summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/transform/FastCosineTransformer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/transform/FastCosineTransformer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/transform/FastCosineTransformer.java177
1 files changed, 177 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/transform/FastCosineTransformer.java b/src/main/java/org/apache/commons/math3/transform/FastCosineTransformer.java
new file mode 100644
index 0000000..1e73187
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/transform/FastCosineTransformer.java
@@ -0,0 +1,177 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.transform;
+
+import org.apache.commons.math3.analysis.FunctionUtils;
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.complex.Complex;
+import org.apache.commons.math3.exception.MathIllegalArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.util.ArithmeticUtils;
+import org.apache.commons.math3.util.FastMath;
+
+import java.io.Serializable;
+
+/**
+ * Implements the Fast Cosine Transform for transformation of one-dimensional real data sets. For
+ * reference, see James S. Walker, <em>Fast Fourier Transforms</em>, chapter 3 (ISBN 0849371635).
+ *
+ * <p>There are several variants of the discrete cosine transform. The present implementation
+ * corresponds to DCT-I, with various normalization conventions, which are specified by the
+ * parameter {@link DctNormalization}.
+ *
+ * <p>DCT-I is equivalent to DFT of an <em>even extension</em> of the data series. More precisely,
+ * if x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is the data set to be cosine transformed, the
+ * extended data set x<sub>0</sub><sup>&#35;</sup>, &hellip;, x<sub>2N-3</sub><sup>&#35;</sup> is
+ * defined as follows
+ *
+ * <ul>
+ * <li>x<sub>k</sub><sup>&#35;</sup> = x<sub>k</sub> if 0 &le; k &lt; N,
+ * <li>x<sub>k</sub><sup>&#35;</sup> = x<sub>2N-2-k</sub> if N &le; k &lt; 2N - 2.
+ * </ul>
+ *
+ * <p>Then, the standard DCT-I y<sub>0</sub>, &hellip;, y<sub>N-1</sub> of the real data set
+ * x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is equal to <em>half</em> of the N first elements of the
+ * DFT of the extended data set x<sub>0</sub><sup>&#35;</sup>, &hellip;,
+ * x<sub>2N-3</sub><sup>&#35;</sup> <br>
+ * y<sub>n</sub> = (1 / 2) &sum;<sub>k=0</sub><sup>2N-3</sup> x<sub>k</sub><sup>&#35;</sup>
+ * exp[-2&pi;i nk / (2N - 2)] &nbsp;&nbsp;&nbsp;&nbsp;k = 0, &hellip;, N-1.
+ *
+ * <p>The present implementation of the discrete cosine transform as a fast cosine transform
+ * requires the length of the data set to be a power of two plus one
+ * (N&nbsp;=&nbsp;2<sup>n</sup>&nbsp;+&nbsp;1). Besides, it implicitly assumes that the sampled
+ * function is even.
+ *
+ * @since 1.2
+ */
+public class FastCosineTransformer implements RealTransformer, Serializable {
+
+ /** Serializable version identifier. */
+ static final long serialVersionUID = 20120212L;
+
+ /** The type of DCT to be performed. */
+ private final DctNormalization normalization;
+
+ /**
+ * Creates a new instance of this class, with various normalization conventions.
+ *
+ * @param normalization the type of normalization to be applied to the transformed data
+ */
+ public FastCosineTransformer(final DctNormalization normalization) {
+ this.normalization = normalization;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @throws MathIllegalArgumentException if the length of the data array is not a power of two
+ * plus one
+ */
+ public double[] transform(final double[] f, final TransformType type)
+ throws MathIllegalArgumentException {
+ if (type == TransformType.FORWARD) {
+ if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
+ final double s = FastMath.sqrt(2.0 / (f.length - 1));
+ return TransformUtils.scaleArray(fct(f), s);
+ }
+ return fct(f);
+ }
+ final double s2 = 2.0 / (f.length - 1);
+ final double s1;
+ if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
+ s1 = FastMath.sqrt(s2);
+ } else {
+ s1 = s2;
+ }
+ return TransformUtils.scaleArray(fct(f), s1);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException if the lower bound
+ * is greater than, or equal to the upper bound
+ * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException if the number of
+ * sample points is negative
+ * @throws MathIllegalArgumentException if the number of sample points is not a power of two
+ * plus one
+ */
+ public double[] transform(
+ final UnivariateFunction f,
+ final double min,
+ final double max,
+ final int n,
+ final TransformType type)
+ throws MathIllegalArgumentException {
+
+ final double[] data = FunctionUtils.sample(f, min, max, n);
+ return transform(data, type);
+ }
+
+ /**
+ * Perform the FCT algorithm (including inverse).
+ *
+ * @param f the real data array to be transformed
+ * @return the real transformed array
+ * @throws MathIllegalArgumentException if the length of the data array is not a power of two
+ * plus one
+ */
+ protected double[] fct(double[] f) throws MathIllegalArgumentException {
+
+ final double[] transformed = new double[f.length];
+
+ final int n = f.length - 1;
+ if (!ArithmeticUtils.isPowerOfTwo(n)) {
+ throw new MathIllegalArgumentException(
+ LocalizedFormats.NOT_POWER_OF_TWO_PLUS_ONE, Integer.valueOf(f.length));
+ }
+ if (n == 1) { // trivial case
+ transformed[0] = 0.5 * (f[0] + f[1]);
+ transformed[1] = 0.5 * (f[0] - f[1]);
+ return transformed;
+ }
+
+ // construct a new array and perform FFT on it
+ final double[] x = new double[n];
+ x[0] = 0.5 * (f[0] + f[n]);
+ x[n >> 1] = f[n >> 1];
+ // temporary variable for transformed[1]
+ double t1 = 0.5 * (f[0] - f[n]);
+ for (int i = 1; i < (n >> 1); i++) {
+ final double a = 0.5 * (f[i] + f[n - i]);
+ final double b = FastMath.sin(i * FastMath.PI / n) * (f[i] - f[n - i]);
+ final double c = FastMath.cos(i * FastMath.PI / n) * (f[i] - f[n - i]);
+ x[i] = a - b;
+ x[n - i] = a + b;
+ t1 += c;
+ }
+ FastFourierTransformer transformer;
+ transformer = new FastFourierTransformer(DftNormalization.STANDARD);
+ Complex[] y = transformer.transform(x, TransformType.FORWARD);
+
+ // reconstruct the FCT result for the original array
+ transformed[0] = y[0].getReal();
+ transformed[1] = t1;
+ for (int i = 1; i < (n >> 1); i++) {
+ transformed[2 * i] = y[i].getReal();
+ transformed[2 * i + 1] = transformed[2 * i - 1] - y[i].getImaginary();
+ }
+ transformed[n] = y[n >> 1].getReal();
+
+ return transformed;
+ }
+}