hashCode() ^ coefficients.hashCode();
+ }
+
+ /**
+ * Serialize the instance.
+ * @param oos stream where object should be written
+ * @throws IOException if object cannot be written to stream
+ */
+ private void writeObject(ObjectOutputStream oos)
+ throws IOException {
+ oos.defaultWriteObject();
+ MatrixUtils.serializeRealVector(coefficients, oos);
+ }
+
+ /**
+ * Deserialize the instance.
+ * @param ois stream from which the object should be read
+ * @throws ClassNotFoundException if a class in the stream cannot be found
+ * @throws IOException if object cannot be read from the stream
+ */
+ private void readObject(ObjectInputStream ois)
+ throws ClassNotFoundException, IOException {
+ ois.defaultReadObject();
+ MatrixUtils.deserializeRealVector(this, "coefficients", ois);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/LinearOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/linear/LinearOptimizer.java
new file mode 100644
index 0000000..610d0cb
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/LinearOptimizer.java
@@ -0,0 +1,92 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import java.util.Collection;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.PointValuePair;
+
+/**
+ * This interface represents an optimization algorithm for linear problems.
+ * <p>Optimization algorithms find the input point set that either {@link GoalType
+ * maximize or minimize} an objective function. In the linear case the form of
+ * the function is restricted to
+ * <pre>
+ * c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> = v
+ * </pre>
+ * and there may be linear constraints too, of one of the forms:
+ * <ul>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> = v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> &lt;= v</li>
+ * <li>c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> >= v</li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> =
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> &lt;=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> >=
+ * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub></li>
+ * </ul>
+ * where the c<sub>i</sub>, l<sub>i</sub> or r<sub>i</sub> are the coefficients of
+ * the constraints, the x<sub>i</sub> are the coordinates of the current point and
+ * v is the value of the constraint.
+ * </p>
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public interface LinearOptimizer {
+
+ /**
+ * Set the maximal number of iterations of the algorithm.
+ * @param maxIterations maximal number of function calls
+ */
+ void setMaxIterations(int maxIterations);
+
+ /**
+ * Get the maximal number of iterations of the algorithm.
+ * @return maximal number of iterations
+ */
+ int getMaxIterations();
+
+ /**
+ * Get the number of iterations realized by the algorithm.
+ * <p>
+ * The number of evaluations corresponds to the last call to the
+ * {@link #optimize(LinearObjectiveFunction, Collection, GoalType, boolean) optimize}
+ * method. It is 0 if the method has not been called yet.
+ * </p>
+ * @return number of iterations
+ */
+ int getIterations();
+
+ /**
+ * Optimizes an objective function.
+ * @param f linear objective function
+ * @param constraints linear constraints
+ * @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}
+ * @param restrictToNonNegative whether to restrict the variables to non-negative values
+ * @return point/value pair giving the optimal value for objective function
+ * @exception MathIllegalStateException if no solution fulfilling the constraints
+ * can be found in the allowed number of iterations
+ */
+ PointValuePair optimize(LinearObjectiveFunction f, Collection<LinearConstraint> constraints,
+ GoalType goalType, boolean restrictToNonNegative) throws MathIllegalStateException;
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/NoFeasibleSolutionException.java b/src/main/java/org/apache/commons/math3/optimization/linear/NoFeasibleSolutionException.java
new file mode 100644
index 0000000..c585c3a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/NoFeasibleSolutionException.java
@@ -0,0 +1,42 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+
+/**
+ * This class represents exceptions thrown by optimizers when no solution fulfills the constraints.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class NoFeasibleSolutionException extends MathIllegalStateException {
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -3044253632189082760L;
+
+ /**
+ * Simple constructor using a default message.
+ */
+ public NoFeasibleSolutionException() {
+ super(LocalizedFormats.NO_FEASIBLE_SOLUTION);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/Relationship.java b/src/main/java/org/apache/commons/math3/optimization/linear/Relationship.java
new file mode 100644
index 0000000..b1ca087
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/Relationship.java
@@ -0,0 +1,68 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+/**
+ * Types of relationships between two cells in a Solver {@link LinearConstraint}.
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public enum Relationship {
+
+ /** Equality relationship. */
+ EQ("="),
+
+ /** Lesser than or equal relationship. */
+ LEQ("<="),
+
+ /** Greater than or equal relationship. */
+ GEQ(">=");
+
+ /** Display string for the relationship. */
+ private final String stringValue;
+
+ /** Simple constructor.
+ * @param stringValue display string for the relationship
+ */
+ Relationship(String stringValue) {
+ this.stringValue = stringValue;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public String toString() {
+ return stringValue;
+ }
+
+ /**
+ * Get the relationship obtained when multiplying all coefficients by -1.
+ * @return relationship obtained when multiplying all coefficients by -1
+ */
+ public Relationship oppositeRelationship() {
+ switch (this) {
+ case LEQ :
+ return GEQ;
+ case GEQ :
+ return LEQ;
+ default :
+ return EQ;
+ }
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java b/src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java
new file mode 100644
index 0000000..1e5dbda
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/SimplexSolver.java
@@ -0,0 +1,238 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.util.Precision;
+
+
+/**
+ * Solves a linear problem using the Two-Phase Simplex Method.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class SimplexSolver extends AbstractLinearOptimizer {
+
+ /** Default amount of error to accept for algorithm convergence. */
+ private static final double DEFAULT_EPSILON = 1.0e-6;
+
+ /** Default amount of error to accept in floating point comparisons (as ulps). */
+ private static final int DEFAULT_ULPS = 10;
+
+ /** Amount of error to accept for algorithm convergence. */
+ private final double epsilon;
+
+ /** Amount of error to accept in floating point comparisons (as ulps). */
+ private final int maxUlps;
+
+ /**
+ * Build a simplex solver with default settings.
+ */
+ public SimplexSolver() {
+ this(DEFAULT_EPSILON, DEFAULT_ULPS);
+ }
+
+ /**
+ * Build a simplex solver with a specified accepted amount of error
+ * @param epsilon the amount of error to accept for algorithm convergence
+ * @param maxUlps amount of error to accept in floating point comparisons
+ */
+ public SimplexSolver(final double epsilon, final int maxUlps) {
+ this.epsilon = epsilon;
+ this.maxUlps = maxUlps;
+ }
+
+ /**
+ * Returns the column with the most negative coefficient in the objective function row.
+ * @param tableau simple tableau for the problem
+ * @return column with the most negative coefficient
+ */
+ private Integer getPivotColumn(SimplexTableau tableau) {
+ double minValue = 0;
+ Integer minPos = null;
+ for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) {
+ final double entry = tableau.getEntry(0, i);
+ // check if the entry is strictly smaller than the current minimum
+ // do not use a ulp/epsilon check
+ if (entry < minValue) {
+ minValue = entry;
+ minPos = i;
+ }
+ }
+ return minPos;
+ }
+
+ /**
+ * Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
+ * @param tableau simple tableau for the problem
+ * @param col the column to test the ratio of. See {@link #getPivotColumn(SimplexTableau)}
+ * @return row with the minimum ratio
+ */
+ private Integer getPivotRow(SimplexTableau tableau, final int col) {
+ // create a list of all the rows that tie for the lowest score in the minimum ratio test
+ List<Integer> minRatioPositions = new ArrayList<Integer>();
+ double minRatio = Double.MAX_VALUE;
+ for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
+ final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
+ final double entry = tableau.getEntry(i, col);
+
+ if (Precision.compareTo(entry, 0d, maxUlps) > 0) {
+ final double ratio = rhs / entry;
+ // check if the entry is strictly equal to the current min ratio
+ // do not use a ulp/epsilon check
+ final int cmp = Double.compare(ratio, minRatio);
+ if (cmp == 0) {
+ minRatioPositions.add(i);
+ } else if (cmp < 0) {
+ minRatio = ratio;
+ minRatioPositions = new ArrayList<Integer>();
+ minRatioPositions.add(i);
+ }
+ }
+ }
+
+ if (minRatioPositions.size() == 0) {
+ return null;
+ } else if (minRatioPositions.size() > 1) {
+ // there's a degeneracy as indicated by a tie in the minimum ratio test
+
+ // 1. check if there's an artificial variable that can be forced out of the basis
+ if (tableau.getNumArtificialVariables() > 0) {
+ for (Integer row : minRatioPositions) {
+ for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
+ int column = i + tableau.getArtificialVariableOffset();
+ final double entry = tableau.getEntry(row, column);
+ if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
+ return row;
+ }
+ }
+ }
+ }
+
+ // 2. apply Bland's rule to prevent cycling:
+ // take the row for which the corresponding basic variable has the smallest index
+ //
+ // see http://www.stanford.edu/class/msande310/blandrule.pdf
+ // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
+ //
+ // Additional heuristic: if we did not get a solution after half of maxIterations
+ // revert to the simple case of just returning the top-most row
+ // This heuristic is based on empirical data gathered while investigating MATH-828.
+ if (getIterations() < getMaxIterations() / 2) {
+ Integer minRow = null;
+ int minIndex = tableau.getWidth();
+ final int varStart = tableau.getNumObjectiveFunctions();
+ final int varEnd = tableau.getWidth() - 1;
+ for (Integer row : minRatioPositions) {
+ for (int i = varStart; i < varEnd && !row.equals(minRow); i++) {
+ final Integer basicRow = tableau.getBasicRow(i);
+ if (basicRow != null && basicRow.equals(row) && i < minIndex) {
+ minIndex = i;
+ minRow = row;
+ }
+ }
+ }
+ return minRow;
+ }
+ }
+ return minRatioPositions.get(0);
+ }
+
+ /**
+ * Runs one iteration of the Simplex method on the given model.
+ * @param tableau simple tableau for the problem
+ * @throws MaxCountExceededException if the maximal iteration count has been exceeded
+ * @throws UnboundedSolutionException if the model is found not to have a bounded solution
+ */
+ protected void doIteration(final SimplexTableau tableau)
+ throws MaxCountExceededException, UnboundedSolutionException {
+
+ incrementIterationsCounter();
+
+ Integer pivotCol = getPivotColumn(tableau);
+ Integer pivotRow = getPivotRow(tableau, pivotCol);
+ if (pivotRow == null) {
+ throw new UnboundedSolutionException();
+ }
+
+ // set the pivot element to 1
+ double pivotVal = tableau.getEntry(pivotRow, pivotCol);
+ tableau.divideRow(pivotRow, pivotVal);
+
+ // set the rest of the pivot column to 0
+ for (int i = 0; i < tableau.getHeight(); i++) {
+ if (i != pivotRow) {
+ final double multiplier = tableau.getEntry(i, pivotCol);
+ tableau.subtractRow(i, pivotRow, multiplier);
+ }
+ }
+ }
+
+ /**
+ * Solves Phase 1 of the Simplex method.
+ * @param tableau simple tableau for the problem
+ * @throws MaxCountExceededException if the maximal iteration count has been exceeded
+ * @throws UnboundedSolutionException if the model is found not to have a bounded solution
+ * @throws NoFeasibleSolutionException if there is no feasible solution
+ */
+ protected void solvePhase1(final SimplexTableau tableau)
+ throws MaxCountExceededException, UnboundedSolutionException, NoFeasibleSolutionException {
+
+ // make sure we're in Phase 1
+ if (tableau.getNumArtificialVariables() == 0) {
+ return;
+ }
+
+ while (!tableau.isOptimal()) {
+ doIteration(tableau);
+ }
+
+ // if W is not zero then we have no feasible solution
+ if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) {
+ throw new NoFeasibleSolutionException();
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public PointValuePair doOptimize()
+ throws MaxCountExceededException, UnboundedSolutionException, NoFeasibleSolutionException {
+ final SimplexTableau tableau =
+ new SimplexTableau(getFunction(),
+ getConstraints(),
+ getGoalType(),
+ restrictToNonNegative(),
+ epsilon,
+ maxUlps);
+
+ solvePhase1(tableau);
+ tableau.dropPhase1Objective();
+
+ while (!tableau.isOptimal()) {
+ doIteration(tableau);
+ }
+ return tableau.getSolution();
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/SimplexTableau.java b/src/main/java/org/apache/commons/math3/optimization/linear/SimplexTableau.java
new file mode 100644
index 0000000..321f8c0
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/SimplexTableau.java
@@ -0,0 +1,637 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+import java.io.Serializable;
+import java.util.ArrayList;
+import java.util.Collection;
+import java.util.HashSet;
+import java.util.List;
+import java.util.Set;
+import java.util.TreeSet;
+
+import org.apache.commons.math3.linear.Array2DRowRealMatrix;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.linear.RealVector;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.PointValuePair;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.Precision;
+
+/**
+ * A tableau for use in the Simplex method.
+ *
+ * <p>
+ * Example:
+ * <pre>
+ * W | Z | x1 | x2 | x- | s1 | s2 | a1 | RHS
+ * ---------------------------------------------------
+ * -1 0 0 0 0 0 0 1 0 &lt;= phase 1 objective
+ * 0 1 -15 -10 0 0 0 0 0 &lt;= phase 2 objective
+ * 0 0 1 0 0 1 0 0 2 &lt;= constraint 1
+ * 0 0 0 1 0 0 1 0 3 &lt;= constraint 2
+ * 0 0 1 1 0 0 0 1 4 &lt;= constraint 3
+ * </pre>
+ * W: Phase 1 objective function</br>
+ * Z: Phase 2 objective function</br>
+ * x1 &amp; x2: Decision variables</br>
+ * x-: Extra decision variable to allow for negative values</br>
+ * s1 &amp; s2: Slack/Surplus variables</br>
+ * a1: Artificial variable</br>
+ * RHS: Right hand side</br>
+ * </p>
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+class SimplexTableau implements Serializable {
+
+ /** Column label for negative vars. */
+ private static final String NEGATIVE_VAR_COLUMN_LABEL = "x-";
+
+ /** Default amount of error to accept in floating point comparisons (as ulps). */
+ private static final int DEFAULT_ULPS = 10;
+
+ /** The cut-off threshold to zero-out entries. */
+ private static final double CUTOFF_THRESHOLD = 1e-12;
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -1369660067587938365L;
+
+ /** Linear objective function. */
+ private final LinearObjectiveFunction f;
+
+ /** Linear constraints. */
+ private final List<LinearConstraint> constraints;
+
+ /** Whether to restrict the variables to non-negative values. */
+ private final boolean restrictToNonNegative;
+
+ /** The variables each column represents */
+ private final List<String> columnLabels = new ArrayList<String>();
+
+ /** Simple tableau. */
+ private transient RealMatrix tableau;
+
+ /** Number of decision variables. */
+ private final int numDecisionVariables;
+
+ /** Number of slack variables. */
+ private final int numSlackVariables;
+
+ /** Number of artificial variables. */
+ private int numArtificialVariables;
+
+ /** Amount of error to accept when checking for optimality. */
+ private final double epsilon;
+
+ /** Amount of error to accept in floating point comparisons. */
+ private final int maxUlps;
+
+ /**
+ * Build a tableau for a linear problem.
+ * @param f linear objective function
+ * @param constraints linear constraints
+ * @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}
+ * @param restrictToNonNegative whether to restrict the variables to non-negative values
+ * @param epsilon amount of error to accept when checking for optimality
+ */
+ SimplexTableau(final LinearObjectiveFunction f,
+ final Collection<LinearConstraint> constraints,
+ final GoalType goalType, final boolean restrictToNonNegative,
+ final double epsilon) {
+ this(f, constraints, goalType, restrictToNonNegative, epsilon, DEFAULT_ULPS);
+ }
+
+ /**
+ * Build a tableau for a linear problem.
+ * @param f linear objective function
+ * @param constraints linear constraints
+ * @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}
+ * @param restrictToNonNegative whether to restrict the variables to non-negative values
+ * @param epsilon amount of error to accept when checking for optimality
+ * @param maxUlps amount of error to accept in floating point comparisons
+ */
+ SimplexTableau(final LinearObjectiveFunction f,
+ final Collection<LinearConstraint> constraints,
+ final GoalType goalType, final boolean restrictToNonNegative,
+ final double epsilon,
+ final int maxUlps) {
+ this.f = f;
+ this.constraints = normalizeConstraints(constraints);
+ this.restrictToNonNegative = restrictToNonNegative;
+ this.epsilon = epsilon;
+ this.maxUlps = maxUlps;
+ this.numDecisionVariables = f.getCoefficients().getDimension() +
+ (restrictToNonNegative ? 0 : 1);
+ this.numSlackVariables = getConstraintTypeCounts(Relationship.LEQ) +
+ getConstraintTypeCounts(Relationship.GEQ);
+ this.numArtificialVariables = getConstraintTypeCounts(Relationship.EQ) +
+ getConstraintTypeCounts(Relationship.GEQ);
+ this.tableau = createTableau(goalType == GoalType.MAXIMIZE);
+ initializeColumnLabels();
+ }
+
+ /**
+ * Initialize the labels for the columns.
+ */
+ protected void initializeColumnLabels() {
+ if (getNumObjectiveFunctions() == 2) {
+ columnLabels.add("W");
+ }
+ columnLabels.add("Z");
+ for (int i = 0; i < getOriginalNumDecisionVariables(); i++) {
+ columnLabels.add("x" + i);
+ }
+ if (!restrictToNonNegative) {
+ columnLabels.add(NEGATIVE_VAR_COLUMN_LABEL);
+ }
+ for (int i = 0; i < getNumSlackVariables(); i++) {
+ columnLabels.add("s" + i);
+ }
+ for (int i = 0; i < getNumArtificialVariables(); i++) {
+ columnLabels.add("a" + i);
+ }
+ columnLabels.add("RHS");
+ }
+
+ /**
+ * Create the tableau by itself.
+ * @param maximize if true, goal is to maximize the objective function
+ * @return created tableau
+ */
+ protected RealMatrix createTableau(final boolean maximize) {
+
+ // create a matrix of the correct size
+ int width = numDecisionVariables + numSlackVariables +
+ numArtificialVariables + getNumObjectiveFunctions() + 1; // + 1 is for RHS
+ int height = constraints.size() + getNumObjectiveFunctions();
+ Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(height, width);
+
+ // initialize the objective function rows
+ if (getNumObjectiveFunctions() == 2) {
+ matrix.setEntry(0, 0, -1);
+ }
+ int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
+ matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
+ RealVector objectiveCoefficients =
+ maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
+ copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
+ matrix.setEntry(zIndex, width - 1,
+ maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());
+
+ if (!restrictToNonNegative) {
+ matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
+ getInvertedCoefficientSum(objectiveCoefficients));
+ }
+
+ // initialize the constraint rows
+ int slackVar = 0;
+ int artificialVar = 0;
+ for (int i = 0; i < constraints.size(); i++) {
+ LinearConstraint constraint = constraints.get(i);
+ int row = getNumObjectiveFunctions() + i;
+
+ // decision variable coefficients
+ copyArray(constraint.getCoefficients().toArray(), matrix.getDataRef()[row]);
+
+ // x-
+ if (!restrictToNonNegative) {
+ matrix.setEntry(row, getSlackVariableOffset() - 1,
+ getInvertedCoefficientSum(constraint.getCoefficients()));
+ }
+
+ // RHS
+ matrix.setEntry(row, width - 1, constraint.getValue());
+
+ // slack variables
+ if (constraint.getRelationship() == Relationship.LEQ) {
+ matrix.setEntry(row, getSlackVariableOffset() + slackVar++, 1); // slack
+ } else if (constraint.getRelationship() == Relationship.GEQ) {
+ matrix.setEntry(row, getSlackVariableOffset() + slackVar++, -1); // excess
+ }
+
+ // artificial variables
+ if ((constraint.getRelationship() == Relationship.EQ) ||
+ (constraint.getRelationship() == Relationship.GEQ)) {
+ matrix.setEntry(0, getArtificialVariableOffset() + artificialVar, 1);
+ matrix.setEntry(row, getArtificialVariableOffset() + artificialVar++, 1);
+ matrix.setRowVector(0, matrix.getRowVector(0).subtract(matrix.getRowVector(row)));
+ }
+ }
+
+ return matrix;
+ }
+
+ /**
+ * Get new versions of the constraints which have positive right hand sides.
+ * @param originalConstraints original (not normalized) constraints
+ * @return new versions of the constraints
+ */
+ public List<LinearConstraint> normalizeConstraints(Collection<LinearConstraint> originalConstraints) {
+ List<LinearConstraint> normalized = new ArrayList<LinearConstraint>(originalConstraints.size());
+ for (LinearConstraint constraint : originalConstraints) {
+ normalized.add(normalize(constraint));
+ }
+ return normalized;
+ }
+
+ /**
+ * Get a new equation equivalent to this one with a positive right hand side.
+ * @param constraint reference constraint
+ * @return new equation
+ */
+ private LinearConstraint normalize(final LinearConstraint constraint) {
+ if (constraint.getValue() < 0) {
+ return new LinearConstraint(constraint.getCoefficients().mapMultiply(-1),
+ constraint.getRelationship().oppositeRelationship(),
+ -1 * constraint.getValue());
+ }
+ return new LinearConstraint(constraint.getCoefficients(),
+ constraint.getRelationship(), constraint.getValue());
+ }
+
+ /**
+ * Get the number of objective functions in this tableau.
+ * @return 2 for Phase 1. 1 for Phase 2.
+ */
+ protected final int getNumObjectiveFunctions() {
+ return this.numArtificialVariables > 0 ? 2 : 1;
+ }
+
+ /**
+ * Get a count of constraints corresponding to a specified relationship.
+ * @param relationship relationship to count
+ * @return number of constraint with the specified relationship
+ */
+ private int getConstraintTypeCounts(final Relationship relationship) {
+ int count = 0;
+ for (final LinearConstraint constraint : constraints) {
+ if (constraint.getRelationship() == relationship) {
+ ++count;
+ }
+ }
+ return count;
+ }
+
+ /**
+ * Get the -1 times the sum of all coefficients in the given array.
+ * @param coefficients coefficients to sum
+ * @return the -1 times the sum of all coefficients in the given array.
+ */
+ protected static double getInvertedCoefficientSum(final RealVector coefficients) {
+ double sum = 0;
+ for (double coefficient : coefficients.toArray()) {
+ sum -= coefficient;
+ }
+ return sum;
+ }
+
+ /**
+ * Checks whether the given column is basic.
+ * @param col index of the column to check
+ * @return the row that the variable is basic in. null if the column is not basic
+ */
+ protected Integer getBasicRow(final int col) {
+ Integer row = null;
+ for (int i = 0; i < getHeight(); i++) {
+ final double entry = getEntry(i, col);
+ if (Precision.equals(entry, 1d, maxUlps) && (row == null)) {
+ row = i;
+ } else if (!Precision.equals(entry, 0d, maxUlps)) {
+ return null;
+ }
+ }
+ return row;
+ }
+
+ /**
+ * Removes the phase 1 objective function, positive cost non-artificial variables,
+ * and the non-basic artificial variables from this tableau.
+ */
+ protected void dropPhase1Objective() {
+ if (getNumObjectiveFunctions() == 1) {
+ return;
+ }
+
+ Set<Integer> columnsToDrop = new TreeSet<Integer>();
+ columnsToDrop.add(0);
+
+ // positive cost non-artificial variables
+ for (int i = getNumObjectiveFunctions(); i < getArtificialVariableOffset(); i++) {
+ final double entry = tableau.getEntry(0, i);
+ if (Precision.compareTo(entry, 0d, epsilon) > 0) {
+ columnsToDrop.add(i);
+ }
+ }
+
+ // non-basic artificial variables
+ for (int i = 0; i < getNumArtificialVariables(); i++) {
+ int col = i + getArtificialVariableOffset();
+ if (getBasicRow(col) == null) {
+ columnsToDrop.add(col);
+ }
+ }
+
+ double[][] matrix = new double[getHeight() - 1][getWidth() - columnsToDrop.size()];
+ for (int i = 1; i < getHeight(); i++) {
+ int col = 0;
+ for (int j = 0; j < getWidth(); j++) {
+ if (!columnsToDrop.contains(j)) {
+ matrix[i - 1][col++] = tableau.getEntry(i, j);
+ }
+ }
+ }
+
+ // remove the columns in reverse order so the indices are correct
+ Integer[] drop = columnsToDrop.toArray(new Integer[columnsToDrop.size()]);
+ for (int i = drop.length - 1; i >= 0; i--) {
+ columnLabels.remove((int) drop[i]);
+ }
+
+ this.tableau = new Array2DRowRealMatrix(matrix);
+ this.numArtificialVariables = 0;
+ }
+
+ /**
+ * @param src the source array
+ * @param dest the destination array
+ */
+ private void copyArray(final double[] src, final double[] dest) {
+ System.arraycopy(src, 0, dest, getNumObjectiveFunctions(), src.length);
+ }
+
+ /**
+ * Returns whether the problem is at an optimal state.
+ * @return whether the model has been solved
+ */
+ boolean isOptimal() {
+ for (int i = getNumObjectiveFunctions(); i < getWidth() - 1; i++) {
+ final double entry = tableau.getEntry(0, i);
+ if (Precision.compareTo(entry, 0d, epsilon) < 0) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Get the current solution.
+ * @return current solution
+ */
+ protected PointValuePair getSolution() {
+ int negativeVarColumn = columnLabels.indexOf(NEGATIVE_VAR_COLUMN_LABEL);
+ Integer negativeVarBasicRow = negativeVarColumn > 0 ? getBasicRow(negativeVarColumn) : null;
+ double mostNegative = negativeVarBasicRow == null ? 0 : getEntry(negativeVarBasicRow, getRhsOffset());
+
+ Set<Integer> basicRows = new HashSet<Integer>();
+ double[] coefficients = new double[getOriginalNumDecisionVariables()];
+ for (int i = 0; i < coefficients.length; i++) {
+ int colIndex = columnLabels.indexOf("x" + i);
+ if (colIndex < 0) {
+ coefficients[i] = 0;
+ continue;
+ }
+ Integer basicRow = getBasicRow(colIndex);
+ if (basicRow != null && basicRow == 0) {
+ // if the basic row is found to be the objective function row
+ // set the coefficient to 0 -> this case handles unconstrained
+ // variables that are still part of the objective function
+ coefficients[i] = 0;
+ } else if (basicRows.contains(basicRow)) {
+ // if multiple variables can take a given value
+ // then we choose the first and set the rest equal to 0
+ coefficients[i] = 0 - (restrictToNonNegative ? 0 : mostNegative);
+ } else {
+ basicRows.add(basicRow);
+ coefficients[i] =
+ (basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
+ (restrictToNonNegative ? 0 : mostNegative);
+ }
+ }
+ return new PointValuePair(coefficients, f.getValue(coefficients));
+ }
+
+ /**
+ * Subtracts a multiple of one row from another.
+ * <p>
+ * After application of this operation, the following will hold:
+ * <pre>minuendRow = minuendRow - multiple * subtrahendRow</pre>
+ *
+ * @param dividendRow index of the row
+ * @param divisor value of the divisor
+ */
+ protected void divideRow(final int dividendRow, final double divisor) {
+ for (int j = 0; j < getWidth(); j++) {
+ tableau.setEntry(dividendRow, j, tableau.getEntry(dividendRow, j) / divisor);
+ }
+ }
+
+ /**
+ * Subtracts a multiple of one row from another.
+ * <p>
+ * After application of this operation, the following will hold:
+ * <pre>minuendRow = minuendRow - multiple * subtrahendRow</pre>
+ *
+ * @param minuendRow row index
+ * @param subtrahendRow row index
+ * @param multiple multiplication factor
+ */
+ protected void subtractRow(final int minuendRow, final int subtrahendRow,
+ final double multiple) {
+ for (int i = 0; i < getWidth(); i++) {
+ double result = tableau.getEntry(minuendRow, i) - tableau.getEntry(subtrahendRow, i) * multiple;
+ // cut-off values smaller than the CUTOFF_THRESHOLD, otherwise may lead to numerical instabilities
+ if (FastMath.abs(result) < CUTOFF_THRESHOLD) {
+ result = 0.0;
+ }
+ tableau.setEntry(minuendRow, i, result);
+ }
+ }
+
+ /**
+ * Get the width of the tableau.
+ * @return width of the tableau
+ */
+ protected final int getWidth() {
+ return tableau.getColumnDimension();
+ }
+
+ /**
+ * Get the height of the tableau.
+ * @return height of the tableau
+ */
+ protected final int getHeight() {
+ return tableau.getRowDimension();
+ }
+
+ /**
+ * Get an entry of the tableau.
+ * @param row row index
+ * @param column column index
+ * @return entry at (row, column)
+ */
+ protected final double getEntry(final int row, final int column) {
+ return tableau.getEntry(row, column);
+ }
+
+ /**
+ * Set an entry of the tableau.
+ * @param row row index
+ * @param column column index
+ * @param value for the entry
+ */
+ protected final void setEntry(final int row, final int column,
+ final double value) {
+ tableau.setEntry(row, column, value);
+ }
+
+ /**
+ * Get the offset of the first slack variable.
+ * @return offset of the first slack variable
+ */
+ protected final int getSlackVariableOffset() {
+ return getNumObjectiveFunctions() + numDecisionVariables;
+ }
+
+ /**
+ * Get the offset of the first artificial variable.
+ * @return offset of the first artificial variable
+ */
+ protected final int getArtificialVariableOffset() {
+ return getNumObjectiveFunctions() + numDecisionVariables + numSlackVariables;
+ }
+
+ /**
+ * Get the offset of the right hand side.
+ * @return offset of the right hand side
+ */
+ protected final int getRhsOffset() {
+ return getWidth() - 1;
+ }
+
+ /**
+ * Get the number of decision variables.
+ * <p>
+ * If variables are not restricted to positive values, this will include 1 extra decision variable to represent
+ * the absolute value of the most negative variable.
+ *
+ * @return number of decision variables
+ * @see #getOriginalNumDecisionVariables()
+ */
+ protected final int getNumDecisionVariables() {
+ return numDecisionVariables;
+ }
+
+ /**
+ * Get the original number of decision variables.
+ * @return original number of decision variables
+ * @see #getNumDecisionVariables()
+ */
+ protected final int getOriginalNumDecisionVariables() {
+ return f.getCoefficients().getDimension();
+ }
+
+ /**
+ * Get the number of slack variables.
+ * @return number of slack variables
+ */
+ protected final int getNumSlackVariables() {
+ return numSlackVariables;
+ }
+
+ /**
+ * Get the number of artificial variables.
+ * @return number of artificial variables
+ */
+ protected final int getNumArtificialVariables() {
+ return numArtificialVariables;
+ }
+
+ /**
+ * Get the tableau data.
+ * @return tableau data
+ */
+ protected final double[][] getData() {
+ return tableau.getData();
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof SimplexTableau) {
+ SimplexTableau rhs = (SimplexTableau) other;
+ return (restrictToNonNegative == rhs.restrictToNonNegative) &&
+ (numDecisionVariables == rhs.numDecisionVariables) &&
+ (numSlackVariables == rhs.numSlackVariables) &&
+ (numArtificialVariables == rhs.numArtificialVariables) &&
+ (epsilon == rhs.epsilon) &&
+ (maxUlps == rhs.maxUlps) &&
+ f.equals(rhs.f) &&
+ constraints.equals(rhs.constraints) &&
+ tableau.equals(rhs.tableau);
+ }
+ return false;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public int hashCode() {
+ return Boolean.valueOf(restrictToNonNegative).hashCode() ^
+ numDecisionVariables ^
+ numSlackVariables ^
+ numArtificialVariables ^
+ Double.valueOf(epsilon).hashCode() ^
+ maxUlps ^
+ f.hashCode() ^
+ constraints.hashCode() ^
+ tableau.hashCode();
+ }
+
+ /**
+ * Serialize the instance.
+ * @param oos stream where object should be written
+ * @throws IOException if object cannot be written to stream
+ */
+ private void writeObject(ObjectOutputStream oos)
+ throws IOException {
+ oos.defaultWriteObject();
+ MatrixUtils.serializeRealMatrix(tableau, oos);
+ }
+
+ /**
+ * Deserialize the instance.
+ * @param ois stream from which the object should be read
+ * @throws ClassNotFoundException if a class in the stream cannot be found
+ * @throws IOException if object cannot be read from the stream
+ */
+ private void readObject(ObjectInputStream ois)
+ throws ClassNotFoundException, IOException {
+ ois.defaultReadObject();
+ MatrixUtils.deserializeRealMatrix(this, "tableau", ois);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/UnboundedSolutionException.java b/src/main/java/org/apache/commons/math3/optimization/linear/UnboundedSolutionException.java
new file mode 100644
index 0000000..a8fe77b
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/UnboundedSolutionException.java
@@ -0,0 +1,42 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.linear;
+
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+
+/**
+ * This class represents exceptions thrown by optimizers when a solution escapes to infinity.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class UnboundedSolutionException extends MathIllegalStateException {
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = 940539497277290619L;
+
+ /**
+ * Simple constructor using a default message.
+ */
+ public UnboundedSolutionException() {
+ super(LocalizedFormats.UNBOUNDED_SOLUTION);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/linear/package-info.java b/src/main/java/org/apache/commons/math3/optimization/linear/package-info.java
new file mode 100644
index 0000000..b61b03b
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/linear/package-info.java
@@ -0,0 +1,22 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * This package provides optimization algorithms for linear constrained problems.
+ *
+ */
+package org.apache.commons.math3.optimization.linear;
diff --git a/src/main/java/org/apache/commons/math3/optimization/package-info.java b/src/main/java/org/apache/commons/math3/optimization/package-info.java
new file mode 100644
index 0000000..2831237
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/package-info.java
@@ -0,0 +1,74 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ *
+ * <h2>All classes and sub-packages of this package are deprecated.</h2>
+ *
+ * <h3>Please use their replacements, to be found under
+ *
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optim}
+ * <li>{@link org.apache.commons.math3.fitting}
+ * </ul>
+ *
+ * </h3>
+ *
+ * <p>This package provides common interfaces for the optimization algorithms provided in
+ * sub-packages. The main interfaces defines optimizers and convergence checkers. The functions that
+ * are optimized by the algorithms provided by this package and its sub-packages are a subset of the
+ * one defined in the <code>analysis</code> package, namely the real and vector valued functions.
+ * These functions are called objective function here. When the goal is to minimize, the functions
+ * are often called cost function, this name is not used in this package.
+ *
+ * <p>Optimizers are the algorithms that will either minimize or maximize, the objective function by
+ * changing its input variables set until an optimal set is found. There are only four interfaces
+ * defining the common behavior of optimizers, one for each supported type of objective function:
+ *
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.univariate.UnivariateOptimizer
+ * UnivariateOptimizer} for {@link org.apache.commons.math3.analysis.UnivariateFunction
+ * univariate real functions}
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateOptimizer MultivariateOptimizer}
+ * for {@link org.apache.commons.math3.analysis.MultivariateFunction multivariate real
+ * functions}
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableOptimizer
+ * MultivariateDifferentiableOptimizer} for {@link
+ * org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction
+ * multivariate differentiable real functions}
+ * <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableVectorOptimizer
+ * MultivariateDifferentiableVectorOptimizer} for {@link
+ * org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction
+ * multivariate differentiable vectorial functions}
+ * </ul>
+ *
+ * <p>Despite there are only four types of supported optimizers, it is possible to optimize a
+ * transform a {@link org.apache.commons.math3.analysis.MultivariateVectorFunction
+ * non-differentiable multivariate vectorial function} by converting it to a {@link
+ * org.apache.commons.math3.analysis.MultivariateFunction non-differentiable multivariate real
+ * function} thanks to the {@link org.apache.commons.math3.optimization.LeastSquaresConverter
+ * LeastSquaresConverter} helper class. The transformed function can be optimized using any
+ * implementation of the {@link org.apache.commons.math3.optimization.MultivariateOptimizer
+ * MultivariateOptimizer} interface.
+ *
+ * <p>For each of the four types of supported optimizers, there is a special implementation which
+ * wraps a classical optimizer in order to add it a multi-start feature. This feature call the
+ * underlying optimizer several times in sequence with different starting points and returns the
+ * best optimum found or all optima if desired. This is a classical way to prevent being trapped
+ * into a local extremum when looking for a global one.
+ */
+package org.apache.commons.math3.optimization;
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/BaseAbstractUnivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/univariate/BaseAbstractUnivariateOptimizer.java
new file mode 100644
index 0000000..fcacd01
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/BaseAbstractUnivariateOptimizer.java
@@ -0,0 +1,162 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.univariate;
+
+import org.apache.commons.math3.util.Incrementor;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+
+/**
+ * Provide a default implementation for several functions useful to generic
+ * optimizers.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public abstract class BaseAbstractUnivariateOptimizer
+ implements UnivariateOptimizer {
+ /** Convergence checker. */
+ private final ConvergenceChecker<UnivariatePointValuePair> checker;
+ /** Evaluations counter. */
+ private final Incrementor evaluations = new Incrementor();
+ /** Optimization type */
+ private GoalType goal;
+ /** Lower end of search interval. */
+ private double searchMin;
+ /** Higher end of search interval. */
+ private double searchMax;
+ /** Initial guess . */
+ private double searchStart;
+ /** Function to optimize. */
+ private UnivariateFunction function;
+
+ /**
+ * @param checker Convergence checking procedure.
+ */
+ protected BaseAbstractUnivariateOptimizer(ConvergenceChecker<UnivariatePointValuePair> checker) {
+ this.checker = checker;
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxEvaluations() {
+ return evaluations.getMaximalCount();
+ }
+
+ /** {@inheritDoc} */
+ public int getEvaluations() {
+ return evaluations.getCount();
+ }
+
+ /**
+ * @return the optimization type.
+ */
+ public GoalType getGoalType() {
+ return goal;
+ }
+ /**
+ * @return the lower end of the search interval.
+ */
+ public double getMin() {
+ return searchMin;
+ }
+ /**
+ * @return the higher end of the search interval.
+ */
+ public double getMax() {
+ return searchMax;
+ }
+ /**
+ * @return the initial guess.
+ */
+ public double getStartValue() {
+ return searchStart;
+ }
+
+ /**
+ * Compute the objective function value.
+ *
+ * @param point Point at which the objective function must be evaluated.
+ * @return the objective function value at specified point.
+ * @throws TooManyEvaluationsException if the maximal number of evaluations
+ * is exceeded.
+ */
+ protected double computeObjectiveValue(double point) {
+ try {
+ evaluations.incrementCount();
+ } catch (MaxCountExceededException e) {
+ throw new TooManyEvaluationsException(e.getMax());
+ }
+ return function.value(point);
+ }
+
+ /** {@inheritDoc} */
+ public UnivariatePointValuePair optimize(int maxEval, UnivariateFunction f,
+ GoalType goalType,
+ double min, double max,
+ double startValue) {
+ // Checks.
+ if (f == null) {
+ throw new NullArgumentException();
+ }
+ if (goalType == null) {
+ throw new NullArgumentException();
+ }
+
+ // Reset.
+ searchMin = min;
+ searchMax = max;
+ searchStart = startValue;
+ goal = goalType;
+ function = f;
+ evaluations.setMaximalCount(maxEval);
+ evaluations.resetCount();
+
+ // Perform computation.
+ return doOptimize();
+ }
+
+ /** {@inheritDoc} */
+ public UnivariatePointValuePair optimize(int maxEval,
+ UnivariateFunction f,
+ GoalType goalType,
+ double min, double max){
+ return optimize(maxEval, f, goalType, min, max, min + 0.5 * (max - min));
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ public ConvergenceChecker<UnivariatePointValuePair> getConvergenceChecker() {
+ return checker;
+ }
+
+ /**
+ * Method for implementing actual optimization algorithms in derived
+ * classes.
+ *
+ * @return the optimum and its corresponding function value.
+ * @throws TooManyEvaluationsException if the maximal number of evaluations
+ * is exceeded.
+ */
+ protected abstract UnivariatePointValuePair doOptimize();
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/BaseUnivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/univariate/BaseUnivariateOptimizer.java
new file mode 100644
index 0000000..fcae6f1
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/BaseUnivariateOptimizer.java
@@ -0,0 +1,86 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.univariate;
+
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.optimization.BaseOptimizer;
+import org.apache.commons.math3.optimization.GoalType;
+
+/**
+ * This interface is mainly intended to enforce the internal coherence of
+ * Commons-Math. Users of the API are advised to base their code on
+ * the following interfaces:
+ * <ul>
+ * <li>{@link org.apache.commons.math3.optimization.univariate.UnivariateOptimizer}</li>
+ * </ul>
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface BaseUnivariateOptimizer<FUNC extends UnivariateFunction>
+ extends BaseOptimizer<UnivariatePointValuePair> {
+ /**
+ * Find an optimum in the given interval.
+ *
+ * An optimizer may require that the interval brackets a single optimum.
+ *
+ * @param f Function to optimize.
+ * @param goalType Type of optimization goal: either
+ * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
+ * @param min Lower bound for the interval.
+ * @param max Upper bound for the interval.
+ * @param maxEval Maximum number of function evaluations.
+ * @return a (point, value) pair where the function is optimum.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximum evaluation count is exceeded.
+ * @throws org.apache.commons.math3.exception.ConvergenceException
+ * if the optimizer detects a convergence problem.
+ * @throws IllegalArgumentException if {@code min > max} or the endpoints
+ * do not satisfy the requirements specified by the optimizer.
+ */
+ UnivariatePointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
+ double min, double max);
+
+ /**
+ * Find an optimum in the given interval, start at startValue.
+ * An optimizer may require that the interval brackets a single optimum.
+ *
+ * @param f Function to optimize.
+ * @param goalType Type of optimization goal: either
+ * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
+ * @param min Lower bound for the interval.
+ * @param max Upper bound for the interval.
+ * @param startValue Start value to use.
+ * @param maxEval Maximum number of function evaluations.
+ * @return a (point, value) pair where the function is optimum.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximum evaluation count is exceeded.
+ * @throws org.apache.commons.math3.exception.ConvergenceException if the
+ * optimizer detects a convergence problem.
+ * @throws IllegalArgumentException if {@code min > max} or the endpoints
+ * do not satisfy the requirements specified by the optimizer.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if any
+ * argument is {@code null}.
+ */
+ UnivariatePointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
+ double min, double max,
+ double startValue);
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/BracketFinder.java b/src/main/java/org/apache/commons/math3/optimization/univariate/BracketFinder.java
new file mode 100644
index 0000000..cd3057f
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/BracketFinder.java
@@ -0,0 +1,289 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optimization.univariate;
+
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.Incrementor;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.TooManyEvaluationsException;
+import org.apache.commons.math3.exception.MaxCountExceededException;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.optimization.GoalType;
+
+/**
+ * Provide an interval that brackets a local optimum of a function.
+ * This code is based on a Python implementation (from <em>SciPy</em>,
+ * module {@code optimize.py} v0.5).
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.2
+ */
+@Deprecated
+public class BracketFinder {
+ /** Tolerance to avoid division by zero. */
+ private static final double EPS_MIN = 1e-21;
+ /**
+ * Golden section.
+ */
+ private static final double GOLD = 1.618034;
+ /**
+ * Factor for expanding the interval.
+ */
+ private final double growLimit;
+ /**
+ * Counter for function evaluations.
+ */
+ private final Incrementor evaluations = new Incrementor();
+ /**
+ * Lower bound of the bracket.
+ */
+ private double lo;
+ /**
+ * Higher bound of the bracket.
+ */
+ private double hi;
+ /**
+ * Point inside the bracket.
+ */
+ private double mid;
+ /**
+ * Function value at {@link #lo}.
+ */
+ private double fLo;
+ /**
+ * Function value at {@link #hi}.
+ */
+ private double fHi;
+ /**
+ * Function value at {@link #mid}.
+ */
+ private double fMid;
+
+ /**
+ * Constructor with default values {@code 100, 50} (see the
+ * {@link #BracketFinder(double,int) other constructor}).
+ */
+ public BracketFinder() {
+ this(100, 50);
+ }
+
+ /**
+ * Create a bracketing interval finder.
+ *
+ * @param growLimit Expanding factor.
+ * @param maxEvaluations Maximum number of evaluations allowed for finding
+ * a bracketing interval.
+ */
+ public BracketFinder(double growLimit,
+ int maxEvaluations) {
+ if (growLimit <= 0) {
+ throw new NotStrictlyPositiveException(growLimit);
+ }
+ if (maxEvaluations <= 0) {
+ throw new NotStrictlyPositiveException(maxEvaluations);
+ }
+
+ this.growLimit = growLimit;
+ evaluations.setMaximalCount(maxEvaluations);
+ }
+
+ /**
+ * Search new points that bracket a local optimum of the function.
+ *
+ * @param func Function whose optimum should be bracketed.
+ * @param goal {@link GoalType Goal type}.
+ * @param xA Initial point.
+ * @param xB Initial point.
+ * @throws TooManyEvaluationsException if the maximum number of evaluations
+ * is exceeded.
+ */
+ public void search(UnivariateFunction func, GoalType goal, double xA, double xB) {
+ evaluations.resetCount();
+ final boolean isMinim = goal == GoalType.MINIMIZE;
+
+ double fA = eval(func, xA);
+ double fB = eval(func, xB);
+ if (isMinim ?
+ fA < fB :
+ fA > fB) {
+
+ double tmp = xA;
+ xA = xB;
+ xB = tmp;
+
+ tmp = fA;
+ fA = fB;
+ fB = tmp;
+ }
+
+ double xC = xB + GOLD * (xB - xA);
+ double fC = eval(func, xC);
+
+ while (isMinim ? fC < fB : fC > fB) {
+ double tmp1 = (xB - xA) * (fB - fC);
+ double tmp2 = (xB - xC) * (fB - fA);
+
+ double val = tmp2 - tmp1;
+ double denom = FastMath.abs(val) < EPS_MIN ? 2 * EPS_MIN : 2 * val;
+
+ double w = xB - ((xB - xC) * tmp2 - (xB - xA) * tmp1) / denom;
+ double wLim = xB + growLimit * (xC - xB);
+
+ double fW;
+ if ((w - xC) * (xB - w) > 0) {
+ fW = eval(func, w);
+ if (isMinim ?
+ fW < fC :
+ fW > fC) {
+ xA = xB;
+ xB = w;
+ fA = fB;
+ fB = fW;
+ break;
+ } else if (isMinim ?
+ fW > fB :
+ fW < fB) {
+ xC = w;
+ fC = fW;
+ break;
+ }
+ w = xC + GOLD * (xC - xB);
+ fW = eval(func, w);
+ } else if ((w - wLim) * (wLim - xC) >= 0) {
+ w = wLim;
+ fW = eval(func, w);
+ } else if ((w - wLim) * (xC - w) > 0) {
+ fW = eval(func, w);
+ if (isMinim ?
+ fW < fC :
+ fW > fC) {
+ xB = xC;
+ xC = w;
+ w = xC + GOLD * (xC - xB);
+ fB = fC;
+ fC =fW;
+ fW = eval(func, w);
+ }
+ } else {
+ w = xC + GOLD * (xC - xB);
+ fW = eval(func, w);
+ }
+
+ xA = xB;
+ fA = fB;
+ xB = xC;
+ fB = fC;
+ xC = w;
+ fC = fW;
+ }
+
+ lo = xA;
+ fLo = fA;
+ mid = xB;
+ fMid = fB;
+ hi = xC;
+ fHi = fC;
+
+ if (lo > hi) {
+ double tmp = lo;
+ lo = hi;
+ hi = tmp;
+
+ tmp = fLo;
+ fLo = fHi;
+ fHi = tmp;
+ }
+ }
+
+ /**
+ * @return the number of evalutations.
+ */
+ public int getMaxEvaluations() {
+ return evaluations.getMaximalCount();
+ }
+
+ /**
+ * @return the number of evalutations.
+ */
+ public int getEvaluations() {
+ return evaluations.getCount();
+ }
+
+ /**
+ * @return the lower bound of the bracket.
+ * @see #getFLo()
+ */
+ public double getLo() {
+ return lo;
+ }
+
+ /**
+ * Get function value at {@link #getLo()}.
+ * @return function value at {@link #getLo()}
+ */
+ public double getFLo() {
+ return fLo;
+ }
+
+ /**
+ * @return the higher bound of the bracket.
+ * @see #getFHi()
+ */
+ public double getHi() {
+ return hi;
+ }
+
+ /**
+ * Get function value at {@link #getHi()}.
+ * @return function value at {@link #getHi()}
+ */
+ public double getFHi() {
+ return fHi;
+ }
+
+ /**
+ * @return a point in the middle of the bracket.
+ * @see #getFMid()
+ */
+ public double getMid() {
+ return mid;
+ }
+
+ /**
+ * Get function value at {@link #getMid()}.
+ * @return function value at {@link #getMid()}
+ */
+ public double getFMid() {
+ return fMid;
+ }
+
+ /**
+ * @param f Function.
+ * @param x Argument.
+ * @return {@code f(x)}
+ * @throws TooManyEvaluationsException if the maximal number of evaluations is
+ * exceeded.
+ */
+ private double eval(UnivariateFunction f, double x) {
+ try {
+ evaluations.incrementCount();
+ } catch (MaxCountExceededException e) {
+ throw new TooManyEvaluationsException(e.getMax());
+ }
+ return f.value(x);
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/BrentOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/univariate/BrentOptimizer.java
new file mode 100644
index 0000000..763ec99
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/BrentOptimizer.java
@@ -0,0 +1,316 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optimization.univariate;
+
+import org.apache.commons.math3.util.Precision;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.GoalType;
+
+/**
+ * For a function defined on some interval {@code (lo, hi)}, this class
+ * finds an approximation {@code x} to the point at which the function
+ * attains its minimum.
+ * It implements Richard Brent's algorithm (from his book "Algorithms for
+ * Minimization without Derivatives", p. 79) for finding minima of real
+ * univariate functions.
+ * <br/>
+ * This code is an adaptation, partly based on the Python code from SciPy
+ * (module "optimize.py" v0.5); the original algorithm is also modified
+ * <ul>
+ * <li>to use an initial guess provided by the user,</li>
+ * <li>to ensure that the best point encountered is the one returned.</li>
+ * </ul>
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 2.0
+ */
+@Deprecated
+public class BrentOptimizer extends BaseAbstractUnivariateOptimizer {
+ /**
+ * Golden section.
+ */
+ private static final double GOLDEN_SECTION = 0.5 * (3 - FastMath.sqrt(5));
+ /**
+ * Minimum relative tolerance.
+ */
+ private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d);
+ /**
+ * Relative threshold.
+ */
+ private final double relativeThreshold;
+ /**
+ * Absolute threshold.
+ */
+ private final double absoluteThreshold;
+
+ /**
+ * The arguments are used implement the original stopping criterion
+ * of Brent's algorithm.
+ * {@code abs} and {@code rel} define a tolerance
+ * {@code tol = rel |x| + abs}. {@code rel} should be no smaller than
+ * <em>2 macheps</em> and preferably not much less than <em>sqrt(macheps)</em>,
+ * where <em>macheps</em> is the relative machine precision. {@code abs} must
+ * be positive.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @param checker Additional, user-defined, convergence checking
+ * procedure.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public BrentOptimizer(double rel,
+ double abs,
+ ConvergenceChecker<UnivariatePointValuePair> checker) {
+ super(checker);
+
+ if (rel < MIN_RELATIVE_TOLERANCE) {
+ throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true);
+ }
+ if (abs <= 0) {
+ throw new NotStrictlyPositiveException(abs);
+ }
+
+ relativeThreshold = rel;
+ absoluteThreshold = abs;
+ }
+
+ /**
+ * The arguments are used for implementing the original stopping criterion
+ * of Brent's algorithm.
+ * {@code abs} and {@code rel} define a tolerance
+ * {@code tol = rel |x| + abs}. {@code rel} should be no smaller than
+ * <em>2 macheps</em> and preferably not much less than <em>sqrt(macheps)</em>,
+ * where <em>macheps</em> is the relative machine precision. {@code abs} must
+ * be positive.
+ *
+ * @param rel Relative threshold.
+ * @param abs Absolute threshold.
+ * @throws NotStrictlyPositiveException if {@code abs <= 0}.
+ * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
+ */
+ public BrentOptimizer(double rel,
+ double abs) {
+ this(rel, abs, null);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected UnivariatePointValuePair doOptimize() {
+ final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
+ final double lo = getMin();
+ final double mid = getStartValue();
+ final double hi = getMax();
+
+ // Optional additional convergence criteria.
+ final ConvergenceChecker<UnivariatePointValuePair> checker
+ = getConvergenceChecker();
+
+ double a;
+ double b;
+ if (lo < hi) {
+ a = lo;
+ b = hi;
+ } else {
+ a = hi;
+ b = lo;
+ }
+
+ double x = mid;
+ double v = x;
+ double w = x;
+ double d = 0;
+ double e = 0;
+ double fx = computeObjectiveValue(x);
+ if (!isMinim) {
+ fx = -fx;
+ }
+ double fv = fx;
+ double fw = fx;
+
+ UnivariatePointValuePair previous = null;
+ UnivariatePointValuePair current
+ = new UnivariatePointValuePair(x, isMinim ? fx : -fx);
+ // Best point encountered so far (which is the initial guess).
+ UnivariatePointValuePair best = current;
+
+ int iter = 0;
+ while (true) {
+ final double m = 0.5 * (a + b);
+ final double tol1 = relativeThreshold * FastMath.abs(x) + absoluteThreshold;
+ final double tol2 = 2 * tol1;
+
+ // Default stopping criterion.
+ final boolean stop = FastMath.abs(x - m) <= tol2 - 0.5 * (b - a);
+ if (!stop) {
+ double p = 0;
+ double q = 0;
+ double r = 0;
+ double u = 0;
+
+ if (FastMath.abs(e) > tol1) { // Fit parabola.
+ r = (x - w) * (fx - fv);
+ q = (x - v) * (fx - fw);
+ p = (x - v) * q - (x - w) * r;
+ q = 2 * (q - r);
+
+ if (q > 0) {
+ p = -p;
+ } else {
+ q = -q;
+ }
+
+ r = e;
+ e = d;
+
+ if (p > q * (a - x) &&
+ p < q * (b - x) &&
+ FastMath.abs(p) < FastMath.abs(0.5 * q * r)) {
+ // Parabolic interpolation step.
+ d = p / q;
+ u = x + d;
+
+ // f must not be evaluated too close to a or b.
+ if (u - a < tol2 || b - u < tol2) {
+ if (x <= m) {
+ d = tol1;
+ } else {
+ d = -tol1;
+ }
+ }
+ } else {
+ // Golden section step.
+ if (x < m) {
+ e = b - x;
+ } else {
+ e = a - x;
+ }
+ d = GOLDEN_SECTION * e;
+ }
+ } else {
+ // Golden section step.
+ if (x < m) {
+ e = b - x;
+ } else {
+ e = a - x;
+ }
+ d = GOLDEN_SECTION * e;
+ }
+
+ // Update by at least "tol1".
+ if (FastMath.abs(d) < tol1) {
+ if (d >= 0) {
+ u = x + tol1;
+ } else {
+ u = x - tol1;
+ }
+ } else {
+ u = x + d;
+ }
+
+ double fu = computeObjectiveValue(u);
+ if (!isMinim) {
+ fu = -fu;
+ }
+
+ // User-defined convergence checker.
+ previous = current;
+ current = new UnivariatePointValuePair(u, isMinim ? fu : -fu);
+ best = best(best,
+ best(previous,
+ current,
+ isMinim),
+ isMinim);
+
+ if (checker != null && checker.converged(iter, previous, current)) {
+ return best;
+ }
+
+ // Update a, b, v, w and x.
+ if (fu <= fx) {
+ if (u < x) {
+ b = x;
+ } else {
+ a = x;
+ }
+ v = w;
+ fv = fw;
+ w = x;
+ fw = fx;
+ x = u;
+ fx = fu;
+ } else {
+ if (u < x) {
+ a = u;
+ } else {
+ b = u;
+ }
+ if (fu <= fw ||
+ Precision.equals(w, x)) {
+ v = w;
+ fv = fw;
+ w = u;
+ fw = fu;
+ } else if (fu <= fv ||
+ Precision.equals(v, x) ||
+ Precision.equals(v, w)) {
+ v = u;
+ fv = fu;
+ }
+ }
+ } else { // Default termination (Brent's criterion).
+ return best(best,
+ best(previous,
+ current,
+ isMinim),
+ isMinim);
+ }
+ ++iter;
+ }
+ }
+
+ /**
+ * Selects the best of two points.
+ *
+ * @param a Point and value.
+ * @param b Point and value.
+ * @param isMinim {@code true} if the selected point must be the one with
+ * the lowest value.
+ * @return the best point, or {@code null} if {@code a} and {@code b} are
+ * both {@code null}. When {@code a} and {@code b} have the same function
+ * value, {@code a} is returned.
+ */
+ private UnivariatePointValuePair best(UnivariatePointValuePair a,
+ UnivariatePointValuePair b,
+ boolean isMinim) {
+ if (a == null) {
+ return b;
+ }
+ if (b == null) {
+ return a;
+ }
+
+ if (isMinim) {
+ return a.getValue() <= b.getValue() ? a : b;
+ } else {
+ return a.getValue() >= b.getValue() ? a : b;
+ }
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/SimpleUnivariateValueChecker.java b/src/main/java/org/apache/commons/math3/optimization/univariate/SimpleUnivariateValueChecker.java
new file mode 100644
index 0000000..82c50b6
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/SimpleUnivariateValueChecker.java
@@ -0,0 +1,139 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.univariate;
+
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.optimization.AbstractConvergenceChecker;
+
+/**
+ * Simple implementation of the
+ * {@link org.apache.commons.math3.optimization.ConvergenceChecker} interface
+ * that uses only objective function values.
+ *
+ * Convergence is considered to have been reached if either the relative
+ * difference between the objective function values is smaller than a
+ * threshold or if either the absolute difference between the objective
+ * function values is smaller than another threshold.
+ * <br/>
+ * The {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)
+ * converged} method will also return {@code true} if the number of iterations
+ * has been set (see {@link #SimpleUnivariateValueChecker(double,double,int)
+ * this constructor}).
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.1
+ */
+@Deprecated
+public class SimpleUnivariateValueChecker
+ extends AbstractConvergenceChecker<UnivariatePointValuePair> {
+ /**
+ * If {@link #maxIterationCount} is set to this value, the number of
+ * iterations will never cause
+ * {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)}
+ * to return {@code true}.
+ */
+ private static final int ITERATION_CHECK_DISABLED = -1;
+ /**
+ * Number of iterations after which the
+ * {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)}
+ * method will return true (unless the check is disabled).
+ */
+ private final int maxIterationCount;
+
+ /**
+ * Build an instance with default thresholds.
+ * @deprecated See {@link AbstractConvergenceChecker#AbstractConvergenceChecker()}
+ */
+ @Deprecated
+ public SimpleUnivariateValueChecker() {
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /** Build an instance with specified thresholds.
+ *
+ * In order to perform only relative checks, the absolute tolerance
+ * must be set to a negative value. In order to perform only absolute
+ * checks, the relative tolerance must be set to a negative value.
+ *
+ * @param relativeThreshold relative tolerance threshold
+ * @param absoluteThreshold absolute tolerance threshold
+ */
+ public SimpleUnivariateValueChecker(final double relativeThreshold,
+ final double absoluteThreshold) {
+ super(relativeThreshold, absoluteThreshold);
+ maxIterationCount = ITERATION_CHECK_DISABLED;
+ }
+
+ /**
+ * Builds an instance with specified thresholds.
+ *
+ * In order to perform only relative checks, the absolute tolerance
+ * must be set to a negative value. In order to perform only absolute
+ * checks, the relative tolerance must be set to a negative value.
+ *
+ * @param relativeThreshold relative tolerance threshold
+ * @param absoluteThreshold absolute tolerance threshold
+ * @param maxIter Maximum iteration count.
+ * @throws NotStrictlyPositiveException if {@code maxIter <= 0}.
+ *
+ * @since 3.1
+ */
+ public SimpleUnivariateValueChecker(final double relativeThreshold,
+ final double absoluteThreshold,
+ final int maxIter) {
+ super(relativeThreshold, absoluteThreshold);
+
+ if (maxIter <= 0) {
+ throw new NotStrictlyPositiveException(maxIter);
+ }
+ maxIterationCount = maxIter;
+ }
+
+ /**
+ * Check if the optimization algorithm has converged considering the
+ * last two points.
+ * This method may be called several time from the same algorithm
+ * iteration with different points. This can be detected by checking the
+ * iteration number at each call if needed. Each time this method is
+ * called, the previous and current point correspond to points with the
+ * same role at each iteration, so they can be compared. As an example,
+ * simplex-based algorithms call this method for all points of the simplex,
+ * not only for the best or worst ones.
+ *
+ * @param iteration Index of current iteration
+ * @param previous Best point in the previous iteration.
+ * @param current Best point in the current iteration.
+ * @return {@code true} if the algorithm has converged.
+ */
+ @Override
+ public boolean converged(final int iteration,
+ final UnivariatePointValuePair previous,
+ final UnivariatePointValuePair current) {
+ if (maxIterationCount != ITERATION_CHECK_DISABLED && iteration >= maxIterationCount) {
+ return true;
+ }
+
+ final double p = previous.getValue();
+ final double c = current.getValue();
+ final double difference = FastMath.abs(p - c);
+ final double size = FastMath.max(FastMath.abs(p), FastMath.abs(c));
+ return difference <= size * getRelativeThreshold() ||
+ difference <= getAbsoluteThreshold();
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateMultiStartOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateMultiStartOptimizer.java
new file mode 100644
index 0000000..f63beb2
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateMultiStartOptimizer.java
@@ -0,0 +1,203 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.univariate;
+
+import java.util.Arrays;
+import java.util.Comparator;
+
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.random.RandomGenerator;
+import org.apache.commons.math3.optimization.GoalType;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+
+/**
+ * Special implementation of the {@link UnivariateOptimizer} interface
+ * adding multi-start features to an existing optimizer.
+ *
+ * This class wraps a classical optimizer to use it several times in
+ * turn with different starting points in order to avoid being trapped
+ * into a local extremum when looking for a global one.
+ *
+ * @param <FUNC> Type of the objective function to be optimized.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class UnivariateMultiStartOptimizer<FUNC extends UnivariateFunction>
+ implements BaseUnivariateOptimizer<FUNC> {
+ /** Underlying classical optimizer. */
+ private final BaseUnivariateOptimizer<FUNC> optimizer;
+ /** Maximal number of evaluations allowed. */
+ private int maxEvaluations;
+ /** Number of evaluations already performed for all starts. */
+ private int totalEvaluations;
+ /** Number of starts to go. */
+ private int starts;
+ /** Random generator for multi-start. */
+ private RandomGenerator generator;
+ /** Found optima. */
+ private UnivariatePointValuePair[] optima;
+
+ /**
+ * Create a multi-start optimizer from a single-start optimizer.
+ *
+ * @param optimizer Single-start optimizer to wrap.
+ * @param starts Number of starts to perform. If {@code starts == 1},
+ * the {@code optimize} methods will return the same solution as
+ * {@code optimizer} would.
+ * @param generator Random generator to use for restarts.
+ * @throws NullArgumentException if {@code optimizer} or {@code generator}
+ * is {@code null}.
+ * @throws NotStrictlyPositiveException if {@code starts < 1}.
+ */
+ public UnivariateMultiStartOptimizer(final BaseUnivariateOptimizer<FUNC> optimizer,
+ final int starts,
+ final RandomGenerator generator) {
+ if (optimizer == null ||
+ generator == null) {
+ throw new NullArgumentException();
+ }
+ if (starts < 1) {
+ throw new NotStrictlyPositiveException(starts);
+ }
+
+ this.optimizer = optimizer;
+ this.starts = starts;
+ this.generator = generator;
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ public ConvergenceChecker<UnivariatePointValuePair> getConvergenceChecker() {
+ return optimizer.getConvergenceChecker();
+ }
+
+ /** {@inheritDoc} */
+ public int getMaxEvaluations() {
+ return maxEvaluations;
+ }
+
+ /** {@inheritDoc} */
+ public int getEvaluations() {
+ return totalEvaluations;
+ }
+
+ /**
+ * Get all the optima found during the last call to {@link
+ * #optimize(int,UnivariateFunction,GoalType,double,double) optimize}.
+ * The optimizer stores all the optima found during a set of
+ * restarts. The {@link #optimize(int,UnivariateFunction,GoalType,double,double) optimize}
+ * method returns the best point only. This method returns all the points
+ * found at the end of each starts, including the best one already
+ * returned by the {@link #optimize(int,UnivariateFunction,GoalType,double,double) optimize}
+ * method.
+ * <br/>
+ * The returned array as one element for each start as specified
+ * in the constructor. It is ordered with the results from the
+ * runs that did converge first, sorted from best to worst
+ * objective value (i.e in ascending order if minimizing and in
+ * descending order if maximizing), followed by {@code null} elements
+ * corresponding to the runs that did not converge. This means all
+ * elements will be {@code null} if the {@link
+ * #optimize(int,UnivariateFunction,GoalType,double,double) optimize}
+ * method did throw an exception.
+ * This also means that if the first element is not {@code null}, it is
+ * the best point found across all starts.
+ *
+ * @return an array containing the optima.
+ * @throws MathIllegalStateException if {@link
+ * #optimize(int,UnivariateFunction,GoalType,double,double) optimize}
+ * has not been called.
+ */
+ public UnivariatePointValuePair[] getOptima() {
+ if (optima == null) {
+ throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
+ }
+ return optima.clone();
+ }
+
+ /** {@inheritDoc} */
+ public UnivariatePointValuePair optimize(int maxEval, final FUNC f,
+ final GoalType goal,
+ final double min, final double max) {
+ return optimize(maxEval, f, goal, min, max, min + 0.5 * (max - min));
+ }
+
+ /** {@inheritDoc} */
+ public UnivariatePointValuePair optimize(int maxEval, final FUNC f,
+ final GoalType goal,
+ final double min, final double max,
+ final double startValue) {
+ RuntimeException lastException = null;
+ optima = new UnivariatePointValuePair[starts];
+ totalEvaluations = 0;
+
+ // Multi-start loop.
+ for (int i = 0; i < starts; ++i) {
+ // CHECKSTYLE: stop IllegalCatch
+ try {
+ final double s = (i == 0) ? startValue : min + generator.nextDouble() * (max - min);
+ optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, goal, min, max, s);
+ } catch (RuntimeException mue) {
+ lastException = mue;
+ optima[i] = null;
+ }
+ // CHECKSTYLE: resume IllegalCatch
+
+ totalEvaluations += optimizer.getEvaluations();
+ }
+
+ sortPairs(goal);
+
+ if (optima[0] == null) {
+ throw lastException; // cannot be null if starts >=1
+ }
+
+ // Return the point with the best objective function value.
+ return optima[0];
+ }
+
+ /**
+ * Sort the optima from best to worst, followed by {@code null} elements.
+ *
+ * @param goal Goal type.
+ */
+ private void sortPairs(final GoalType goal) {
+ Arrays.sort(optima, new Comparator<UnivariatePointValuePair>() {
+ /** {@inheritDoc} */
+ public int compare(final UnivariatePointValuePair o1,
+ final UnivariatePointValuePair o2) {
+ if (o1 == null) {
+ return (o2 == null) ? 0 : 1;
+ } else if (o2 == null) {
+ return -1;
+ }
+ final double v1 = o1.getValue();
+ final double v2 = o2.getValue();
+ return (goal == GoalType.MINIMIZE) ?
+ Double.compare(v1, v2) : Double.compare(v2, v1);
+ }
+ });
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateOptimizer.java
new file mode 100644
index 0000000..e3ebbb3
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariateOptimizer.java
@@ -0,0 +1,29 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.optimization.univariate;
+
+import org.apache.commons.math3.analysis.UnivariateFunction;
+
+/**
+ * Interface for univariate optimization algorithms.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public interface UnivariateOptimizer
+ extends BaseUnivariateOptimizer<UnivariateFunction> {}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariatePointValuePair.java b/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariatePointValuePair.java
new file mode 100644
index 0000000..eee931c
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/UnivariatePointValuePair.java
@@ -0,0 +1,68 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.univariate;
+
+import java.io.Serializable;
+
+/**
+ * This class holds a point and the value of an objective function at this
+ * point.
+ * This is a simple immutable container.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 3.0
+ */
+@Deprecated
+public class UnivariatePointValuePair implements Serializable {
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = 1003888396256744753L;
+ /** Point. */
+ private final double point;
+ /** Value of the objective function at the point. */
+ private final double value;
+
+ /**
+ * Build a point/objective function value pair.
+ *
+ * @param point Point.
+ * @param value Value of an objective function at the point
+ */
+ public UnivariatePointValuePair(final double point,
+ final double value) {
+ this.point = point;
+ this.value = value;
+ }
+
+ /**
+ * Get the point.
+ *
+ * @return the point.
+ */
+ public double getPoint() {
+ return point;
+ }
+
+ /**
+ * Get the value of the objective function.
+ *
+ * @return the stored value of the objective function.
+ */
+ public double getValue() {
+ return value;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math3/optimization/univariate/package-info.java b/src/main/java/org/apache/commons/math3/optimization/univariate/package-info.java
new file mode 100644
index 0000000..04feb33
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/univariate/package-info.java
@@ -0,0 +1,22 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * Univariate real functions minimum finding algorithms.
+ *
+ */
+package org.apache.commons.math3.optimization.univariate;