summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/random/HaltonSequenceGenerator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/random/HaltonSequenceGenerator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/random/HaltonSequenceGenerator.java195
1 files changed, 195 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/random/HaltonSequenceGenerator.java b/src/main/java/org/apache/commons/math3/random/HaltonSequenceGenerator.java
new file mode 100644
index 0000000..2b1c623
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/random/HaltonSequenceGenerator.java
@@ -0,0 +1,195 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.random;
+
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NotPositiveException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * Implementation of a Halton sequence.
+ *
+ * <p>A Halton sequence is a low-discrepancy sequence generating points in the interval [0, 1]
+ * according to
+ *
+ * <pre>
+ * H(n) = d_0 / b + d_1 / b^2 .... d_j / b^j+1
+ *
+ * with
+ *
+ * n = d_j * b^j-1 + ... d_1 * b + d_0 * b^0
+ * </pre>
+ *
+ * For higher dimensions, subsequent prime numbers are used as base, e.g. { 2, 3, 5 } for a Halton
+ * sequence in R^3.
+ *
+ * <p>Halton sequences are known to suffer from linear correlation for larger prime numbers, thus
+ * the individual digits are usually scrambled. This implementation already comes with support for
+ * up to 40 dimensions with optimal weight numbers from <a
+ * href="http://etd.lib.fsu.edu/theses/available/etd-07062004-140409/unrestricted/dissertation1.pdf">
+ * H. Chi: Scrambled quasirandom sequences and their applications</a>.
+ *
+ * <p>The generator supports two modes:
+ *
+ * <ul>
+ * <li>sequential generation of points: {@link #nextVector()}
+ * <li>random access to the i-th point in the sequence: {@link #skipTo(int)}
+ * </ul>
+ *
+ * @see <a href="http://en.wikipedia.org/wiki/Halton_sequence">Halton sequence (Wikipedia)</a>
+ * @see <a href="https://lirias.kuleuven.be/bitstream/123456789/131168/1/mcm2005_bartv.pdf">On the
+ * Halton sequence and its scramblings</a>
+ * @since 3.3
+ */
+public class HaltonSequenceGenerator implements RandomVectorGenerator {
+
+ /** The first 40 primes. */
+ private static final int[] PRIMES =
+ new int[] {
+ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
+ 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
+ 173
+ };
+
+ /** The optimal weights used for scrambling of the first 40 dimension. */
+ private static final int[] WEIGHTS =
+ new int[] {
+ 1, 2, 3, 3, 8, 11, 12, 14, 7, 18, 12, 13, 17, 18, 29, 14, 18, 43, 41, 44, 40, 30,
+ 47, 65, 71, 28, 40, 60, 79, 89, 56, 50, 52, 61, 108, 56, 66, 63, 60, 66
+ };
+
+ /** Space dimension. */
+ private final int dimension;
+
+ /** The current index in the sequence. */
+ private int count = 0;
+
+ /** The base numbers for each component. */
+ private final int[] base;
+
+ /** The scrambling weights for each component. */
+ private final int[] weight;
+
+ /**
+ * Construct a new Halton sequence generator for the given space dimension.
+ *
+ * @param dimension the space dimension
+ * @throws OutOfRangeException if the space dimension is outside the allowed range of [1, 40]
+ */
+ public HaltonSequenceGenerator(final int dimension) throws OutOfRangeException {
+ this(dimension, PRIMES, WEIGHTS);
+ }
+
+ /**
+ * Construct a new Halton sequence generator with the given base numbers and weights for each
+ * dimension. The length of the bases array defines the space dimension and is required to be
+ * &gt; 0.
+ *
+ * @param dimension the space dimension
+ * @param bases the base number for each dimension, entries should be (pairwise) prime, may not
+ * be null
+ * @param weights the weights used during scrambling, may be null in which case no scrambling
+ * will be performed
+ * @throws NullArgumentException if base is null
+ * @throws OutOfRangeException if the space dimension is outside the range [1, len], where len
+ * refers to the length of the bases array
+ * @throws DimensionMismatchException if weights is non-null and the length of the input arrays
+ * differ
+ */
+ public HaltonSequenceGenerator(final int dimension, final int[] bases, final int[] weights)
+ throws NullArgumentException, OutOfRangeException, DimensionMismatchException {
+
+ MathUtils.checkNotNull(bases);
+
+ if (dimension < 1 || dimension > bases.length) {
+ throw new OutOfRangeException(dimension, 1, PRIMES.length);
+ }
+
+ if (weights != null && weights.length != bases.length) {
+ throw new DimensionMismatchException(weights.length, bases.length);
+ }
+
+ this.dimension = dimension;
+ this.base = bases.clone();
+ this.weight = weights == null ? null : weights.clone();
+ count = 0;
+ }
+
+ /** {@inheritDoc} */
+ public double[] nextVector() {
+ final double[] v = new double[dimension];
+ for (int i = 0; i < dimension; i++) {
+ int index = count;
+ double f = 1.0 / base[i];
+
+ int j = 0;
+ while (index > 0) {
+ final int digit = scramble(i, j, base[i], index % base[i]);
+ v[i] += f * digit;
+ index /= base[i]; // floor( index / base )
+ f /= base[i];
+ }
+ }
+ count++;
+ return v;
+ }
+
+ /**
+ * Performs scrambling of digit {@code d_j} according to the formula:
+ *
+ * <pre>
+ * ( weight_i * d_j ) mod base
+ * </pre>
+ *
+ * Implementations can override this method to do a different scrambling.
+ *
+ * @param i the dimension index
+ * @param j the digit index
+ * @param b the base for this dimension
+ * @param digit the j-th digit
+ * @return the scrambled digit
+ */
+ protected int scramble(final int i, final int j, final int b, final int digit) {
+ return weight != null ? (weight[i] * digit) % b : digit;
+ }
+
+ /**
+ * Skip to the i-th point in the Halton sequence.
+ *
+ * <p>This operation can be performed in O(1).
+ *
+ * @param index the index in the sequence to skip to
+ * @return the i-th point in the Halton sequence
+ * @throws NotPositiveException if index &lt; 0
+ */
+ public double[] skipTo(final int index) throws NotPositiveException {
+ count = index;
+ return nextVector();
+ }
+
+ /**
+ * Returns the index i of the next point in the Halton sequence that will be returned by calling
+ * {@link #nextVector()}.
+ *
+ * @return the index of the next point
+ */
+ public int getNextIndex() {
+ return count;
+ }
+}