summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java')
-rw-r--r--src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java1270
1 files changed, 1270 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java b/src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java
new file mode 100644
index 0000000..6b70e9b
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/stat/inference/KolmogorovSmirnovTest.java
@@ -0,0 +1,1270 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.stat.inference;
+
+import java.math.BigDecimal;
+import java.util.Arrays;
+import java.util.HashSet;
+
+import org.apache.commons.math3.distribution.EnumeratedRealDistribution;
+import org.apache.commons.math3.distribution.RealDistribution;
+import org.apache.commons.math3.distribution.UniformRealDistribution;
+import org.apache.commons.math3.exception.InsufficientDataException;
+import org.apache.commons.math3.exception.MathArithmeticException;
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.NumberIsTooLargeException;
+import org.apache.commons.math3.exception.OutOfRangeException;
+import org.apache.commons.math3.exception.TooManyIterationsException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.fraction.BigFraction;
+import org.apache.commons.math3.fraction.BigFractionField;
+import org.apache.commons.math3.fraction.FractionConversionException;
+import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
+import org.apache.commons.math3.linear.FieldMatrix;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.random.JDKRandomGenerator;
+import org.apache.commons.math3.random.RandomGenerator;
+import org.apache.commons.math3.random.Well19937c;
+import org.apache.commons.math3.util.CombinatoricsUtils;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.util.MathUtils;
+
+/**
+ * Implementation of the <a href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test">
+ * Kolmogorov-Smirnov (K-S) test</a> for equality of continuous distributions.
+ * <p>
+ * The K-S test uses a statistic based on the maximum deviation of the empirical distribution of
+ * sample data points from the distribution expected under the null hypothesis. For one-sample tests
+ * evaluating the null hypothesis that a set of sample data points follow a given distribution, the
+ * test statistic is \(D_n=\sup_x |F_n(x)-F(x)|\), where \(F\) is the expected distribution and
+ * \(F_n\) is the empirical distribution of the \(n\) sample data points. The distribution of
+ * \(D_n\) is estimated using a method based on [1] with certain quick decisions for extreme values
+ * given in [2].
+ * </p>
+ * <p>
+ * Two-sample tests are also supported, evaluating the null hypothesis that the two samples
+ * {@code x} and {@code y} come from the same underlying distribution. In this case, the test
+ * statistic is \(D_{n,m}=\sup_t | F_n(t)-F_m(t)|\) where \(n\) is the length of {@code x}, \(m\) is
+ * the length of {@code y}, \(F_n\) is the empirical distribution that puts mass \(1/n\) at each of
+ * the values in {@code x} and \(F_m\) is the empirical distribution of the {@code y} values. The
+ * default 2-sample test method, {@link #kolmogorovSmirnovTest(double[], double[])} works as
+ * follows:
+ * <ul>
+ * <li>For small samples (where the product of the sample sizes is less than
+ * {@value #LARGE_SAMPLE_PRODUCT}), the method presented in [4] is used to compute the
+ * exact p-value for the 2-sample test.</li>
+ * <li>When the product of the sample sizes exceeds {@value #LARGE_SAMPLE_PRODUCT}, the asymptotic
+ * distribution of \(D_{n,m}\) is used. See {@link #approximateP(double, int, int)} for details on
+ * the approximation.</li>
+ * </ul></p><p>
+ * If the product of the sample sizes is less than {@value #LARGE_SAMPLE_PRODUCT} and the sample
+ * data contains ties, random jitter is added to the sample data to break ties before applying
+ * the algorithm above. Alternatively, the {@link #bootstrap(double[], double[], int, boolean)}
+ * method, modeled after <a href="http://sekhon.berkeley.edu/matching/ks.boot.html">ks.boot</a>
+ * in the R Matching package [3], can be used if ties are known to be present in the data.
+ * </p>
+ * <p>
+ * In the two-sample case, \(D_{n,m}\) has a discrete distribution. This makes the p-value
+ * associated with the null hypothesis \(H_0 : D_{n,m} \ge d \) differ from \(H_0 : D_{n,m} > d \)
+ * by the mass of the observed value \(d\). To distinguish these, the two-sample tests use a boolean
+ * {@code strict} parameter. This parameter is ignored for large samples.
+ * </p>
+ * <p>
+ * The methods used by the 2-sample default implementation are also exposed directly:
+ * <ul>
+ * <li>{@link #exactP(double, int, int, boolean)} computes exact 2-sample p-values</li>
+ * <li>{@link #approximateP(double, int, int)} uses the asymptotic distribution The {@code boolean}
+ * arguments in the first two methods allow the probability used to estimate the p-value to be
+ * expressed using strict or non-strict inequality. See
+ * {@link #kolmogorovSmirnovTest(double[], double[], boolean)}.</li>
+ * </ul>
+ * </p>
+ * <p>
+ * References:
+ * <ul>
+ * <li>[1] <a href="http://www.jstatsoft.org/v08/i18/"> Evaluating Kolmogorov's Distribution</a> by
+ * George Marsaglia, Wai Wan Tsang, and Jingbo Wang</li>
+ * <li>[2] <a href="http://www.jstatsoft.org/v39/i11/"> Computing the Two-Sided Kolmogorov-Smirnov
+ * Distribution</a> by Richard Simard and Pierre L'Ecuyer</li>
+ * <li>[3] Jasjeet S. Sekhon. 2011. <a href="http://www.jstatsoft.org/article/view/v042i07">
+ * Multivariate and Propensity Score Matching Software with Automated Balance Optimization:
+ * The Matching package for R</a> Journal of Statistical Software, 42(7): 1-52.</li>
+ * <li>[4] Wilcox, Rand. 2012. Introduction to Robust Estimation and Hypothesis Testing,
+ * Chapter 5, 3rd Ed. Academic Press.</li>
+ * </ul>
+ * <br/>
+ * Note that [1] contains an error in computing h, refer to <a
+ * href="https://issues.apache.org/jira/browse/MATH-437">MATH-437</a> for details.
+ * </p>
+ *
+ * @since 3.3
+ */
+public class KolmogorovSmirnovTest {
+
+ /**
+ * Bound on the number of partial sums in {@link #ksSum(double, double, int)}
+ */
+ protected static final int MAXIMUM_PARTIAL_SUM_COUNT = 100000;
+
+ /** Convergence criterion for {@link #ksSum(double, double, int)} */
+ protected static final double KS_SUM_CAUCHY_CRITERION = 1E-20;
+
+ /** Convergence criterion for the sums in #pelzGood(double, double, int)} */
+ protected static final double PG_SUM_RELATIVE_ERROR = 1.0e-10;
+
+ /** No longer used. */
+ @Deprecated
+ protected static final int SMALL_SAMPLE_PRODUCT = 200;
+
+ /**
+ * When product of sample sizes exceeds this value, 2-sample K-S test uses asymptotic
+ * distribution to compute the p-value.
+ */
+ protected static final int LARGE_SAMPLE_PRODUCT = 10000;
+
+ /** Default number of iterations used by {@link #monteCarloP(double, int, int, boolean, int)}.
+ * Deprecated as of version 3.6, as this method is no longer needed. */
+ @Deprecated
+ protected static final int MONTE_CARLO_ITERATIONS = 1000000;
+
+ /** Random data generator used by {@link #monteCarloP(double, int, int, boolean, int)} */
+ private final RandomGenerator rng;
+
+ /**
+ * Construct a KolmogorovSmirnovTest instance with a default random data generator.
+ */
+ public KolmogorovSmirnovTest() {
+ rng = new Well19937c();
+ }
+
+ /**
+ * Construct a KolmogorovSmirnovTest with the provided random data generator.
+ * The #monteCarloP(double, int, int, boolean, int) that uses the generator supplied to this
+ * constructor is deprecated as of version 3.6.
+ *
+ * @param rng random data generator used by {@link #monteCarloP(double, int, int, boolean, int)}
+ */
+ @Deprecated
+ public KolmogorovSmirnovTest(RandomGenerator rng) {
+ this.rng = rng;
+ }
+
+ /**
+ * Computes the <i>p-value</i>, or <i>observed significance level</i>, of a one-sample <a
+ * href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov test</a>
+ * evaluating the null hypothesis that {@code data} conforms to {@code distribution}. If
+ * {@code exact} is true, the distribution used to compute the p-value is computed using
+ * extended precision. See {@link #cdfExact(double, int)}.
+ *
+ * @param distribution reference distribution
+ * @param data sample being being evaluated
+ * @param exact whether or not to force exact computation of the p-value
+ * @return the p-value associated with the null hypothesis that {@code data} is a sample from
+ * {@code distribution}
+ * @throws InsufficientDataException if {@code data} does not have length at least 2
+ * @throws NullArgumentException if {@code data} is null
+ */
+ public double kolmogorovSmirnovTest(RealDistribution distribution, double[] data, boolean exact) {
+ return 1d - cdf(kolmogorovSmirnovStatistic(distribution, data), data.length, exact);
+ }
+
+ /**
+ * Computes the one-sample Kolmogorov-Smirnov test statistic, \(D_n=\sup_x |F_n(x)-F(x)|\) where
+ * \(F\) is the distribution (cdf) function associated with {@code distribution}, \(n\) is the
+ * length of {@code data} and \(F_n\) is the empirical distribution that puts mass \(1/n\) at
+ * each of the values in {@code data}.
+ *
+ * @param distribution reference distribution
+ * @param data sample being evaluated
+ * @return Kolmogorov-Smirnov statistic \(D_n\)
+ * @throws InsufficientDataException if {@code data} does not have length at least 2
+ * @throws NullArgumentException if {@code data} is null
+ */
+ public double kolmogorovSmirnovStatistic(RealDistribution distribution, double[] data) {
+ checkArray(data);
+ final int n = data.length;
+ final double nd = n;
+ final double[] dataCopy = new double[n];
+ System.arraycopy(data, 0, dataCopy, 0, n);
+ Arrays.sort(dataCopy);
+ double d = 0d;
+ for (int i = 1; i <= n; i++) {
+ final double yi = distribution.cumulativeProbability(dataCopy[i - 1]);
+ final double currD = FastMath.max(yi - (i - 1) / nd, i / nd - yi);
+ if (currD > d) {
+ d = currD;
+ }
+ }
+ return d;
+ }
+
+ /**
+ * Computes the <i>p-value</i>, or <i>observed significance level</i>, of a two-sample <a
+ * href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov test</a>
+ * evaluating the null hypothesis that {@code x} and {@code y} are samples drawn from the same
+ * probability distribution. Specifically, what is returned is an estimate of the probability
+ * that the {@link #kolmogorovSmirnovStatistic(double[], double[])} associated with a randomly
+ * selected partition of the combined sample into subsamples of sizes {@code x.length} and
+ * {@code y.length} will strictly exceed (if {@code strict} is {@code true}) or be at least as
+ * large as {@code strict = false}) as {@code kolmogorovSmirnovStatistic(x, y)}.
+ * <ul>
+ * <li>For small samples (where the product of the sample sizes is less than
+ * {@value #LARGE_SAMPLE_PRODUCT}), the exact p-value is computed using the method presented
+ * in [4], implemented in {@link #exactP(double, int, int, boolean)}. </li>
+ * <li>When the product of the sample sizes exceeds {@value #LARGE_SAMPLE_PRODUCT}, the
+ * asymptotic distribution of \(D_{n,m}\) is used. See {@link #approximateP(double, int, int)}
+ * for details on the approximation.</li>
+ * </ul><p>
+ * If {@code x.length * y.length} < {@value #LARGE_SAMPLE_PRODUCT} and the combined set of values in
+ * {@code x} and {@code y} contains ties, random jitter is added to {@code x} and {@code y} to
+ * break ties before computing \(D_{n,m}\) and the p-value. The jitter is uniformly distributed
+ * on (-minDelta / 2, minDelta / 2) where minDelta is the smallest pairwise difference between
+ * values in the combined sample.</p>
+ * <p>
+ * If ties are known to be present in the data, {@link #bootstrap(double[], double[], int, boolean)}
+ * may be used as an alternative method for estimating the p-value.</p>
+ *
+ * @param x first sample dataset
+ * @param y second sample dataset
+ * @param strict whether or not the probability to compute is expressed as a strict inequality
+ * (ignored for large samples)
+ * @return p-value associated with the null hypothesis that {@code x} and {@code y} represent
+ * samples from the same distribution
+ * @throws InsufficientDataException if either {@code x} or {@code y} does not have length at
+ * least 2
+ * @throws NullArgumentException if either {@code x} or {@code y} is null
+ * @see #bootstrap(double[], double[], int, boolean)
+ */
+ public double kolmogorovSmirnovTest(double[] x, double[] y, boolean strict) {
+ final long lengthProduct = (long) x.length * y.length;
+ double[] xa = null;
+ double[] ya = null;
+ if (lengthProduct < LARGE_SAMPLE_PRODUCT && hasTies(x,y)) {
+ xa = MathArrays.copyOf(x);
+ ya = MathArrays.copyOf(y);
+ fixTies(xa, ya);
+ } else {
+ xa = x;
+ ya = y;
+ }
+ if (lengthProduct < LARGE_SAMPLE_PRODUCT) {
+ return exactP(kolmogorovSmirnovStatistic(xa, ya), x.length, y.length, strict);
+ }
+ return approximateP(kolmogorovSmirnovStatistic(x, y), x.length, y.length);
+ }
+
+ /**
+ * Computes the <i>p-value</i>, or <i>observed significance level</i>, of a two-sample <a
+ * href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov test</a>
+ * evaluating the null hypothesis that {@code x} and {@code y} are samples drawn from the same
+ * probability distribution. Assumes the strict form of the inequality used to compute the
+ * p-value. See {@link #kolmogorovSmirnovTest(RealDistribution, double[], boolean)}.
+ *
+ * @param x first sample dataset
+ * @param y second sample dataset
+ * @return p-value associated with the null hypothesis that {@code x} and {@code y} represent
+ * samples from the same distribution
+ * @throws InsufficientDataException if either {@code x} or {@code y} does not have length at
+ * least 2
+ * @throws NullArgumentException if either {@code x} or {@code y} is null
+ */
+ public double kolmogorovSmirnovTest(double[] x, double[] y) {
+ return kolmogorovSmirnovTest(x, y, true);
+ }
+
+ /**
+ * Computes the two-sample Kolmogorov-Smirnov test statistic, \(D_{n,m}=\sup_x |F_n(x)-F_m(x)|\)
+ * where \(n\) is the length of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the
+ * empirical distribution that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\)
+ * is the empirical distribution of the {@code y} values.
+ *
+ * @param x first sample
+ * @param y second sample
+ * @return test statistic \(D_{n,m}\) used to evaluate the null hypothesis that {@code x} and
+ * {@code y} represent samples from the same underlying distribution
+ * @throws InsufficientDataException if either {@code x} or {@code y} does not have length at
+ * least 2
+ * @throws NullArgumentException if either {@code x} or {@code y} is null
+ */
+ public double kolmogorovSmirnovStatistic(double[] x, double[] y) {
+ return integralKolmogorovSmirnovStatistic(x, y)/((double)(x.length * (long)y.length));
+ }
+
+ /**
+ * Computes the two-sample Kolmogorov-Smirnov test statistic, \(D_{n,m}=\sup_x |F_n(x)-F_m(x)|\)
+ * where \(n\) is the length of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the
+ * empirical distribution that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\)
+ * is the empirical distribution of the {@code y} values. Finally \(n m D_{n,m}\) is returned
+ * as long value.
+ *
+ * @param x first sample
+ * @param y second sample
+ * @return test statistic \(n m D_{n,m}\) used to evaluate the null hypothesis that {@code x} and
+ * {@code y} represent samples from the same underlying distribution
+ * @throws InsufficientDataException if either {@code x} or {@code y} does not have length at
+ * least 2
+ * @throws NullArgumentException if either {@code x} or {@code y} is null
+ */
+ private long integralKolmogorovSmirnovStatistic(double[] x, double[] y) {
+ checkArray(x);
+ checkArray(y);
+ // Copy and sort the sample arrays
+ final double[] sx = MathArrays.copyOf(x);
+ final double[] sy = MathArrays.copyOf(y);
+ Arrays.sort(sx);
+ Arrays.sort(sy);
+ final int n = sx.length;
+ final int m = sy.length;
+
+ int rankX = 0;
+ int rankY = 0;
+ long curD = 0l;
+
+ // Find the max difference between cdf_x and cdf_y
+ long supD = 0l;
+ do {
+ double z = Double.compare(sx[rankX], sy[rankY]) <= 0 ? sx[rankX] : sy[rankY];
+ while(rankX < n && Double.compare(sx[rankX], z) == 0) {
+ rankX += 1;
+ curD += m;
+ }
+ while(rankY < m && Double.compare(sy[rankY], z) == 0) {
+ rankY += 1;
+ curD -= n;
+ }
+ if (curD > supD) {
+ supD = curD;
+ }
+ else if (-curD > supD) {
+ supD = -curD;
+ }
+ } while(rankX < n && rankY < m);
+ return supD;
+ }
+
+ /**
+ * Computes the <i>p-value</i>, or <i>observed significance level</i>, of a one-sample <a
+ * href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov test</a>
+ * evaluating the null hypothesis that {@code data} conforms to {@code distribution}.
+ *
+ * @param distribution reference distribution
+ * @param data sample being being evaluated
+ * @return the p-value associated with the null hypothesis that {@code data} is a sample from
+ * {@code distribution}
+ * @throws InsufficientDataException if {@code data} does not have length at least 2
+ * @throws NullArgumentException if {@code data} is null
+ */
+ public double kolmogorovSmirnovTest(RealDistribution distribution, double[] data) {
+ return kolmogorovSmirnovTest(distribution, data, false);
+ }
+
+ /**
+ * Performs a <a href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov
+ * test</a> evaluating the null hypothesis that {@code data} conforms to {@code distribution}.
+ *
+ * @param distribution reference distribution
+ * @param data sample being being evaluated
+ * @param alpha significance level of the test
+ * @return true iff the null hypothesis that {@code data} is a sample from {@code distribution}
+ * can be rejected with confidence 1 - {@code alpha}
+ * @throws InsufficientDataException if {@code data} does not have length at least 2
+ * @throws NullArgumentException if {@code data} is null
+ */
+ public boolean kolmogorovSmirnovTest(RealDistribution distribution, double[] data, double alpha) {
+ if ((alpha <= 0) || (alpha > 0.5)) {
+ throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5);
+ }
+ return kolmogorovSmirnovTest(distribution, data) < alpha;
+ }
+
+ /**
+ * Estimates the <i>p-value</i> of a two-sample
+ * <a href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test"> Kolmogorov-Smirnov test</a>
+ * evaluating the null hypothesis that {@code x} and {@code y} are samples drawn from the same
+ * probability distribution. This method estimates the p-value by repeatedly sampling sets of size
+ * {@code x.length} and {@code y.length} from the empirical distribution of the combined sample.
+ * When {@code strict} is true, this is equivalent to the algorithm implemented in the R function
+ * {@code ks.boot}, described in <pre>
+ * Jasjeet S. Sekhon. 2011. 'Multivariate and Propensity Score Matching
+ * Software with Automated Balance Optimization: The Matching package for R.'
+ * Journal of Statistical Software, 42(7): 1-52.
+ * </pre>
+ * @param x first sample
+ * @param y second sample
+ * @param iterations number of bootstrap resampling iterations
+ * @param strict whether or not the null hypothesis is expressed as a strict inequality
+ * @return estimated p-value
+ */
+ public double bootstrap(double[] x, double[] y, int iterations, boolean strict) {
+ final int xLength = x.length;
+ final int yLength = y.length;
+ final double[] combined = new double[xLength + yLength];
+ System.arraycopy(x, 0, combined, 0, xLength);
+ System.arraycopy(y, 0, combined, xLength, yLength);
+ final EnumeratedRealDistribution dist = new EnumeratedRealDistribution(rng, combined);
+ final long d = integralKolmogorovSmirnovStatistic(x, y);
+ int greaterCount = 0;
+ int equalCount = 0;
+ double[] curX;
+ double[] curY;
+ long curD;
+ for (int i = 0; i < iterations; i++) {
+ curX = dist.sample(xLength);
+ curY = dist.sample(yLength);
+ curD = integralKolmogorovSmirnovStatistic(curX, curY);
+ if (curD > d) {
+ greaterCount++;
+ } else if (curD == d) {
+ equalCount++;
+ }
+ }
+ return strict ? greaterCount / (double) iterations :
+ (greaterCount + equalCount) / (double) iterations;
+ }
+
+ /**
+ * Computes {@code bootstrap(x, y, iterations, true)}.
+ * This is equivalent to ks.boot(x,y, nboots=iterations) using the R Matching
+ * package function. See #bootstrap(double[], double[], int, boolean).
+ *
+ * @param x first sample
+ * @param y second sample
+ * @param iterations number of bootstrap resampling iterations
+ * @return estimated p-value
+ */
+ public double bootstrap(double[] x, double[] y, int iterations) {
+ return bootstrap(x, y, iterations, true);
+ }
+
+ /**
+ * Calculates \(P(D_n < d)\) using the method described in [1] with quick decisions for extreme
+ * values given in [2] (see above). The result is not exact as with
+ * {@link #cdfExact(double, int)} because calculations are based on
+ * {@code double} rather than {@link org.apache.commons.math3.fraction.BigFraction}.
+ *
+ * @param d statistic
+ * @param n sample size
+ * @return \(P(D_n < d)\)
+ * @throws MathArithmeticException if algorithm fails to convert {@code h} to a
+ * {@link org.apache.commons.math3.fraction.BigFraction} in expressing {@code d} as \((k
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
+ */
+ public double cdf(double d, int n)
+ throws MathArithmeticException {
+ return cdf(d, n, false);
+ }
+
+ /**
+ * Calculates {@code P(D_n < d)}. The result is exact in the sense that BigFraction/BigReal is
+ * used everywhere at the expense of very slow execution time. Almost never choose this in real
+ * applications unless you are very sure; this is almost solely for verification purposes.
+ * Normally, you would choose {@link #cdf(double, int)}. See the class
+ * javadoc for definitions and algorithm description.
+ *
+ * @param d statistic
+ * @param n sample size
+ * @return \(P(D_n < d)\)
+ * @throws MathArithmeticException if the algorithm fails to convert {@code h} to a
+ * {@link org.apache.commons.math3.fraction.BigFraction} in expressing {@code d} as \((k
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
+ */
+ public double cdfExact(double d, int n)
+ throws MathArithmeticException {
+ return cdf(d, n, true);
+ }
+
+ /**
+ * Calculates {@code P(D_n < d)} using method described in [1] with quick decisions for extreme
+ * values given in [2] (see above).
+ *
+ * @param d statistic
+ * @param n sample size
+ * @param exact whether the probability should be calculated exact using
+ * {@link org.apache.commons.math3.fraction.BigFraction} everywhere at the expense of
+ * very slow execution time, or if {@code double} should be used convenient places to
+ * gain speed. Almost never choose {@code true} in real applications unless you are very
+ * sure; {@code true} is almost solely for verification purposes.
+ * @return \(P(D_n < d)\)
+ * @throws MathArithmeticException if algorithm fails to convert {@code h} to a
+ * {@link org.apache.commons.math3.fraction.BigFraction} in expressing {@code d} as \((k
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
+ */
+ public double cdf(double d, int n, boolean exact)
+ throws MathArithmeticException {
+
+ final double ninv = 1 / ((double) n);
+ final double ninvhalf = 0.5 * ninv;
+
+ if (d <= ninvhalf) {
+ return 0;
+ } else if (ninvhalf < d && d <= ninv) {
+ double res = 1;
+ final double f = 2 * d - ninv;
+ // n! f^n = n*f * (n-1)*f * ... * 1*x
+ for (int i = 1; i <= n; ++i) {
+ res *= i * f;
+ }
+ return res;
+ } else if (1 - ninv <= d && d < 1) {
+ return 1 - 2 * Math.pow(1 - d, n);
+ } else if (1 <= d) {
+ return 1;
+ }
+ if (exact) {
+ return exactK(d, n);
+ }
+ if (n <= 140) {
+ return roundedK(d, n);
+ }
+ return pelzGood(d, n);
+ }
+
+ /**
+ * Calculates the exact value of {@code P(D_n < d)} using the method described in [1] (reference
+ * in class javadoc above) and {@link org.apache.commons.math3.fraction.BigFraction} (see
+ * above).
+ *
+ * @param d statistic
+ * @param n sample size
+ * @return the two-sided probability of \(P(D_n < d)\)
+ * @throws MathArithmeticException if algorithm fails to convert {@code h} to a
+ * {@link org.apache.commons.math3.fraction.BigFraction} in expressing {@code d} as \((k
+ * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
+ */
+ private double exactK(double d, int n)
+ throws MathArithmeticException {
+
+ final int k = (int) Math.ceil(n * d);
+
+ final FieldMatrix<BigFraction> H = this.createExactH(d, n);
+ final FieldMatrix<BigFraction> Hpower = H.power(n);
+
+ BigFraction pFrac = Hpower.getEntry(k - 1, k - 1);
+
+ for (int i = 1; i <= n; ++i) {
+ pFrac = pFrac.multiply(i).divide(n);
+ }
+
+ /*
+ * BigFraction.doubleValue converts numerator to double and the denominator to double and
+ * divides afterwards. That gives NaN quite easy. This does not (scale is the number of
+ * digits):
+ */
+ return pFrac.bigDecimalValue(20, BigDecimal.ROUND_HALF_UP).doubleValue();
+ }
+
+ /**
+ * Calculates {@code P(D_n < d)} using method described in [1] and doubles (see above).
+ *
+ * @param d statistic
+ * @param n sample size
+ * @return \(P(D_n < d)\)
+ */
+ private double roundedK(double d, int n) {
+
+ final int k = (int) Math.ceil(n * d);
+ final RealMatrix H = this.createRoundedH(d, n);
+ final RealMatrix Hpower = H.power(n);
+
+ double pFrac = Hpower.getEntry(k - 1, k - 1);
+ for (int i = 1; i <= n; ++i) {
+ pFrac *= (double) i / (double) n;
+ }
+
+ return pFrac;
+ }
+
+ /**
+ * Computes the Pelz-Good approximation for \(P(D_n < d)\) as described in [2] in the class javadoc.
+ *
+ * @param d value of d-statistic (x in [2])
+ * @param n sample size
+ * @return \(P(D_n < d)\)
+ * @since 3.4
+ */
+ public double pelzGood(double d, int n) {
+ // Change the variable since approximation is for the distribution evaluated at d / sqrt(n)
+ final double sqrtN = FastMath.sqrt(n);
+ final double z = d * sqrtN;
+ final double z2 = d * d * n;
+ final double z4 = z2 * z2;
+ final double z6 = z4 * z2;
+ final double z8 = z4 * z4;
+
+ // Eventual return value
+ double ret = 0;
+
+ // Compute K_0(z)
+ double sum = 0;
+ double increment = 0;
+ double kTerm = 0;
+ double z2Term = MathUtils.PI_SQUARED / (8 * z2);
+ int k = 1;
+ for (; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) {
+ kTerm = 2 * k - 1;
+ increment = FastMath.exp(-z2Term * kTerm * kTerm);
+ sum += increment;
+ if (increment <= PG_SUM_RELATIVE_ERROR * sum) {
+ break;
+ }
+ }
+ if (k == MAXIMUM_PARTIAL_SUM_COUNT) {
+ throw new TooManyIterationsException(MAXIMUM_PARTIAL_SUM_COUNT);
+ }
+ ret = sum * FastMath.sqrt(2 * FastMath.PI) / z;
+
+ // K_1(z)
+ // Sum is -inf to inf, but k term is always (k + 1/2) ^ 2, so really have
+ // twice the sum from k = 0 to inf (k = -1 is same as 0, -2 same as 1, ...)
+ final double twoZ2 = 2 * z2;
+ sum = 0;
+ kTerm = 0;
+ double kTerm2 = 0;
+ for (k = 0; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) {
+ kTerm = k + 0.5;
+ kTerm2 = kTerm * kTerm;
+ increment = (MathUtils.PI_SQUARED * kTerm2 - z2) * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2);
+ sum += increment;
+ if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum)) {
+ break;
+ }
+ }
+ if (k == MAXIMUM_PARTIAL_SUM_COUNT) {
+ throw new TooManyIterationsException(MAXIMUM_PARTIAL_SUM_COUNT);
+ }
+ final double sqrtHalfPi = FastMath.sqrt(FastMath.PI / 2);
+ // Instead of doubling sum, divide by 3 instead of 6
+ ret += sum * sqrtHalfPi / (3 * z4 * sqrtN);
+
+ // K_2(z)
+ // Same drill as K_1, but with two doubly infinite sums, all k terms are even powers.
+ final double z4Term = 2 * z4;
+ final double z6Term = 6 * z6;
+ z2Term = 5 * z2;
+ final double pi4 = MathUtils.PI_SQUARED * MathUtils.PI_SQUARED;
+ sum = 0;
+ kTerm = 0;
+ kTerm2 = 0;
+ for (k = 0; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) {
+ kTerm = k + 0.5;
+ kTerm2 = kTerm * kTerm;
+ increment = (z6Term + z4Term + MathUtils.PI_SQUARED * (z4Term - z2Term) * kTerm2 +
+ pi4 * (1 - twoZ2) * kTerm2 * kTerm2) * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2);
+ sum += increment;
+ if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum)) {
+ break;
+ }
+ }
+ if (k == MAXIMUM_PARTIAL_SUM_COUNT) {
+ throw new TooManyIterationsException(MAXIMUM_PARTIAL_SUM_COUNT);
+ }
+ double sum2 = 0;
+ kTerm2 = 0;
+ for (k = 1; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) {
+ kTerm2 = k * k;
+ increment = MathUtils.PI_SQUARED * kTerm2 * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2);
+ sum2 += increment;
+ if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum2)) {
+ break;
+ }
+ }
+ if (k == MAXIMUM_PARTIAL_SUM_COUNT) {
+ throw new TooManyIterationsException(MAXIMUM_PARTIAL_SUM_COUNT);
+ }
+ // Again, adjust coefficients instead of doubling sum, sum2
+ ret += (sqrtHalfPi / n) * (sum / (36 * z2 * z2 * z2 * z) - sum2 / (18 * z2 * z));
+
+ // K_3(z) One more time with feeling - two doubly infinite sums, all k powers even.
+ // Multiply coefficient denominators by 2, so omit doubling sums.
+ final double pi6 = pi4 * MathUtils.PI_SQUARED;
+ sum = 0;
+ double kTerm4 = 0;
+ double kTerm6 = 0;
+ for (k = 0; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) {
+ kTerm = k + 0.5;
+ kTerm2 = kTerm * kTerm;
+ kTerm4 = kTerm2 * kTerm2;
+ kTerm6 = kTerm4 * kTerm2;
+ increment = (pi6 * kTerm6 * (5 - 30 * z2) + pi4 * kTerm4 * (-60 * z2 + 212 * z4) +
+ MathUtils.PI_SQUARED * kTerm2 * (135 * z4 - 96 * z6) - 30 * z6 - 90 * z8) *
+ FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2);
+ sum += increment;
+ if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum)) {
+ break;
+ }
+ }
+ if (k == MAXIMUM_PARTIAL_SUM_COUNT) {
+ throw new TooManyIterationsException(MAXIMUM_PARTIAL_SUM_COUNT);
+ }
+ sum2 = 0;
+ for (k = 1; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) {
+ kTerm2 = k * k;
+ kTerm4 = kTerm2 * kTerm2;
+ increment = (-pi4 * kTerm4 + 3 * MathUtils.PI_SQUARED * kTerm2 * z2) *
+ FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2);
+ sum2 += increment;
+ if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum2)) {
+ break;
+ }
+ }
+ if (k == MAXIMUM_PARTIAL_SUM_COUNT) {
+ throw new TooManyIterationsException(MAXIMUM_PARTIAL_SUM_COUNT);
+ }
+ return ret + (sqrtHalfPi / (sqrtN * n)) * (sum / (3240 * z6 * z4) +
+ + sum2 / (108 * z6));
+
+ }
+
+ /***
+ * Creates {@code H} of size {@code m x m} as described in [1] (see above).
+ *
+ * @param d statistic
+ * @param n sample size
+ * @return H matrix
+ * @throws NumberIsTooLargeException if fractional part is greater than 1
+ * @throws FractionConversionException if algorithm fails to convert {@code h} to a
+ * {@link org.apache.commons.math3.fraction.BigFraction} in expressing {@code d} as \((k
+ * - h) / m\) for integer {@code k, m} and \(0 <= h < 1\).
+ */
+ private FieldMatrix<BigFraction> createExactH(double d, int n)
+ throws NumberIsTooLargeException, FractionConversionException {
+
+ final int k = (int) Math.ceil(n * d);
+ final int m = 2 * k - 1;
+ final double hDouble = k - n * d;
+ if (hDouble >= 1) {
+ throw new NumberIsTooLargeException(hDouble, 1.0, false);
+ }
+ BigFraction h = null;
+ try {
+ h = new BigFraction(hDouble, 1.0e-20, 10000);
+ } catch (final FractionConversionException e1) {
+ try {
+ h = new BigFraction(hDouble, 1.0e-10, 10000);
+ } catch (final FractionConversionException e2) {
+ h = new BigFraction(hDouble, 1.0e-5, 10000);
+ }
+ }
+ final BigFraction[][] Hdata = new BigFraction[m][m];
+
+ /*
+ * Start by filling everything with either 0 or 1.
+ */
+ for (int i = 0; i < m; ++i) {
+ for (int j = 0; j < m; ++j) {
+ if (i - j + 1 < 0) {
+ Hdata[i][j] = BigFraction.ZERO;
+ } else {
+ Hdata[i][j] = BigFraction.ONE;
+ }
+ }
+ }
+
+ /*
+ * Setting up power-array to avoid calculating the same value twice: hPowers[0] = h^1 ...
+ * hPowers[m-1] = h^m
+ */
+ final BigFraction[] hPowers = new BigFraction[m];
+ hPowers[0] = h;
+ for (int i = 1; i < m; ++i) {
+ hPowers[i] = h.multiply(hPowers[i - 1]);
+ }
+
+ /*
+ * First column and last row has special values (each other reversed).
+ */
+ for (int i = 0; i < m; ++i) {
+ Hdata[i][0] = Hdata[i][0].subtract(hPowers[i]);
+ Hdata[m - 1][i] = Hdata[m - 1][i].subtract(hPowers[m - i - 1]);
+ }
+
+ /*
+ * [1] states: "For 1/2 < h < 1 the bottom left element of the matrix should be (1 - 2*h^m +
+ * (2h - 1)^m )/m!" Since 0 <= h < 1, then if h > 1/2 is sufficient to check:
+ */
+ if (h.compareTo(BigFraction.ONE_HALF) == 1) {
+ Hdata[m - 1][0] = Hdata[m - 1][0].add(h.multiply(2).subtract(1).pow(m));
+ }
+
+ /*
+ * Aside from the first column and last row, the (i, j)-th element is 1/(i - j + 1)! if i -
+ * j + 1 >= 0, else 0. 1's and 0's are already put, so only division with (i - j + 1)! is
+ * needed in the elements that have 1's. There is no need to calculate (i - j + 1)! and then
+ * divide - small steps avoid overflows. Note that i - j + 1 > 0 <=> i + 1 > j instead of
+ * j'ing all the way to m. Also note that it is started at g = 2 because dividing by 1 isn't
+ * really necessary.
+ */
+ for (int i = 0; i < m; ++i) {
+ for (int j = 0; j < i + 1; ++j) {
+ if (i - j + 1 > 0) {
+ for (int g = 2; g <= i - j + 1; ++g) {
+ Hdata[i][j] = Hdata[i][j].divide(g);
+ }
+ }
+ }
+ }
+ return new Array2DRowFieldMatrix<BigFraction>(BigFractionField.getInstance(), Hdata);
+ }
+
+ /***
+ * Creates {@code H} of size {@code m x m} as described in [1] (see above)
+ * using double-precision.
+ *
+ * @param d statistic
+ * @param n sample size
+ * @return H matrix
+ * @throws NumberIsTooLargeException if fractional part is greater than 1
+ */
+ private RealMatrix createRoundedH(double d, int n)
+ throws NumberIsTooLargeException {
+
+ final int k = (int) Math.ceil(n * d);
+ final int m = 2 * k - 1;
+ final double h = k - n * d;
+ if (h >= 1) {
+ throw new NumberIsTooLargeException(h, 1.0, false);
+ }
+ final double[][] Hdata = new double[m][m];
+
+ /*
+ * Start by filling everything with either 0 or 1.
+ */
+ for (int i = 0; i < m; ++i) {
+ for (int j = 0; j < m; ++j) {
+ if (i - j + 1 < 0) {
+ Hdata[i][j] = 0;
+ } else {
+ Hdata[i][j] = 1;
+ }
+ }
+ }
+
+ /*
+ * Setting up power-array to avoid calculating the same value twice: hPowers[0] = h^1 ...
+ * hPowers[m-1] = h^m
+ */
+ final double[] hPowers = new double[m];
+ hPowers[0] = h;
+ for (int i = 1; i < m; ++i) {
+ hPowers[i] = h * hPowers[i - 1];
+ }
+
+ /*
+ * First column and last row has special values (each other reversed).
+ */
+ for (int i = 0; i < m; ++i) {
+ Hdata[i][0] = Hdata[i][0] - hPowers[i];
+ Hdata[m - 1][i] -= hPowers[m - i - 1];
+ }
+
+ /*
+ * [1] states: "For 1/2 < h < 1 the bottom left element of the matrix should be (1 - 2*h^m +
+ * (2h - 1)^m )/m!" Since 0 <= h < 1, then if h > 1/2 is sufficient to check:
+ */
+ if (Double.compare(h, 0.5) > 0) {
+ Hdata[m - 1][0] += FastMath.pow(2 * h - 1, m);
+ }
+
+ /*
+ * Aside from the first column and last row, the (i, j)-th element is 1/(i - j + 1)! if i -
+ * j + 1 >= 0, else 0. 1's and 0's are already put, so only division with (i - j + 1)! is
+ * needed in the elements that have 1's. There is no need to calculate (i - j + 1)! and then
+ * divide - small steps avoid overflows. Note that i - j + 1 > 0 <=> i + 1 > j instead of
+ * j'ing all the way to m. Also note that it is started at g = 2 because dividing by 1 isn't
+ * really necessary.
+ */
+ for (int i = 0; i < m; ++i) {
+ for (int j = 0; j < i + 1; ++j) {
+ if (i - j + 1 > 0) {
+ for (int g = 2; g <= i - j + 1; ++g) {
+ Hdata[i][j] /= g;
+ }
+ }
+ }
+ }
+ return MatrixUtils.createRealMatrix(Hdata);
+ }
+
+ /**
+ * Verifies that {@code array} has length at least 2.
+ *
+ * @param array array to test
+ * @throws NullArgumentException if array is null
+ * @throws InsufficientDataException if array is too short
+ */
+ private void checkArray(double[] array) {
+ if (array == null) {
+ throw new NullArgumentException(LocalizedFormats.NULL_NOT_ALLOWED);
+ }
+ if (array.length < 2) {
+ throw new InsufficientDataException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, array.length,
+ 2);
+ }
+ }
+
+ /**
+ * Computes \( 1 + 2 \sum_{i=1}^\infty (-1)^i e^{-2 i^2 t^2} \) stopping when successive partial
+ * sums are within {@code tolerance} of one another, or when {@code maxIterations} partial sums
+ * have been computed. If the sum does not converge before {@code maxIterations} iterations a
+ * {@link TooManyIterationsException} is thrown.
+ *
+ * @param t argument
+ * @param tolerance Cauchy criterion for partial sums
+ * @param maxIterations maximum number of partial sums to compute
+ * @return Kolmogorov sum evaluated at t
+ * @throws TooManyIterationsException if the series does not converge
+ */
+ public double ksSum(double t, double tolerance, int maxIterations) {
+ if (t == 0.0) {
+ return 0.0;
+ }
+
+ // TODO: for small t (say less than 1), the alternative expansion in part 3 of [1]
+ // from class javadoc should be used.
+
+ final double x = -2 * t * t;
+ int sign = -1;
+ long i = 1;
+ double partialSum = 0.5d;
+ double delta = 1;
+ while (delta > tolerance && i < maxIterations) {
+ delta = FastMath.exp(x * i * i);
+ partialSum += sign * delta;
+ sign *= -1;
+ i++;
+ }
+ if (i == maxIterations) {
+ throw new TooManyIterationsException(maxIterations);
+ }
+ return partialSum * 2;
+ }
+
+ /**
+ * Given a d-statistic in the range [0, 1] and the two sample sizes n and m,
+ * an integral d-statistic in the range [0, n*m] is calculated, that can be used for
+ * comparison with other integral d-statistics. Depending whether {@code strict} is
+ * {@code true} or not, the returned value divided by (n*m) is greater than
+ * (resp greater than or equal to) the given d value (allowing some tolerance).
+ *
+ * @param d a d-statistic in the range [0, 1]
+ * @param n first sample size
+ * @param m second sample size
+ * @param strict whether the returned value divided by (n*m) is allowed to be equal to d
+ * @return the integral d-statistic in the range [0, n*m]
+ */
+ private static long calculateIntegralD(double d, int n, int m, boolean strict) {
+ final double tol = 1e-12; // d-values within tol of one another are considered equal
+ long nm = n * (long)m;
+ long upperBound = (long)FastMath.ceil((d - tol) * nm);
+ long lowerBound = (long)FastMath.floor((d + tol) * nm);
+ if (strict && lowerBound == upperBound) {
+ return upperBound + 1l;
+ }
+ else {
+ return upperBound;
+ }
+ }
+
+ /**
+ * Computes \(P(D_{n,m} > d)\) if {@code strict} is {@code true}; otherwise \(P(D_{n,m} \ge
+ * d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic. See
+ * {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\).
+ * <p>
+ * The returned probability is exact, implemented by unwinding the recursive function
+ * definitions presented in [4] (class javadoc).
+ * </p>
+ *
+ * @param d D-statistic value
+ * @param n first sample size
+ * @param m second sample size
+ * @param strict whether or not the probability to compute is expressed as a strict inequality
+ * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
+ * greater than (resp. greater than or equal to) {@code d}
+ */
+ public double exactP(double d, int n, int m, boolean strict) {
+ return 1 - n(m, n, m, n, calculateIntegralD(d, m, n, strict), strict) /
+ CombinatoricsUtils.binomialCoefficientDouble(n + m, m);
+ }
+
+ /**
+ * Uses the Kolmogorov-Smirnov distribution to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\)
+ * is the 2-sample Kolmogorov-Smirnov statistic. See
+ * {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\).
+ * <p>
+ * Specifically, what is returned is \(1 - k(d \sqrt{mn / (m + n)})\) where \(k(t) = 1 + 2
+ * \sum_{i=1}^\infty (-1)^i e^{-2 i^2 t^2}\). See {@link #ksSum(double, double, int)} for
+ * details on how convergence of the sum is determined. This implementation passes {@code ksSum}
+ * {@value #KS_SUM_CAUCHY_CRITERION} as {@code tolerance} and
+ * {@value #MAXIMUM_PARTIAL_SUM_COUNT} as {@code maxIterations}.
+ * </p>
+ *
+ * @param d D-statistic value
+ * @param n first sample size
+ * @param m second sample size
+ * @return approximate probability that a randomly selected m-n partition of m + n generates
+ * \(D_{n,m}\) greater than {@code d}
+ */
+ public double approximateP(double d, int n, int m) {
+ final double dm = m;
+ final double dn = n;
+ return 1 - ksSum(d * FastMath.sqrt((dm * dn) / (dm + dn)),
+ KS_SUM_CAUCHY_CRITERION, MAXIMUM_PARTIAL_SUM_COUNT);
+ }
+
+ /**
+ * Fills a boolean array randomly with a fixed number of {@code true} values.
+ * The method uses a simplified version of the Fisher-Yates shuffle algorithm.
+ * By processing first the {@code true} values followed by the remaining {@code false} values
+ * less random numbers need to be generated. The method is optimized for the case
+ * that the number of {@code true} values is larger than or equal to the number of
+ * {@code false} values.
+ *
+ * @param b boolean array
+ * @param numberOfTrueValues number of {@code true} values the boolean array should finally have
+ * @param rng random data generator
+ */
+ static void fillBooleanArrayRandomlyWithFixedNumberTrueValues(final boolean[] b, final int numberOfTrueValues, final RandomGenerator rng) {
+ Arrays.fill(b, true);
+ for (int k = numberOfTrueValues; k < b.length; k++) {
+ final int r = rng.nextInt(k + 1);
+ b[(b[r]) ? r : k] = false;
+ }
+ }
+
+ /**
+ * Uses Monte Carlo simulation to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\) is the
+ * 2-sample Kolmogorov-Smirnov statistic. See
+ * {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\).
+ * <p>
+ * The simulation generates {@code iterations} random partitions of {@code m + n} into an
+ * {@code n} set and an {@code m} set, computing \(D_{n,m}\) for each partition and returning
+ * the proportion of values that are greater than {@code d}, or greater than or equal to
+ * {@code d} if {@code strict} is {@code false}.
+ * </p>
+ *
+ * @param d D-statistic value
+ * @param n first sample size
+ * @param m second sample size
+ * @param iterations number of random partitions to generate
+ * @param strict whether or not the probability to compute is expressed as a strict inequality
+ * @return proportion of randomly generated m-n partitions of m + n that result in \(D_{n,m}\)
+ * greater than (resp. greater than or equal to) {@code d}
+ */
+ public double monteCarloP(final double d, final int n, final int m, final boolean strict,
+ final int iterations) {
+ return integralMonteCarloP(calculateIntegralD(d, n, m, strict), n, m, iterations);
+ }
+
+ /**
+ * Uses Monte Carlo simulation to approximate \(P(D_{n,m} >= d/(n*m))\) where \(D_{n,m}\) is the
+ * 2-sample Kolmogorov-Smirnov statistic.
+ * <p>
+ * Here d is the D-statistic represented as long value.
+ * The real D-statistic is obtained by dividing d by n*m.
+ * See also {@link #monteCarloP(double, int, int, boolean, int)}.
+ *
+ * @param d integral D-statistic
+ * @param n first sample size
+ * @param m second sample size
+ * @param iterations number of random partitions to generate
+ * @return proportion of randomly generated m-n partitions of m + n that result in \(D_{n,m}\)
+ * greater than or equal to {@code d/(n*m))}
+ */
+ private double integralMonteCarloP(final long d, final int n, final int m, final int iterations) {
+
+ // ensure that nn is always the max of (n, m) to require fewer random numbers
+ final int nn = FastMath.max(n, m);
+ final int mm = FastMath.min(n, m);
+ final int sum = nn + mm;
+
+ int tail = 0;
+ final boolean b[] = new boolean[sum];
+ for (int i = 0; i < iterations; i++) {
+ fillBooleanArrayRandomlyWithFixedNumberTrueValues(b, nn, rng);
+ long curD = 0l;
+ for(int j = 0; j < b.length; ++j) {
+ if (b[j]) {
+ curD += mm;
+ if (curD >= d) {
+ tail++;
+ break;
+ }
+ } else {
+ curD -= nn;
+ if (curD <= -d) {
+ tail++;
+ break;
+ }
+ }
+ }
+ }
+ return (double) tail / iterations;
+ }
+
+ /**
+ * If there are no ties in the combined dataset formed from x and y, this
+ * method is a no-op. If there are ties, a uniform random deviate in
+ * (-minDelta / 2, minDelta / 2) - {0} is added to each value in x and y, where
+ * minDelta is the minimum difference between unequal values in the combined
+ * sample. A fixed seed is used to generate the jitter, so repeated activations
+ * with the same input arrays result in the same values.
+ *
+ * NOTE: if there are ties in the data, this method overwrites the data in
+ * x and y with the jittered values.
+ *
+ * @param x first sample
+ * @param y second sample
+ */
+ private static void fixTies(double[] x, double[] y) {
+ final double[] values = MathArrays.unique(MathArrays.concatenate(x,y));
+ if (values.length == x.length + y.length) {
+ return; // There are no ties
+ }
+
+ // Find the smallest difference between values, or 1 if all values are the same
+ double minDelta = 1;
+ double prev = values[0];
+ double delta = 1;
+ for (int i = 1; i < values.length; i++) {
+ delta = prev - values[i];
+ if (delta < minDelta) {
+ minDelta = delta;
+ }
+ prev = values[i];
+ }
+ minDelta /= 2;
+
+ // Add jitter using a fixed seed (so same arguments always give same results),
+ // low-initialization-overhead generator
+ final RealDistribution dist =
+ new UniformRealDistribution(new JDKRandomGenerator(100), -minDelta, minDelta);
+
+ // It is theoretically possible that jitter does not break ties, so repeat
+ // until all ties are gone. Bound the loop and throw MIE if bound is exceeded.
+ int ct = 0;
+ boolean ties = true;
+ do {
+ jitter(x, dist);
+ jitter(y, dist);
+ ties = hasTies(x, y);
+ ct++;
+ } while (ties && ct < 1000);
+ if (ties) {
+ throw new MathInternalError(); // Should never happen
+ }
+ }
+
+ /**
+ * Returns true iff there are ties in the combined sample
+ * formed from x and y.
+ *
+ * @param x first sample
+ * @param y second sample
+ * @return true if x and y together contain ties
+ */
+ private static boolean hasTies(double[] x, double[] y) {
+ final HashSet<Double> values = new HashSet<Double>();
+ for (int i = 0; i < x.length; i++) {
+ if (!values.add(x[i])) {
+ return true;
+ }
+ }
+ for (int i = 0; i < y.length; i++) {
+ if (!values.add(y[i])) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Adds random jitter to {@code data} using deviates sampled from {@code dist}.
+ * <p>
+ * Note that jitter is applied in-place - i.e., the array
+ * values are overwritten with the result of applying jitter.</p>
+ *
+ * @param data input/output data array - entries overwritten by the method
+ * @param dist probability distribution to sample for jitter values
+ * @throws NullPointerException if either of the parameters is null
+ */
+ private static void jitter(double[] data, RealDistribution dist) {
+ for (int i = 0; i < data.length; i++) {
+ data[i] += dist.sample();
+ }
+ }
+
+ /**
+ * The function C(i, j) defined in [4] (class javadoc), formula (5.5).
+ * defined to return 1 if |i/n - j/m| <= c; 0 otherwise. Here c is scaled up
+ * and recoded as a long to avoid rounding errors in comparison tests, so what
+ * is actually tested is |im - jn| <= cmn.
+ *
+ * @param i first path parameter
+ * @param j second path paramter
+ * @param m first sample size
+ * @param n second sample size
+ * @param cmn integral D-statistic (see {@link #calculateIntegralD(double, int, int, boolean)})
+ * @param strict whether or not the null hypothesis uses strict inequality
+ * @return C(i,j) for given m, n, c
+ */
+ private static int c(int i, int j, int m, int n, long cmn, boolean strict) {
+ if (strict) {
+ return FastMath.abs(i*(long)n - j*(long)m) <= cmn ? 1 : 0;
+ }
+ return FastMath.abs(i*(long)n - j*(long)m) < cmn ? 1 : 0;
+ }
+
+ /**
+ * The function N(i, j) defined in [4] (class javadoc).
+ * Returns the number of paths over the lattice {(i,j) : 0 <= i <= n, 0 <= j <= m}
+ * from (0,0) to (i,j) satisfying C(h,k, m, n, c) = 1 for each (h,k) on the path.
+ * The return value is integral, but subject to overflow, so it is maintained and
+ * returned as a double.
+ *
+ * @param i first path parameter
+ * @param j second path parameter
+ * @param m first sample size
+ * @param n second sample size
+ * @param cnm integral D-statistic (see {@link #calculateIntegralD(double, int, int, boolean)})
+ * @param strict whether or not the null hypothesis uses strict inequality
+ * @return number or paths to (i, j) from (0,0) representing D-values as large as c for given m, n
+ */
+ private static double n(int i, int j, int m, int n, long cnm, boolean strict) {
+ /*
+ * Unwind the recursive definition given in [4].
+ * Compute n(1,1), n(1,2)...n(2,1), n(2,2)... up to n(i,j), one row at a time.
+ * When n(i,*) are being computed, lag[] holds the values of n(i - 1, *).
+ */
+ final double[] lag = new double[n];
+ double last = 0;
+ for (int k = 0; k < n; k++) {
+ lag[k] = c(0, k + 1, m, n, cnm, strict);
+ }
+ for (int k = 1; k <= i; k++) {
+ last = c(k, 0, m, n, cnm, strict);
+ for (int l = 1; l <= j; l++) {
+ lag[l - 1] = c(k, l, m, n, cnm, strict) * (last + lag[l - 1]);
+ last = lag[l - 1];
+ }
+ }
+ return last;
+ }
+}