summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/random/EmpiricalDistribution.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/random/EmpiricalDistribution.java')
-rw-r--r--src/main/java/org/apache/commons/math3/random/EmpiricalDistribution.java866
1 files changed, 866 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/random/EmpiricalDistribution.java b/src/main/java/org/apache/commons/math3/random/EmpiricalDistribution.java
new file mode 100644
index 0000000..9ed3f4a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/random/EmpiricalDistribution.java
@@ -0,0 +1,866 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.random;
+
+import org.apache.commons.math3.distribution.AbstractRealDistribution;
+import org.apache.commons.math3.distribution.ConstantRealDistribution;
+import org.apache.commons.math3.distribution.NormalDistribution;
+import org.apache.commons.math3.distribution.RealDistribution;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.stat.descriptive.StatisticalSummary;
+import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+import java.io.BufferedReader;
+import java.io.File;
+import java.io.FileInputStream;
+import java.io.IOException;
+import java.io.InputStream;
+import java.io.InputStreamReader;
+import java.net.URL;
+import java.nio.charset.Charset;
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Represents an <a href="http://http://en.wikipedia.org/wiki/Empirical_distribution_function">
+ * empirical probability distribution</a> -- a probability distribution derived from observed data
+ * without making any assumptions about the functional form of the population distribution that the
+ * data come from.
+ *
+ * <p>An <code>EmpiricalDistribution</code> maintains data structures, called <i>distribution
+ * digests</i>, that describe empirical distributions and support the following operations:
+ *
+ * <ul>
+ * <li>loading the distribution from a file of observed data values
+ * <li>dividing the input data into "bin ranges" and reporting bin frequency counts (data for
+ * histogram)
+ * <li>reporting univariate statistics describing the full set of data values as well as the
+ * observations within each bin
+ * <li>generating random values from the distribution
+ * </ul>
+ *
+ * Applications can use <code>EmpiricalDistribution</code> to build grouped frequency histograms
+ * representing the input data or to generate random values "like" those in the input file -- i.e.,
+ * the values generated will follow the distribution of the values in the file.
+ *
+ * <p>The implementation uses what amounts to the <a
+ * href="http://nedwww.ipac.caltech.edu/level5/March02/Silverman/Silver2_6.html">Variable Kernel
+ * Method</a> with Gaussian smoothing:
+ *
+ * <p><strong>Digesting the input file</strong>
+ *
+ * <ol>
+ * <li>Pass the file once to compute min and max.
+ * <li>Divide the range from min-max into <code>binCount</code> "bins."
+ * <li>Pass the data file again, computing bin counts and univariate statistics (mean, std dev.)
+ * for each of the bins
+ * <li>Divide the interval (0,1) into subintervals associated with the bins, with the length of a
+ * bin's subinterval proportional to its count.
+ * </ol>
+ *
+ * <strong>Generating random values from the distribution</strong>
+ *
+ * <ol>
+ * <li>Generate a uniformly distributed value in (0,1)
+ * <li>Select the subinterval to which the value belongs.
+ * <li>Generate a random Gaussian value with mean = mean of the associated bin and std dev = std
+ * dev of associated bin.
+ * </ol>
+ *
+ * <p>EmpiricalDistribution implements the {@link RealDistribution} interface as follows. Given x
+ * within the range of values in the dataset, let B be the bin containing x and let K be the
+ * within-bin kernel for B. Let P(B-) be the sum of the probabilities of the bins below B and let
+ * K(B) be the mass of B under K (i.e., the integral of the kernel density over B). Then set P(X <
+ * x) = P(B-) + P(B) * K(x) / K(B) where K(x) is the kernel distribution evaluated at x. This
+ * results in a cdf that matches the grouped frequency distribution at the bin endpoints and
+ * interpolates within bins using within-bin kernels. <strong>USAGE NOTES:</strong>
+ *
+ * <ul>
+ * <li>The <code>binCount</code> is set by default to 1000. A good rule of thumb is to set the bin
+ * count to approximately the length of the input file divided by 10.
+ * <li>The input file <i>must</i> be a plain text file containing one valid numeric entry per
+ * line.
+ * </ul>
+ */
+public class EmpiricalDistribution extends AbstractRealDistribution {
+
+ /** Default bin count */
+ public static final int DEFAULT_BIN_COUNT = 1000;
+
+ /** Character set for file input */
+ private static final String FILE_CHARSET = "US-ASCII";
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = 5729073523949762654L;
+
+ /** RandomDataGenerator instance to use in repeated calls to getNext() */
+ protected final RandomDataGenerator randomData;
+
+ /** List of SummaryStatistics objects characterizing the bins */
+ private final List<SummaryStatistics> binStats;
+
+ /** Sample statistics */
+ private SummaryStatistics sampleStats = null;
+
+ /** Max loaded value */
+ private double max = Double.NEGATIVE_INFINITY;
+
+ /** Min loaded value */
+ private double min = Double.POSITIVE_INFINITY;
+
+ /** Grid size */
+ private double delta = 0d;
+
+ /** number of bins */
+ private final int binCount;
+
+ /** is the distribution loaded? */
+ private boolean loaded = false;
+
+ /** upper bounds of subintervals in (0,1) "belonging" to the bins */
+ private double[] upperBounds = null;
+
+ /** Creates a new EmpiricalDistribution with the default bin count. */
+ public EmpiricalDistribution() {
+ this(DEFAULT_BIN_COUNT);
+ }
+
+ /**
+ * Creates a new EmpiricalDistribution with the specified bin count.
+ *
+ * @param binCount number of bins. Must be strictly positive.
+ * @throws NotStrictlyPositiveException if {@code binCount <= 0}.
+ */
+ public EmpiricalDistribution(int binCount) {
+ this(binCount, new RandomDataGenerator());
+ }
+
+ /**
+ * Creates a new EmpiricalDistribution with the specified bin count using the provided {@link
+ * RandomGenerator} as the source of random data.
+ *
+ * @param binCount number of bins. Must be strictly positive.
+ * @param generator random data generator (may be null, resulting in default JDK generator)
+ * @throws NotStrictlyPositiveException if {@code binCount <= 0}.
+ * @since 3.0
+ */
+ public EmpiricalDistribution(int binCount, RandomGenerator generator) {
+ this(binCount, new RandomDataGenerator(generator));
+ }
+
+ /**
+ * Creates a new EmpiricalDistribution with default bin count using the provided {@link
+ * RandomGenerator} as the source of random data.
+ *
+ * @param generator random data generator (may be null, resulting in default JDK generator)
+ * @since 3.0
+ */
+ public EmpiricalDistribution(RandomGenerator generator) {
+ this(DEFAULT_BIN_COUNT, generator);
+ }
+
+ /**
+ * Creates a new EmpiricalDistribution with the specified bin count using the provided {@link
+ * RandomDataImpl} instance as the source of random data.
+ *
+ * @param binCount number of bins
+ * @param randomData random data generator (may be null, resulting in default JDK generator)
+ * @since 3.0
+ * @deprecated As of 3.1. Please use {@link #EmpiricalDistribution(int,RandomGenerator)}
+ * instead.
+ */
+ @Deprecated
+ public EmpiricalDistribution(int binCount, RandomDataImpl randomData) {
+ this(binCount, randomData.getDelegate());
+ }
+
+ /**
+ * Creates a new EmpiricalDistribution with default bin count using the provided {@link
+ * RandomDataImpl} as the source of random data.
+ *
+ * @param randomData random data generator (may be null, resulting in default JDK generator)
+ * @since 3.0
+ * @deprecated As of 3.1. Please use {@link #EmpiricalDistribution(RandomGenerator)} instead.
+ */
+ @Deprecated
+ public EmpiricalDistribution(RandomDataImpl randomData) {
+ this(DEFAULT_BIN_COUNT, randomData);
+ }
+
+ /**
+ * Private constructor to allow lazy initialisation of the RNG contained in the {@link
+ * #randomData} instance variable.
+ *
+ * @param binCount number of bins. Must be strictly positive.
+ * @param randomData Random data generator.
+ * @throws NotStrictlyPositiveException if {@code binCount <= 0}.
+ */
+ private EmpiricalDistribution(int binCount, RandomDataGenerator randomData) {
+ super(randomData.getRandomGenerator());
+ if (binCount <= 0) {
+ throw new NotStrictlyPositiveException(binCount);
+ }
+ this.binCount = binCount;
+ this.randomData = randomData;
+ binStats = new ArrayList<SummaryStatistics>();
+ }
+
+ /**
+ * Computes the empirical distribution from the provided array of numbers.
+ *
+ * @param in the input data array
+ * @exception NullArgumentException if in is null
+ */
+ public void load(double[] in) throws NullArgumentException {
+ DataAdapter da = new ArrayDataAdapter(in);
+ try {
+ da.computeStats();
+ // new adapter for the second pass
+ fillBinStats(new ArrayDataAdapter(in));
+ } catch (IOException ex) {
+ // Can't happen
+ throw new MathInternalError();
+ }
+ loaded = true;
+ }
+
+ /**
+ * Computes the empirical distribution using data read from a URL.
+ *
+ * <p>The input file <i>must</i> be an ASCII text file containing one valid numeric entry per
+ * line.
+ *
+ * @param url url of the input file
+ * @throws IOException if an IO error occurs
+ * @throws NullArgumentException if url is null
+ * @throws ZeroException if URL contains no data
+ */
+ public void load(URL url) throws IOException, NullArgumentException, ZeroException {
+ MathUtils.checkNotNull(url);
+ Charset charset = Charset.forName(FILE_CHARSET);
+ BufferedReader in = new BufferedReader(new InputStreamReader(url.openStream(), charset));
+ try {
+ DataAdapter da = new StreamDataAdapter(in);
+ da.computeStats();
+ if (sampleStats.getN() == 0) {
+ throw new ZeroException(LocalizedFormats.URL_CONTAINS_NO_DATA, url);
+ }
+ // new adapter for the second pass
+ in = new BufferedReader(new InputStreamReader(url.openStream(), charset));
+ fillBinStats(new StreamDataAdapter(in));
+ loaded = true;
+ } finally {
+ try {
+ in.close();
+ } catch (IOException ex) { // NOPMD
+ // ignore
+ }
+ }
+ }
+
+ /**
+ * Computes the empirical distribution from the input file.
+ *
+ * <p>The input file <i>must</i> be an ASCII text file containing one valid numeric entry per
+ * line.
+ *
+ * @param file the input file
+ * @throws IOException if an IO error occurs
+ * @throws NullArgumentException if file is null
+ */
+ public void load(File file) throws IOException, NullArgumentException {
+ MathUtils.checkNotNull(file);
+ Charset charset = Charset.forName(FILE_CHARSET);
+ InputStream is = new FileInputStream(file);
+ BufferedReader in = new BufferedReader(new InputStreamReader(is, charset));
+ try {
+ DataAdapter da = new StreamDataAdapter(in);
+ da.computeStats();
+ // new adapter for second pass
+ is = new FileInputStream(file);
+ in = new BufferedReader(new InputStreamReader(is, charset));
+ fillBinStats(new StreamDataAdapter(in));
+ loaded = true;
+ } finally {
+ try {
+ in.close();
+ } catch (IOException ex) { // NOPMD
+ // ignore
+ }
+ }
+ }
+
+ /**
+ * Provides methods for computing <code>sampleStats</code> and <code>beanStats</code>
+ * abstracting the source of data.
+ */
+ private abstract class DataAdapter {
+
+ /**
+ * Compute bin stats.
+ *
+ * @throws IOException if an error occurs computing bin stats
+ */
+ public abstract void computeBinStats() throws IOException;
+
+ /**
+ * Compute sample statistics.
+ *
+ * @throws IOException if an error occurs computing sample stats
+ */
+ public abstract void computeStats() throws IOException;
+ }
+
+ /** <code>DataAdapter</code> for data provided through some input stream */
+ private class StreamDataAdapter extends DataAdapter {
+
+ /** Input stream providing access to the data */
+ private BufferedReader inputStream;
+
+ /**
+ * Create a StreamDataAdapter from a BufferedReader
+ *
+ * @param in BufferedReader input stream
+ */
+ StreamDataAdapter(BufferedReader in) {
+ super();
+ inputStream = in;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void computeBinStats() throws IOException {
+ String str = null;
+ double val = 0.0d;
+ while ((str = inputStream.readLine()) != null) {
+ val = Double.parseDouble(str);
+ SummaryStatistics stats = binStats.get(findBin(val));
+ stats.addValue(val);
+ }
+
+ inputStream.close();
+ inputStream = null;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void computeStats() throws IOException {
+ String str = null;
+ double val = 0.0;
+ sampleStats = new SummaryStatistics();
+ while ((str = inputStream.readLine()) != null) {
+ val = Double.parseDouble(str);
+ sampleStats.addValue(val);
+ }
+ inputStream.close();
+ inputStream = null;
+ }
+ }
+
+ /** <code>DataAdapter</code> for data provided as array of doubles. */
+ private class ArrayDataAdapter extends DataAdapter {
+
+ /** Array of input data values */
+ private double[] inputArray;
+
+ /**
+ * Construct an ArrayDataAdapter from a double[] array
+ *
+ * @param in double[] array holding the data
+ * @throws NullArgumentException if in is null
+ */
+ ArrayDataAdapter(double[] in) throws NullArgumentException {
+ super();
+ MathUtils.checkNotNull(in);
+ inputArray = in;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void computeStats() throws IOException {
+ sampleStats = new SummaryStatistics();
+ for (int i = 0; i < inputArray.length; i++) {
+ sampleStats.addValue(inputArray[i]);
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public void computeBinStats() throws IOException {
+ for (int i = 0; i < inputArray.length; i++) {
+ SummaryStatistics stats = binStats.get(findBin(inputArray[i]));
+ stats.addValue(inputArray[i]);
+ }
+ }
+ }
+
+ /**
+ * Fills binStats array (second pass through data file).
+ *
+ * @param da object providing access to the data
+ * @throws IOException if an IO error occurs
+ */
+ private void fillBinStats(final DataAdapter da) throws IOException {
+ // Set up grid
+ min = sampleStats.getMin();
+ max = sampleStats.getMax();
+ delta = (max - min) / ((double) binCount);
+
+ // Initialize binStats ArrayList
+ if (!binStats.isEmpty()) {
+ binStats.clear();
+ }
+ for (int i = 0; i < binCount; i++) {
+ SummaryStatistics stats = new SummaryStatistics();
+ binStats.add(i, stats);
+ }
+
+ // Filling data in binStats Array
+ da.computeBinStats();
+
+ // Assign upperBounds based on bin counts
+ upperBounds = new double[binCount];
+ upperBounds[0] = ((double) binStats.get(0).getN()) / (double) sampleStats.getN();
+ for (int i = 1; i < binCount - 1; i++) {
+ upperBounds[i] =
+ upperBounds[i - 1]
+ + ((double) binStats.get(i).getN()) / (double) sampleStats.getN();
+ }
+ upperBounds[binCount - 1] = 1.0d;
+ }
+
+ /**
+ * Returns the index of the bin to which the given value belongs
+ *
+ * @param value the value whose bin we are trying to find
+ * @return the index of the bin containing the value
+ */
+ private int findBin(double value) {
+ return FastMath.min(
+ FastMath.max((int) FastMath.ceil((value - min) / delta) - 1, 0), binCount - 1);
+ }
+
+ /**
+ * Generates a random value from this distribution. <strong>Preconditions:</strong>
+ *
+ * <ul>
+ * <li>the distribution must be loaded before invoking this method
+ * </ul>
+ *
+ * @return the random value.
+ * @throws MathIllegalStateException if the distribution has not been loaded
+ */
+ public double getNextValue() throws MathIllegalStateException {
+
+ if (!loaded) {
+ throw new MathIllegalStateException(LocalizedFormats.DISTRIBUTION_NOT_LOADED);
+ }
+
+ return sample();
+ }
+
+ /**
+ * Returns a {@link StatisticalSummary} describing this distribution.
+ * <strong>Preconditions:</strong>
+ *
+ * <ul>
+ * <li>the distribution must be loaded before invoking this method
+ * </ul>
+ *
+ * @return the sample statistics
+ * @throws IllegalStateException if the distribution has not been loaded
+ */
+ public StatisticalSummary getSampleStats() {
+ return sampleStats;
+ }
+
+ /**
+ * Returns the number of bins.
+ *
+ * @return the number of bins.
+ */
+ public int getBinCount() {
+ return binCount;
+ }
+
+ /**
+ * Returns a List of {@link SummaryStatistics} instances containing statistics describing the
+ * values in each of the bins. The list is indexed on the bin number.
+ *
+ * @return List of bin statistics.
+ */
+ public List<SummaryStatistics> getBinStats() {
+ return binStats;
+ }
+
+ /**
+ * Returns a fresh copy of the array of upper bounds for the bins. Bins are: <br>
+ * [min,upperBounds[0]],(upperBounds[0],upperBounds[1]],..., (upperBounds[binCount-2],
+ * upperBounds[binCount-1] = max].
+ *
+ * <p>Note: In versions 1.0-2.0 of commons-math, this method incorrectly returned the array of
+ * probability generator upper bounds now returned by {@link #getGeneratorUpperBounds()}.
+ *
+ * @return array of bin upper bounds
+ * @since 2.1
+ */
+ public double[] getUpperBounds() {
+ double[] binUpperBounds = new double[binCount];
+ for (int i = 0; i < binCount - 1; i++) {
+ binUpperBounds[i] = min + delta * (i + 1);
+ }
+ binUpperBounds[binCount - 1] = max;
+ return binUpperBounds;
+ }
+
+ /**
+ * Returns a fresh copy of the array of upper bounds of the subintervals of [0,1] used in
+ * generating data from the empirical distribution. Subintervals correspond to bins with lengths
+ * proportional to bin counts. <strong>Preconditions:</strong>
+ *
+ * <ul>
+ * <li>the distribution must be loaded before invoking this method
+ * </ul>
+ *
+ * <p>In versions 1.0-2.0 of commons-math, this array was (incorrectly) returned by {@link
+ * #getUpperBounds()}.
+ *
+ * @since 2.1
+ * @return array of upper bounds of subintervals used in data generation
+ * @throws NullPointerException unless a {@code load} method has been called beforehand.
+ */
+ public double[] getGeneratorUpperBounds() {
+ int len = upperBounds.length;
+ double[] out = new double[len];
+ System.arraycopy(upperBounds, 0, out, 0, len);
+ return out;
+ }
+
+ /**
+ * Property indicating whether or not the distribution has been loaded.
+ *
+ * @return true if the distribution has been loaded
+ */
+ public boolean isLoaded() {
+ return loaded;
+ }
+
+ /**
+ * Reseeds the random number generator used by {@link #getNextValue()}.
+ *
+ * @param seed random generator seed
+ * @since 3.0
+ */
+ public void reSeed(long seed) {
+ randomData.reSeed(seed);
+ }
+
+ // Distribution methods ---------------------------
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ @Override
+ public double probability(double x) {
+ return 0;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>Returns the kernel density normalized so that its integral over each bin equals the bin
+ * mass.
+ *
+ * <p>Algorithm description:
+ *
+ * <ol>
+ * <li>Find the bin B that x belongs to.
+ * <li>Compute K(B) = the mass of B with respect to the within-bin kernel (i.e., the integral
+ * of the kernel density over B).
+ * <li>Return k(x) * P(B) / K(B), where k is the within-bin kernel density and P(B) is the
+ * mass of B.
+ * </ol>
+ *
+ * @since 3.1
+ */
+ public double density(double x) {
+ if (x < min || x > max) {
+ return 0d;
+ }
+ final int binIndex = findBin(x);
+ final RealDistribution kernel = getKernel(binStats.get(binIndex));
+ return kernel.density(x) * pB(binIndex) / kB(binIndex);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>Algorithm description:
+ *
+ * <ol>
+ * <li>Find the bin B that x belongs to.
+ * <li>Compute P(B) = the mass of B and P(B-) = the combined mass of the bins below B.
+ * <li>Compute K(B) = the probability mass of B with respect to the within-bin kernel and
+ * K(B-) = the kernel distribution evaluated at the lower endpoint of B
+ * <li>Return P(B-) + P(B) * [K(x) - K(B-)] / K(B) where K(x) is the within-bin kernel
+ * distribution function evaluated at x.
+ * </ol>
+ *
+ * If K is a constant distribution, we return P(B-) + P(B) (counting the full mass of B).
+ *
+ * @since 3.1
+ */
+ public double cumulativeProbability(double x) {
+ if (x < min) {
+ return 0d;
+ } else if (x >= max) {
+ return 1d;
+ }
+ final int binIndex = findBin(x);
+ final double pBminus = pBminus(binIndex);
+ final double pB = pB(binIndex);
+ final RealDistribution kernel = k(x);
+ if (kernel instanceof ConstantRealDistribution) {
+ if (x < kernel.getNumericalMean()) {
+ return pBminus;
+ } else {
+ return pBminus + pB;
+ }
+ }
+ final double[] binBounds = getUpperBounds();
+ final double kB = kB(binIndex);
+ final double lower = binIndex == 0 ? min : binBounds[binIndex - 1];
+ final double withinBinCum =
+ (kernel.cumulativeProbability(x) - kernel.cumulativeProbability(lower)) / kB;
+ return pBminus + pB * withinBinCum;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>Algorithm description:
+ *
+ * <ol>
+ * <li>Find the smallest i such that the sum of the masses of the bins through i is at least
+ * p.
+ * <li>Let K be the within-bin kernel distribution for bin i.</br> Let K(B) be the mass of B
+ * under K. <br>
+ * Let K(B-) be K evaluated at the lower endpoint of B (the combined mass of the bins
+ * below B under K).<br>
+ * Let P(B) be the probability of bin i.<br>
+ * Let P(B-) be the sum of the bin masses below bin i. <br>
+ * Let pCrit = p - P(B-)<br>
+ * <li>Return the inverse of K evaluated at <br>
+ * K(B-) + pCrit * K(B) / P(B)
+ * </ol>
+ *
+ * @since 3.1
+ */
+ @Override
+ public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
+ if (p < 0.0 || p > 1.0) {
+ throw new OutOfRangeException(p, 0, 1);
+ }
+
+ if (p == 0.0) {
+ return getSupportLowerBound();
+ }
+
+ if (p == 1.0) {
+ return getSupportUpperBound();
+ }
+
+ int i = 0;
+ while (cumBinP(i) < p) {
+ i++;
+ }
+
+ final RealDistribution kernel = getKernel(binStats.get(i));
+ final double kB = kB(i);
+ final double[] binBounds = getUpperBounds();
+ final double lower = i == 0 ? min : binBounds[i - 1];
+ final double kBminus = kernel.cumulativeProbability(lower);
+ final double pB = pB(i);
+ final double pBminus = pBminus(i);
+ final double pCrit = p - pBminus;
+ if (pCrit <= 0) {
+ return lower;
+ }
+ return kernel.inverseCumulativeProbability(kBminus + pCrit * kB / pB);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ public double getNumericalMean() {
+ return sampleStats.getMean();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ public double getNumericalVariance() {
+ return sampleStats.getVariance();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ public double getSupportLowerBound() {
+ return min;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ public double getSupportUpperBound() {
+ return max;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ public boolean isSupportLowerBoundInclusive() {
+ return true;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ public boolean isSupportUpperBoundInclusive() {
+ return true;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ public boolean isSupportConnected() {
+ return true;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 3.1
+ */
+ @Override
+ public void reseedRandomGenerator(long seed) {
+ randomData.reSeed(seed);
+ }
+
+ /**
+ * The probability of bin i.
+ *
+ * @param i the index of the bin
+ * @return the probability that selection begins in bin i
+ */
+ private double pB(int i) {
+ return i == 0 ? upperBounds[0] : upperBounds[i] - upperBounds[i - 1];
+ }
+
+ /**
+ * The combined probability of the bins up to but not including bin i.
+ *
+ * @param i the index of the bin
+ * @return the probability that selection begins in a bin below bin i.
+ */
+ private double pBminus(int i) {
+ return i == 0 ? 0 : upperBounds[i - 1];
+ }
+
+ /**
+ * Mass of bin i under the within-bin kernel of the bin.
+ *
+ * @param i index of the bin
+ * @return the difference in the within-bin kernel cdf between the upper and lower endpoints of
+ * bin i
+ */
+ @SuppressWarnings("deprecation")
+ private double kB(int i) {
+ final double[] binBounds = getUpperBounds();
+ final RealDistribution kernel = getKernel(binStats.get(i));
+ return i == 0
+ ? kernel.cumulativeProbability(min, binBounds[0])
+ : kernel.cumulativeProbability(binBounds[i - 1], binBounds[i]);
+ }
+
+ /**
+ * The within-bin kernel of the bin that x belongs to.
+ *
+ * @param x the value to locate within a bin
+ * @return the within-bin kernel of the bin containing x
+ */
+ private RealDistribution k(double x) {
+ final int binIndex = findBin(x);
+ return getKernel(binStats.get(binIndex));
+ }
+
+ /**
+ * The combined probability of the bins up to and including binIndex.
+ *
+ * @param binIndex maximum bin index
+ * @return sum of the probabilities of bins through binIndex
+ */
+ private double cumBinP(int binIndex) {
+ return upperBounds[binIndex];
+ }
+
+ /**
+ * The within-bin smoothing kernel. Returns a Gaussian distribution parameterized by {@code
+ * bStats}, unless the bin contains only one observation, in which case a constant distribution
+ * is returned.
+ *
+ * @param bStats summary statistics for the bin
+ * @return within-bin kernel parameterized by bStats
+ */
+ protected RealDistribution getKernel(SummaryStatistics bStats) {
+ if (bStats.getN() == 1 || bStats.getVariance() == 0) {
+ return new ConstantRealDistribution(bStats.getMean());
+ } else {
+ return new NormalDistribution(
+ randomData.getRandomGenerator(),
+ bStats.getMean(),
+ bStats.getStandardDeviation(),
+ NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+ }
+}