summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/random/RandomDataGenerator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/random/RandomDataGenerator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/random/RandomDataGenerator.java780
1 files changed, 780 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/random/RandomDataGenerator.java b/src/main/java/org/apache/commons/math3/random/RandomDataGenerator.java
new file mode 100644
index 0000000..5d48580
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/random/RandomDataGenerator.java
@@ -0,0 +1,780 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.random;
+
+import org.apache.commons.math3.distribution.BetaDistribution;
+import org.apache.commons.math3.distribution.BinomialDistribution;
+import org.apache.commons.math3.distribution.CauchyDistribution;
+import org.apache.commons.math3.distribution.ChiSquaredDistribution;
+import org.apache.commons.math3.distribution.ExponentialDistribution;
+import org.apache.commons.math3.distribution.FDistribution;
+import org.apache.commons.math3.distribution.GammaDistribution;
+import org.apache.commons.math3.distribution.HypergeometricDistribution;
+import org.apache.commons.math3.distribution.PascalDistribution;
+import org.apache.commons.math3.distribution.PoissonDistribution;
+import org.apache.commons.math3.distribution.TDistribution;
+import org.apache.commons.math3.distribution.UniformIntegerDistribution;
+import org.apache.commons.math3.distribution.WeibullDistribution;
+import org.apache.commons.math3.distribution.ZipfDistribution;
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.exception.NotANumberException;
+import org.apache.commons.math3.exception.NotFiniteNumberException;
+import org.apache.commons.math3.exception.NotPositiveException;
+import org.apache.commons.math3.exception.NotStrictlyPositiveException;
+import org.apache.commons.math3.exception.NumberIsTooLargeException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.util.MathArrays;
+
+import java.io.Serializable;
+import java.security.MessageDigest;
+import java.security.NoSuchAlgorithmException;
+import java.security.NoSuchProviderException;
+import java.security.SecureRandom;
+import java.util.Collection;
+
+/**
+ * Implements the {@link RandomData} interface using a {@link RandomGenerator} instance to generate
+ * non-secure data and a {@link java.security.SecureRandom} instance to provide data for the <code>
+ * nextSecureXxx</code> methods. If no <code>RandomGenerator</code> is provided in the constructor,
+ * the default is to use a {@link Well19937c} generator. To plug in a different implementation,
+ * either implement <code>RandomGenerator</code> directly or extend {@link AbstractRandomGenerator}.
+ *
+ * <p>Supports reseeding the underlying pseudo-random number generator (PRNG). The <code>
+ * SecurityProvider</code> and <code>Algorithm</code> used by the <code>SecureRandom</code> instance
+ * can also be reset.
+ *
+ * <p>For details on the default PRNGs, see {@link java.util.Random} and {@link
+ * java.security.SecureRandom}.
+ *
+ * <p><strong>Usage Notes</strong>:
+ *
+ * <ul>
+ * <li>Instance variables are used to maintain <code>RandomGenerator</code> and <code>SecureRandom
+ * </code> instances used in data generation. Therefore, to generate a random sequence of
+ * values or strings, you should use just <strong>one</strong> <code>RandomDataImpl</code>
+ * instance repeatedly.
+ * <li>The "secure" methods are *much* slower. These should be used only when a cryptographically
+ * secure random sequence is required. A secure random sequence is a sequence of pseudo-random
+ * values which, in addition to being well-dispersed (so no subsequence of values is an any
+ * more likely than other subsequence of the the same length), also has the additional
+ * property that knowledge of values generated up to any point in the sequence does not make
+ * it any easier to predict subsequent values.
+ * <li>When a new <code>RandomDataImpl</code> is created, the underlying random number generators
+ * are <strong>not</strong> initialized. If you do not explicitly seed the default non-secure
+ * generator, it is seeded with the current time in milliseconds plus the system identity hash
+ * code on first use. The same holds for the secure generator. If you provide a <code>
+ * RandomGenerator</code> to the constructor, however, this generator is not reseeded by the
+ * constructor nor is it reseeded on first use.
+ * <li>The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the corresponding
+ * methods on the underlying <code>RandomGenerator</code> and <code>SecureRandom</code>
+ * instances. Therefore, <code>reSeed(long)</code> fully resets the initial state of the
+ * non-secure random number generator (so that reseeding with a specific value always results
+ * in the same subsequent random sequence); whereas reSeedSecure(long) does
+ * <strong>not</strong> reinitialize the secure random number generator (so secure sequences
+ * started with calls to reseedSecure(long) won't be identical).
+ * <li>This implementation is not synchronized. The underlying <code>RandomGenerator</code> or
+ * <code>SecureRandom</code> instances are not protected by synchronization and are not
+ * guaranteed to be thread-safe. Therefore, if an instance of this class is concurrently
+ * utilized by multiple threads, it is the responsibility of client code to synchronize access
+ * to seeding and data generation methods.
+ * </ul>
+ *
+ * @since 3.1
+ */
+public class RandomDataGenerator implements RandomData, Serializable {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -626730818244969716L;
+
+ /** underlying random number generator */
+ private RandomGenerator rand = null;
+
+ /** underlying secure random number generator */
+ private RandomGenerator secRand = null;
+
+ /**
+ * Construct a RandomDataGenerator, using a default random generator as the source of
+ * randomness.
+ *
+ * <p>The default generator is a {@link Well19937c} seeded with {@code
+ * System.currentTimeMillis() + System.identityHashCode(this))}. The generator is initialized
+ * and seeded on first use.
+ */
+ public RandomDataGenerator() {}
+
+ /**
+ * Construct a RandomDataGenerator using the supplied {@link RandomGenerator} as the source of
+ * (non-secure) random data.
+ *
+ * @param rand the source of (non-secure) random data (may be null, resulting in the default
+ * generator)
+ */
+ public RandomDataGenerator(RandomGenerator rand) {
+ this.rand = rand;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p><strong>Algorithm Description:</strong> hex strings are generated using a 2-step process.
+ *
+ * <ol>
+ * <li>{@code len / 2 + 1} binary bytes are generated using the underlying Random
+ * <li>Each binary byte is translated into 2 hex digits
+ * </ol>
+ *
+ * @param len the desired string length.
+ * @return the random string.
+ * @throws NotStrictlyPositiveException if {@code len <= 0}.
+ */
+ public String nextHexString(int len) throws NotStrictlyPositiveException {
+ if (len <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
+ }
+
+ // Get a random number generator
+ RandomGenerator ran = getRandomGenerator();
+
+ // Initialize output buffer
+ StringBuilder outBuffer = new StringBuilder();
+
+ // Get int(len/2)+1 random bytes
+ byte[] randomBytes = new byte[(len / 2) + 1];
+ ran.nextBytes(randomBytes);
+
+ // Convert each byte to 2 hex digits
+ for (int i = 0; i < randomBytes.length; i++) {
+ Integer c = Integer.valueOf(randomBytes[i]);
+
+ /*
+ * Add 128 to byte value to make interval 0-255 before doing hex
+ * conversion. This guarantees <= 2 hex digits from toHexString()
+ * toHexString would otherwise add 2^32 to negative arguments.
+ */
+ String hex = Integer.toHexString(c.intValue() + 128);
+
+ // Make sure we add 2 hex digits for each byte
+ if (hex.length() == 1) {
+ hex = "0" + hex;
+ }
+ outBuffer.append(hex);
+ }
+ return outBuffer.toString().substring(0, len);
+ }
+
+ /** {@inheritDoc} */
+ public int nextInt(final int lower, final int upper) throws NumberIsTooLargeException {
+ return new UniformIntegerDistribution(getRandomGenerator(), lower, upper).sample();
+ }
+
+ /** {@inheritDoc} */
+ public long nextLong(final long lower, final long upper) throws NumberIsTooLargeException {
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(
+ LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false);
+ }
+ final long max = (upper - lower) + 1;
+ if (max <= 0) {
+ // the range is too wide to fit in a positive long (larger than 2^63); as it covers
+ // more than half the long range, we use directly a simple rejection method
+ final RandomGenerator rng = getRandomGenerator();
+ while (true) {
+ final long r = rng.nextLong();
+ if (r >= lower && r <= upper) {
+ return r;
+ }
+ }
+ } else if (max < Integer.MAX_VALUE) {
+ // we can shift the range and generate directly a positive int
+ return lower + getRandomGenerator().nextInt((int) max);
+ } else {
+ // we can shift the range and generate directly a positive long
+ return lower + nextLong(getRandomGenerator(), max);
+ }
+ }
+
+ /**
+ * Returns a pseudorandom, uniformly distributed {@code long} value between 0 (inclusive) and
+ * the specified value (exclusive), drawn from this random number generator's sequence.
+ *
+ * @param rng random generator to use
+ * @param n the bound on the random number to be returned. Must be positive.
+ * @return a pseudorandom, uniformly distributed {@code long} value between 0 (inclusive) and n
+ * (exclusive).
+ * @throws IllegalArgumentException if n is not positive.
+ */
+ private static long nextLong(final RandomGenerator rng, final long n)
+ throws IllegalArgumentException {
+ if (n > 0) {
+ final byte[] byteArray = new byte[8];
+ long bits;
+ long val;
+ do {
+ rng.nextBytes(byteArray);
+ bits = 0;
+ for (final byte b : byteArray) {
+ bits = (bits << 8) | (((long) b) & 0xffL);
+ }
+ bits &= 0x7fffffffffffffffL;
+ val = bits % n;
+ } while (bits - val + (n - 1) < 0);
+ return val;
+ }
+ throw new NotStrictlyPositiveException(n);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p><strong>Algorithm Description:</strong> hex strings are generated in 40-byte segments
+ * using a 3-step process.
+ *
+ * <ol>
+ * <li>20 random bytes are generated using the underlying <code>SecureRandom</code>.
+ * <li>SHA-1 hash is applied to yield a 20-byte binary digest.
+ * <li>Each byte of the binary digest is converted to 2 hex digits.
+ * </ol>
+ *
+ * @throws NotStrictlyPositiveException if {@code len <= 0}
+ */
+ public String nextSecureHexString(int len) throws NotStrictlyPositiveException {
+ if (len <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len);
+ }
+
+ // Get SecureRandom and setup Digest provider
+ final RandomGenerator secRan = getSecRan();
+ MessageDigest alg = null;
+ try {
+ alg = MessageDigest.getInstance("SHA-1");
+ } catch (NoSuchAlgorithmException ex) {
+ // this should never happen
+ throw new MathInternalError(ex);
+ }
+ alg.reset();
+
+ // Compute number of iterations required (40 bytes each)
+ int numIter = (len / 40) + 1;
+
+ StringBuilder outBuffer = new StringBuilder();
+ for (int iter = 1; iter < numIter + 1; iter++) {
+ byte[] randomBytes = new byte[40];
+ secRan.nextBytes(randomBytes);
+ alg.update(randomBytes);
+
+ // Compute hash -- will create 20-byte binary hash
+ byte[] hash = alg.digest();
+
+ // Loop over the hash, converting each byte to 2 hex digits
+ for (int i = 0; i < hash.length; i++) {
+ Integer c = Integer.valueOf(hash[i]);
+
+ /*
+ * Add 128 to byte value to make interval 0-255 This guarantees
+ * <= 2 hex digits from toHexString() toHexString would
+ * otherwise add 2^32 to negative arguments
+ */
+ String hex = Integer.toHexString(c.intValue() + 128);
+
+ // Keep strings uniform length -- guarantees 40 bytes
+ if (hex.length() == 1) {
+ hex = "0" + hex;
+ }
+ outBuffer.append(hex);
+ }
+ }
+ return outBuffer.toString().substring(0, len);
+ }
+
+ /** {@inheritDoc} */
+ public int nextSecureInt(final int lower, final int upper) throws NumberIsTooLargeException {
+ return new UniformIntegerDistribution(getSecRan(), lower, upper).sample();
+ }
+
+ /** {@inheritDoc} */
+ public long nextSecureLong(final long lower, final long upper)
+ throws NumberIsTooLargeException {
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(
+ LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false);
+ }
+ final RandomGenerator rng = getSecRan();
+ final long max = (upper - lower) + 1;
+ if (max <= 0) {
+ // the range is too wide to fit in a positive long (larger than 2^63); as it covers
+ // more than half the long range, we use directly a simple rejection method
+ while (true) {
+ final long r = rng.nextLong();
+ if (r >= lower && r <= upper) {
+ return r;
+ }
+ }
+ } else if (max < Integer.MAX_VALUE) {
+ // we can shift the range and generate directly a positive int
+ return lower + rng.nextInt((int) max);
+ } else {
+ // we can shift the range and generate directly a positive long
+ return lower + nextLong(rng, max);
+ }
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p><strong>Algorithm Description</strong>:
+ *
+ * <ul>
+ * <li>For small means, uses simulation of a Poisson process using Uniform deviates, as
+ * described <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm">here.</a> The
+ * Poisson process (and hence value returned) is bounded by 1000 * mean.
+ * <li>For large means, uses the rejection algorithm described in <br>
+ * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
+ * <strong>Computing</strong> vol. 26 pp. 197-207.
+ * </ul>
+ *
+ * @throws NotStrictlyPositiveException if {@code len <= 0}
+ */
+ public long nextPoisson(double mean) throws NotStrictlyPositiveException {
+ return new PoissonDistribution(
+ getRandomGenerator(),
+ mean,
+ PoissonDistribution.DEFAULT_EPSILON,
+ PoissonDistribution.DEFAULT_MAX_ITERATIONS)
+ .sample();
+ }
+
+ /** {@inheritDoc} */
+ public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
+ if (sigma <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma);
+ }
+ return sigma * getRandomGenerator().nextGaussian() + mu;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p><strong>Algorithm Description</strong>: Uses the Algorithm SA (Ahrens) from p. 876 in:
+ * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential
+ * and normal distributions. Communications of the ACM, 15, 873-882.
+ */
+ public double nextExponential(double mean) throws NotStrictlyPositiveException {
+ return new ExponentialDistribution(
+ getRandomGenerator(),
+ mean,
+ ExponentialDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link
+ * org.apache.commons.math3.distribution.GammaDistribution Gamma Distribution}.
+ *
+ * <p>This implementation uses the following algorithms:
+ *
+ * <p>For 0 < shape < 1: <br>
+ * Ahrens, J. H. and Dieter, U., <i>Computer methods for sampling from gamma, beta, Poisson and
+ * binomial distributions.</i> Computing, 12, 223-246, 1974.
+ *
+ * <p>For shape >= 1: <br>
+ * Marsaglia and Tsang, <i>A Simple Method for Generating Gamma Variables.</i> ACM Transactions
+ * on Mathematical Software, Volume 26 Issue 3, September, 2000.
+ *
+ * @param shape the median of the Gamma distribution
+ * @param scale the scale parameter of the Gamma distribution
+ * @return random value sampled from the Gamma(shape, scale) distribution
+ * @throws NotStrictlyPositiveException if {@code shape <= 0} or {@code scale <= 0}.
+ */
+ public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException {
+ return new GammaDistribution(
+ getRandomGenerator(),
+ shape,
+ scale,
+ GammaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link HypergeometricDistribution Hypergeometric
+ * Distribution}.
+ *
+ * @param populationSize the population size of the Hypergeometric distribution
+ * @param numberOfSuccesses number of successes in the population of the Hypergeometric
+ * distribution
+ * @param sampleSize the sample size of the Hypergeometric distribution
+ * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize)
+ * distribution
+ * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, or {@code
+ * sampleSize > populationSize}.
+ * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
+ * @throws NotPositiveException if {@code numberOfSuccesses < 0}.
+ */
+ public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)
+ throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
+ return new HypergeometricDistribution(
+ getRandomGenerator(), populationSize, numberOfSuccesses, sampleSize)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link PascalDistribution Pascal Distribution}.
+ *
+ * @param r the number of successes of the Pascal distribution
+ * @param p the probability of success of the Pascal distribution
+ * @return random value sampled from the Pascal(r, p) distribution
+ * @throws NotStrictlyPositiveException if the number of successes is not positive
+ * @throws OutOfRangeException if the probability of success is not in the range {@code [0, 1]}.
+ */
+ public int nextPascal(int r, double p)
+ throws NotStrictlyPositiveException, OutOfRangeException {
+ return new PascalDistribution(getRandomGenerator(), r, p).sample();
+ }
+
+ /**
+ * Generates a random value from the {@link TDistribution T Distribution}.
+ *
+ * @param df the degrees of freedom of the T distribution
+ * @return random value from the T(df) distribution
+ * @throws NotStrictlyPositiveException if {@code df <= 0}
+ */
+ public double nextT(double df) throws NotStrictlyPositiveException {
+ return new TDistribution(
+ getRandomGenerator(), df, TDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link WeibullDistribution Weibull Distribution}.
+ *
+ * @param shape the shape parameter of the Weibull distribution
+ * @param scale the scale parameter of the Weibull distribution
+ * @return random value sampled from the Weibull(shape, size) distribution
+ * @throws NotStrictlyPositiveException if {@code shape <= 0} or {@code scale <= 0}.
+ */
+ public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException {
+ return new WeibullDistribution(
+ getRandomGenerator(),
+ shape,
+ scale,
+ WeibullDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link ZipfDistribution Zipf Distribution}.
+ *
+ * @param numberOfElements the number of elements of the ZipfDistribution
+ * @param exponent the exponent of the ZipfDistribution
+ * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
+ * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0} or {@code exponent
+ * <= 0}.
+ */
+ public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException {
+ return new ZipfDistribution(getRandomGenerator(), numberOfElements, exponent).sample();
+ }
+
+ /**
+ * Generates a random value from the {@link BetaDistribution Beta Distribution}.
+ *
+ * @param alpha first distribution shape parameter
+ * @param beta second distribution shape parameter
+ * @return random value sampled from the beta(alpha, beta) distribution
+ */
+ public double nextBeta(double alpha, double beta) {
+ return new BetaDistribution(
+ getRandomGenerator(),
+ alpha,
+ beta,
+ BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link BinomialDistribution Binomial Distribution}.
+ *
+ * @param numberOfTrials number of trials of the Binomial distribution
+ * @param probabilityOfSuccess probability of success of the Binomial distribution
+ * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess)
+ * distribution
+ */
+ public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) {
+ return new BinomialDistribution(getRandomGenerator(), numberOfTrials, probabilityOfSuccess)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link CauchyDistribution Cauchy Distribution}.
+ *
+ * @param median the median of the Cauchy distribution
+ * @param scale the scale parameter of the Cauchy distribution
+ * @return random value sampled from the Cauchy(median, scale) distribution
+ */
+ public double nextCauchy(double median, double scale) {
+ return new CauchyDistribution(
+ getRandomGenerator(),
+ median,
+ scale,
+ CauchyDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link ChiSquaredDistribution ChiSquare Distribution}.
+ *
+ * @param df the degrees of freedom of the ChiSquare distribution
+ * @return random value sampled from the ChiSquare(df) distribution
+ */
+ public double nextChiSquare(double df) {
+ return new ChiSquaredDistribution(
+ getRandomGenerator(),
+ df,
+ ChiSquaredDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * Generates a random value from the {@link FDistribution F Distribution}.
+ *
+ * @param numeratorDf the numerator degrees of freedom of the F distribution
+ * @param denominatorDf the denominator degrees of freedom of the F distribution
+ * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
+ * @throws NotStrictlyPositiveException if {@code numeratorDf <= 0} or {@code denominatorDf <=
+ * 0}.
+ */
+ public double nextF(double numeratorDf, double denominatorDf)
+ throws NotStrictlyPositiveException {
+ return new FDistribution(
+ getRandomGenerator(),
+ numeratorDf,
+ denominatorDf,
+ FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
+ .sample();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p><strong>Algorithm Description</strong>: scales the output of Random.nextDouble(), but
+ * rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns
+ * 0). This is necessary to provide a symmetric output interval (both endpoints excluded).
+ *
+ * @throws NumberIsTooLargeException if {@code lower >= upper}
+ * @throws NotFiniteNumberException if one of the bounds is infinite
+ * @throws NotANumberException if one of the bounds is NaN
+ */
+ public double nextUniform(double lower, double upper)
+ throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
+ return nextUniform(lower, upper, false);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p><strong>Algorithm Description</strong>: if the lower bound is excluded, scales the output
+ * of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if
+ * Random.nextDouble() returns 0). This is necessary to provide a symmetric output interval
+ * (both endpoints excluded).
+ *
+ * @throws NumberIsTooLargeException if {@code lower >= upper}
+ * @throws NotFiniteNumberException if one of the bounds is infinite
+ * @throws NotANumberException if one of the bounds is NaN
+ */
+ public double nextUniform(double lower, double upper, boolean lowerInclusive)
+ throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
+
+ if (lower >= upper) {
+ throw new NumberIsTooLargeException(
+ LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false);
+ }
+
+ if (Double.isInfinite(lower)) {
+ throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, lower);
+ }
+ if (Double.isInfinite(upper)) {
+ throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, upper);
+ }
+
+ if (Double.isNaN(lower) || Double.isNaN(upper)) {
+ throw new NotANumberException();
+ }
+
+ final RandomGenerator generator = getRandomGenerator();
+
+ // ensure nextDouble() isn't 0.0
+ double u = generator.nextDouble();
+ while (!lowerInclusive && u <= 0.0) {
+ u = generator.nextDouble();
+ }
+
+ return u * upper + (1.0 - u) * lower;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>This method calls {@link MathArrays#shuffle(int[],RandomGenerator) MathArrays.shuffle} in
+ * order to create a random shuffle of the set of natural numbers {@code { 0, 1, ..., n - 1 }}.
+ *
+ * @throws NumberIsTooLargeException if {@code k > n}.
+ * @throws NotStrictlyPositiveException if {@code k <= 0}.
+ */
+ public int[] nextPermutation(int n, int k)
+ throws NumberIsTooLargeException, NotStrictlyPositiveException {
+ if (k > n) {
+ throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N, k, n, true);
+ }
+ if (k <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE, k);
+ }
+
+ int[] index = MathArrays.natural(n);
+ MathArrays.shuffle(index, getRandomGenerator());
+
+ // Return a new array containing the first "k" entries of "index".
+ return MathArrays.copyOf(index, k);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * <p>This method calls {@link #nextPermutation(int,int) nextPermutation(c.size(), k)} in order
+ * to sample the collection.
+ */
+ public Object[] nextSample(Collection<?> c, int k)
+ throws NumberIsTooLargeException, NotStrictlyPositiveException {
+
+ int len = c.size();
+ if (k > len) {
+ throw new NumberIsTooLargeException(
+ LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE, k, len, true);
+ }
+ if (k <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k);
+ }
+
+ Object[] objects = c.toArray();
+ int[] index = nextPermutation(len, k);
+ Object[] result = new Object[k];
+ for (int i = 0; i < k; i++) {
+ result[i] = objects[index[i]];
+ }
+ return result;
+ }
+
+ /**
+ * Reseeds the random number generator with the supplied seed.
+ *
+ * <p>Will create and initialize if null.
+ *
+ * @param seed the seed value to use
+ */
+ public void reSeed(long seed) {
+ getRandomGenerator().setSeed(seed);
+ }
+
+ /**
+ * Reseeds the secure random number generator with the current time in milliseconds.
+ *
+ * <p>Will create and initialize if null.
+ */
+ public void reSeedSecure() {
+ getSecRan().setSeed(System.currentTimeMillis());
+ }
+
+ /**
+ * Reseeds the secure random number generator with the supplied seed.
+ *
+ * <p>Will create and initialize if null.
+ *
+ * @param seed the seed value to use
+ */
+ public void reSeedSecure(long seed) {
+ getSecRan().setSeed(seed);
+ }
+
+ /**
+ * Reseeds the random number generator with {@code System.currentTimeMillis() +
+ * System.identityHashCode(this))}.
+ */
+ public void reSeed() {
+ getRandomGenerator().setSeed(System.currentTimeMillis() + System.identityHashCode(this));
+ }
+
+ /**
+ * Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider
+ * API. The Security Provider API is defined in <a href =
+ * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA"> Java Cryptography
+ * Architecture API Specification & Reference.</a>
+ *
+ * <p><strong>USAGE NOTE:</strong> This method carries <i>significant</i> overhead and may take
+ * several seconds to execute.
+ *
+ * @param algorithm the name of the PRNG algorithm
+ * @param provider the name of the provider
+ * @throws NoSuchAlgorithmException if the specified algorithm is not available
+ * @throws NoSuchProviderException if the specified provider is not installed
+ */
+ public void setSecureAlgorithm(String algorithm, String provider)
+ throws NoSuchAlgorithmException, NoSuchProviderException {
+ secRand =
+ RandomGeneratorFactory.createRandomGenerator(
+ SecureRandom.getInstance(algorithm, provider));
+ }
+
+ /**
+ * Returns the RandomGenerator used to generate non-secure random data.
+ *
+ * <p>Creates and initializes a default generator if null. Uses a {@link Well19937c} generator
+ * with {@code System.currentTimeMillis() + System.identityHashCode(this))} as the default seed.
+ *
+ * @return the Random used to generate random data
+ * @since 3.2
+ */
+ public RandomGenerator getRandomGenerator() {
+ if (rand == null) {
+ initRan();
+ }
+ return rand;
+ }
+
+ /**
+ * Sets the default generator to a {@link Well19937c} generator seeded with {@code
+ * System.currentTimeMillis() + System.identityHashCode(this))}.
+ */
+ private void initRan() {
+ rand = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this));
+ }
+
+ /**
+ * Returns the SecureRandom used to generate secure random data.
+ *
+ * <p>Creates and initializes if null. Uses {@code System.currentTimeMillis() +
+ * System.identityHashCode(this)} as the default seed.
+ *
+ * @return the SecureRandom used to generate secure random data, wrapped in a {@link
+ * RandomGenerator}.
+ */
+ private RandomGenerator getSecRan() {
+ if (secRand == null) {
+ secRand = RandomGeneratorFactory.createRandomGenerator(new SecureRandom());
+ secRand.setSeed(System.currentTimeMillis() + System.identityHashCode(this));
+ }
+ return secRand;
+ }
+}