summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/analysis/differentiation/SparseGradient.java
blob: 8a8d8ae24e42907dda4f4e8b743923b283725f72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.differentiation;

import java.io.Serializable;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.FieldElement;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;

/**
 * First derivative computation with large number of variables.
 * <p>
 * This class plays a similar role to {@link DerivativeStructure}, with
 * a focus on efficiency when dealing with large number of independent variables
 * and most computation depend only on a few of them, and when only first derivative
 * is desired. When these conditions are met, this class should be much faster than
 * {@link DerivativeStructure} and use less memory.
 * </p>
 *
 * @since 3.3
 */
public class SparseGradient implements RealFieldElement<SparseGradient>, Serializable {

    /** Serializable UID. */
    private static final long serialVersionUID = 20131025L;

    /** Value of the calculation. */
    private double value;

    /** Stored derivative, each key representing a different independent variable. */
    private final Map<Integer, Double> derivatives;

    /** Internal constructor.
     * @param value value of the function
     * @param derivatives derivatives map, a deep copy will be performed,
     * so the map given here will remain safe from changes in the new instance,
     * may be null to create an empty derivatives map, i.e. a constant value
     */
    private SparseGradient(final double value, final Map<Integer, Double> derivatives) {
        this.value = value;
        this.derivatives = new HashMap<Integer, Double>();
        if (derivatives != null) {
            this.derivatives.putAll(derivatives);
        }
    }

    /** Internal constructor.
     * @param value value of the function
     * @param scale scaling factor to apply to all derivatives
     * @param derivatives derivatives map, a deep copy will be performed,
     * so the map given here will remain safe from changes in the new instance,
     * may be null to create an empty derivatives map, i.e. a constant value
     */
    private SparseGradient(final double value, final double scale,
                             final Map<Integer, Double> derivatives) {
        this.value = value;
        this.derivatives = new HashMap<Integer, Double>();
        if (derivatives != null) {
            for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
                this.derivatives.put(entry.getKey(), scale * entry.getValue());
            }
        }
    }

    /** Factory method creating a constant.
     * @param value value of the constant
     * @return a new instance
     */
    public static SparseGradient createConstant(final double value) {
        return new SparseGradient(value, Collections.<Integer, Double> emptyMap());
    }

    /** Factory method creating an independent variable.
     * @param idx index of the variable
     * @param value value of the variable
     * @return a new instance
     */
    public static SparseGradient createVariable(final int idx, final double value) {
        return new SparseGradient(value, Collections.singletonMap(idx, 1.0));
    }

    /**
     * Find the number of variables.
     * @return number of variables
     */
    public int numVars() {
        return derivatives.size();
    }

    /**
     * Get the derivative with respect to a particular index variable.
     *
     * @param index index to differentiate with.
     * @return derivative with respect to a particular index variable
     */
    public double getDerivative(final int index) {
        final Double out = derivatives.get(index);
        return (out == null) ? 0.0 : out;
    }

    /**
     * Get the value of the function.
     * @return value of the function.
     */
    public double getValue() {
        return value;
    }

    /** {@inheritDoc} */
    public double getReal() {
        return value;
    }

    /** {@inheritDoc} */
    public SparseGradient add(final SparseGradient a) {
        final SparseGradient out = new SparseGradient(value + a.value, derivatives);
        for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
            final int id = entry.getKey();
            final Double old = out.derivatives.get(id);
            if (old == null) {
                out.derivatives.put(id, entry.getValue());
            } else {
                out.derivatives.put(id, old + entry.getValue());
            }
        }

        return out;
    }

    /**
     * Add in place.
     * <p>
     * This method is designed to be faster when used multiple times in a loop.
     * </p>
     * <p>
     * The instance is changed here, in order to not change the
     * instance the {@link #add(SparseGradient)} method should
     * be used.
     * </p>
     * @param a instance to add
     */
    public void addInPlace(final SparseGradient a) {
        value += a.value;
        for (final Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
            final int id = entry.getKey();
            final Double old = derivatives.get(id);
            if (old == null) {
                derivatives.put(id, entry.getValue());
            } else {
                derivatives.put(id, old + entry.getValue());
            }
        }
    }

    /** {@inheritDoc} */
    public SparseGradient add(final double c) {
        final SparseGradient out = new SparseGradient(value + c, derivatives);
        return out;
    }

    /** {@inheritDoc} */
    public SparseGradient subtract(final SparseGradient a) {
        final SparseGradient out = new SparseGradient(value - a.value, derivatives);
        for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
            final int id = entry.getKey();
            final Double old = out.derivatives.get(id);
            if (old == null) {
                out.derivatives.put(id, -entry.getValue());
            } else {
                out.derivatives.put(id, old - entry.getValue());
            }
        }
        return out;
    }

    /** {@inheritDoc} */
    public SparseGradient subtract(double c) {
        return new SparseGradient(value - c, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient multiply(final SparseGradient a) {
        final SparseGradient out =
            new SparseGradient(value * a.value, Collections.<Integer, Double> emptyMap());

        // Derivatives.
        for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
            out.derivatives.put(entry.getKey(), a.value * entry.getValue());
        }
        for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
            final int id = entry.getKey();
            final Double old = out.derivatives.get(id);
            if (old == null) {
                out.derivatives.put(id, value * entry.getValue());
            } else {
                out.derivatives.put(id, old + value * entry.getValue());
            }
        }
        return out;
    }

    /**
     * Multiply in place.
     * <p>
     * This method is designed to be faster when used multiple times in a loop.
     * </p>
     * <p>
     * The instance is changed here, in order to not change the
     * instance the {@link #add(SparseGradient)} method should
     * be used.
     * </p>
     * @param a instance to multiply
     */
    public void multiplyInPlace(final SparseGradient a) {
        // Derivatives.
        for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
            derivatives.put(entry.getKey(), a.value * entry.getValue());
        }
        for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
            final int id = entry.getKey();
            final Double old = derivatives.get(id);
            if (old == null) {
                derivatives.put(id, value * entry.getValue());
            } else {
                derivatives.put(id, old + value * entry.getValue());
            }
        }
        value *= a.value;
    }

    /** {@inheritDoc} */
    public SparseGradient multiply(final double c) {
        return new SparseGradient(value * c, c, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient multiply(final int n) {
        return new SparseGradient(value * n, n, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient divide(final SparseGradient a) {
        final SparseGradient out = new SparseGradient(value / a.value, Collections.<Integer, Double> emptyMap());

        // Derivatives.
        for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
            out.derivatives.put(entry.getKey(), entry.getValue() / a.value);
        }
        for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
            final int id = entry.getKey();
            final Double old = out.derivatives.get(id);
            if (old == null) {
                out.derivatives.put(id, -out.value / a.value * entry.getValue());
            } else {
                out.derivatives.put(id, old - out.value / a.value * entry.getValue());
            }
        }
        return out;
    }

    /** {@inheritDoc} */
    public SparseGradient divide(final double c) {
        return new SparseGradient(value / c, 1.0 / c, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient negate() {
        return new SparseGradient(-value, -1.0, derivatives);
    }

    /** {@inheritDoc} */
    public Field<SparseGradient> getField() {
        return new Field<SparseGradient>() {

            /** {@inheritDoc} */
            public SparseGradient getZero() {
                return createConstant(0);
            }

            /** {@inheritDoc} */
            public SparseGradient getOne() {
                return createConstant(1);
            }

            /** {@inheritDoc} */
            public Class<? extends FieldElement<SparseGradient>> getRuntimeClass() {
                return SparseGradient.class;
            }

        };
    }

    /** {@inheritDoc} */
    public SparseGradient remainder(final double a) {
        return new SparseGradient(FastMath.IEEEremainder(value, a), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient remainder(final SparseGradient a) {

        // compute k such that lhs % rhs = lhs - k rhs
        final double rem = FastMath.IEEEremainder(value, a.value);
        final double k   = FastMath.rint((value - rem) / a.value);

        return subtract(a.multiply(k));

    }

    /** {@inheritDoc} */
    public SparseGradient abs() {
        if (Double.doubleToLongBits(value) < 0) {
            // we use the bits representation to also handle -0.0
            return negate();
        } else {
            return this;
        }
    }

    /** {@inheritDoc} */
    public SparseGradient ceil() {
        return createConstant(FastMath.ceil(value));
    }

    /** {@inheritDoc} */
    public SparseGradient floor() {
        return createConstant(FastMath.floor(value));
    }

    /** {@inheritDoc} */
    public SparseGradient rint() {
        return createConstant(FastMath.rint(value));
    }

    /** {@inheritDoc} */
    public long round() {
        return FastMath.round(value);
    }

    /** {@inheritDoc} */
    public SparseGradient signum() {
        return createConstant(FastMath.signum(value));
    }

    /** {@inheritDoc} */
    public SparseGradient copySign(final SparseGradient sign) {
        final long m = Double.doubleToLongBits(value);
        final long s = Double.doubleToLongBits(sign.value);
        if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
            return this;
        }
        return negate(); // flip sign
    }

    /** {@inheritDoc} */
    public SparseGradient copySign(final double sign) {
        final long m = Double.doubleToLongBits(value);
        final long s = Double.doubleToLongBits(sign);
        if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
            return this;
        }
        return negate(); // flip sign
    }

    /** {@inheritDoc} */
    public SparseGradient scalb(final int n) {
        final SparseGradient out = new SparseGradient(FastMath.scalb(value, n), Collections.<Integer, Double> emptyMap());
        for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
            out.derivatives.put(entry.getKey(), FastMath.scalb(entry.getValue(), n));
        }
        return out;
    }

    /** {@inheritDoc} */
    public SparseGradient hypot(final SparseGradient y) {
        if (Double.isInfinite(value) || Double.isInfinite(y.value)) {
            return createConstant(Double.POSITIVE_INFINITY);
        } else if (Double.isNaN(value) || Double.isNaN(y.value)) {
            return createConstant(Double.NaN);
        } else {

            final int expX = FastMath.getExponent(value);
            final int expY = FastMath.getExponent(y.value);
            if (expX > expY + 27) {
                // y is negligible with respect to x
                return abs();
            } else if (expY > expX + 27) {
                // x is negligible with respect to y
                return y.abs();
            } else {

                // find an intermediate scale to avoid both overflow and underflow
                final int middleExp = (expX + expY) / 2;

                // scale parameters without losing precision
                final SparseGradient scaledX = scalb(-middleExp);
                final SparseGradient scaledY = y.scalb(-middleExp);

                // compute scaled hypotenuse
                final SparseGradient scaledH =
                        scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).sqrt();

                // remove scaling
                return scaledH.scalb(middleExp);

            }

        }
    }

    /**
     * Returns the hypotenuse of a triangle with sides {@code x} and {@code y}
     * - sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
     * avoiding intermediate overflow or underflow.
     *
     * <ul>
     * <li> If either argument is infinite, then the result is positive infinity.</li>
     * <li> else, if either argument is NaN then the result is NaN.</li>
     * </ul>
     *
     * @param x a value
     * @param y a value
     * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
     */
    public static SparseGradient hypot(final SparseGradient x, final SparseGradient y) {
        return x.hypot(y);
    }

    /** {@inheritDoc} */
    public SparseGradient reciprocal() {
        return new SparseGradient(1.0 / value, -1.0 / (value * value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient sqrt() {
        final double sqrt = FastMath.sqrt(value);
        return new SparseGradient(sqrt, 0.5 / sqrt, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient cbrt() {
        final double cbrt = FastMath.cbrt(value);
        return new SparseGradient(cbrt, 1.0 / (3 * cbrt * cbrt), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient rootN(final int n) {
        if (n == 2) {
            return sqrt();
        } else if (n == 3) {
            return cbrt();
        } else {
            final double root = FastMath.pow(value, 1.0 / n);
            return new SparseGradient(root, 1.0 / (n * FastMath.pow(root, n - 1)), derivatives);
        }
    }

    /** {@inheritDoc} */
    public SparseGradient pow(final double p) {
        return new SparseGradient(FastMath.pow(value,  p), p * FastMath.pow(value,  p - 1), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient pow(final int n) {
        if (n == 0) {
            return getField().getOne();
        } else {
            final double valueNm1 = FastMath.pow(value,  n - 1);
            return new SparseGradient(value * valueNm1, n * valueNm1, derivatives);
        }
    }

    /** {@inheritDoc} */
    public SparseGradient pow(final SparseGradient e) {
        return log().multiply(e).exp();
    }

    /** Compute a<sup>x</sup> where a is a double and x a {@link SparseGradient}
     * @param a number to exponentiate
     * @param x power to apply
     * @return a<sup>x</sup>
     */
    public static SparseGradient pow(final double a, final SparseGradient x) {
        if (a == 0) {
            if (x.value == 0) {
                return x.compose(1.0, Double.NEGATIVE_INFINITY);
            } else if (x.value < 0) {
                return x.compose(Double.NaN, Double.NaN);
            } else {
                return x.getField().getZero();
            }
        } else {
            final double ax = FastMath.pow(a, x.value);
            return new SparseGradient(ax, ax * FastMath.log(a), x.derivatives);
        }
    }

    /** {@inheritDoc} */
    public SparseGradient exp() {
        final double e = FastMath.exp(value);
        return new SparseGradient(e, e, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient expm1() {
        return new SparseGradient(FastMath.expm1(value), FastMath.exp(value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient log() {
        return new SparseGradient(FastMath.log(value), 1.0 / value, derivatives);
    }

    /** Base 10 logarithm.
     * @return base 10 logarithm of the instance
     */
    public SparseGradient log10() {
        return new SparseGradient(FastMath.log10(value), 1.0 / (FastMath.log(10.0) * value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient log1p() {
        return new SparseGradient(FastMath.log1p(value), 1.0 / (1.0 + value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient cos() {
        return new SparseGradient(FastMath.cos(value), -FastMath.sin(value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient sin() {
        return new SparseGradient(FastMath.sin(value), FastMath.cos(value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient tan() {
        final double t = FastMath.tan(value);
        return new SparseGradient(t, 1 + t * t, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient acos() {
        return new SparseGradient(FastMath.acos(value), -1.0 / FastMath.sqrt(1 - value * value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient asin() {
        return new SparseGradient(FastMath.asin(value), 1.0 / FastMath.sqrt(1 - value * value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient atan() {
        return new SparseGradient(FastMath.atan(value), 1.0 / (1 + value * value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient atan2(final SparseGradient x) {

        // compute r = sqrt(x^2+y^2)
        final SparseGradient r = multiply(this).add(x.multiply(x)).sqrt();

        final SparseGradient a;
        if (x.value >= 0) {

            // compute atan2(y, x) = 2 atan(y / (r + x))
            a = divide(r.add(x)).atan().multiply(2);

        } else {

            // compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
            final SparseGradient tmp = divide(r.subtract(x)).atan().multiply(-2);
            a = tmp.add(tmp.value <= 0 ? -FastMath.PI : FastMath.PI);

        }

        // fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly
        a.value = FastMath.atan2(value, x.value);

        return a;

    }

    /** Two arguments arc tangent operation.
     * @param y first argument of the arc tangent
     * @param x second argument of the arc tangent
     * @return atan2(y, x)
     */
    public static SparseGradient atan2(final SparseGradient y, final SparseGradient x) {
        return y.atan2(x);
    }

    /** {@inheritDoc} */
    public SparseGradient cosh() {
        return new SparseGradient(FastMath.cosh(value), FastMath.sinh(value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient sinh() {
        return new SparseGradient(FastMath.sinh(value), FastMath.cosh(value), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient tanh() {
        final double t = FastMath.tanh(value);
        return new SparseGradient(t, 1 - t * t, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient acosh() {
        return new SparseGradient(FastMath.acosh(value), 1.0 / FastMath.sqrt(value * value - 1.0), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient asinh() {
        return new SparseGradient(FastMath.asinh(value), 1.0 / FastMath.sqrt(value * value + 1.0), derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient atanh() {
        return new SparseGradient(FastMath.atanh(value), 1.0 / (1.0 - value * value), derivatives);
    }

    /** Convert radians to degrees, with error of less than 0.5 ULP
     *  @return instance converted into degrees
     */
    public SparseGradient toDegrees() {
        return new SparseGradient(FastMath.toDegrees(value), FastMath.toDegrees(1.0), derivatives);
    }

    /** Convert degrees to radians, with error of less than 0.5 ULP
     *  @return instance converted into radians
     */
    public SparseGradient toRadians() {
        return new SparseGradient(FastMath.toRadians(value), FastMath.toRadians(1.0), derivatives);
    }

    /** Evaluate Taylor expansion of a sparse gradient.
     * @param delta parameters offsets (&Delta;x, &Delta;y, ...)
     * @return value of the Taylor expansion at x + &Delta;x, y + &Delta;y, ...
     */
    public double taylor(final double ... delta) {
        double y = value;
        for (int i = 0; i < delta.length; ++i) {
            y += delta[i] * getDerivative(i);
        }
        return y;
    }

    /** Compute composition of the instance by a univariate function.
     * @param f0 value of the function at (i.e. f({@link #getValue()}))
     * @param f1 first derivative of the function at
     * the current point (i.e. f'({@link #getValue()}))
     * @return f(this)
    */
    public SparseGradient compose(final double f0, final double f1) {
        return new SparseGradient(f0, f1, derivatives);
    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final SparseGradient[] a,
                                              final SparseGradient[] b)
        throws DimensionMismatchException {

        // compute a simple value, with all partial derivatives
        SparseGradient out = a[0].getField().getZero();
        for (int i = 0; i < a.length; ++i) {
            out = out.add(a[i].multiply(b[i]));
        }

        // recompute an accurate value, taking care of cancellations
        final double[] aDouble = new double[a.length];
        for (int i = 0; i < a.length; ++i) {
            aDouble[i] = a[i].getValue();
        }
        final double[] bDouble = new double[b.length];
        for (int i = 0; i < b.length; ++i) {
            bDouble[i] = b[i].getValue();
        }
        out.value = MathArrays.linearCombination(aDouble, bDouble);

        return out;

    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final double[] a, final SparseGradient[] b) {

        // compute a simple value, with all partial derivatives
        SparseGradient out = b[0].getField().getZero();
        for (int i = 0; i < a.length; ++i) {
            out = out.add(b[i].multiply(a[i]));
        }

        // recompute an accurate value, taking care of cancellations
        final double[] bDouble = new double[b.length];
        for (int i = 0; i < b.length; ++i) {
            bDouble[i] = b[i].getValue();
        }
        out.value = MathArrays.linearCombination(a, bDouble);

        return out;

    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
                                              final SparseGradient a2, final SparseGradient b2) {

        // compute a simple value, with all partial derivatives
        SparseGradient out = a1.multiply(b1).add(a2.multiply(b2));

        // recompute an accurate value, taking care of cancellations
        out.value = MathArrays.linearCombination(a1.value, b1.value, a2.value, b2.value);

        return out;

    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final double a1, final SparseGradient b1,
                                              final double a2, final SparseGradient b2) {

        // compute a simple value, with all partial derivatives
        SparseGradient out = b1.multiply(a1).add(b2.multiply(a2));

        // recompute an accurate value, taking care of cancellations
        out.value = MathArrays.linearCombination(a1, b1.value, a2, b2.value);

        return out;

    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
                                              final SparseGradient a2, final SparseGradient b2,
                                              final SparseGradient a3, final SparseGradient b3) {

        // compute a simple value, with all partial derivatives
        SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3));

        // recompute an accurate value, taking care of cancellations
        out.value = MathArrays.linearCombination(a1.value, b1.value,
                                                 a2.value, b2.value,
                                                 a3.value, b3.value);

        return out;

    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final double a1, final SparseGradient b1,
                                              final double a2, final SparseGradient b2,
                                              final double a3, final SparseGradient b3) {

        // compute a simple value, with all partial derivatives
        SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3));

        // recompute an accurate value, taking care of cancellations
        out.value = MathArrays.linearCombination(a1, b1.value,
                                                 a2, b2.value,
                                                 a3, b3.value);

        return out;

    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
                                              final SparseGradient a2, final SparseGradient b2,
                                              final SparseGradient a3, final SparseGradient b3,
                                              final SparseGradient a4, final SparseGradient b4) {

        // compute a simple value, with all partial derivatives
        SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3)).add(a4.multiply(b4));

        // recompute an accurate value, taking care of cancellations
        out.value = MathArrays.linearCombination(a1.value, b1.value,
                                                 a2.value, b2.value,
                                                 a3.value, b3.value,
                                                 a4.value, b4.value);

        return out;

    }

    /** {@inheritDoc} */
    public SparseGradient linearCombination(final double a1, final SparseGradient b1,
                                              final double a2, final SparseGradient b2,
                                              final double a3, final SparseGradient b3,
                                              final double a4, final SparseGradient b4) {

        // compute a simple value, with all partial derivatives
        SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3)).add(b4.multiply(a4));

        // recompute an accurate value, taking care of cancellations
        out.value = MathArrays.linearCombination(a1, b1.value,
                                                 a2, b2.value,
                                                 a3, b3.value,
                                                 a4, b4.value);

        return out;

    }

    /**
     * Test for the equality of two sparse gradients.
     * <p>
     * Sparse gradients are considered equal if they have the same value
     * and the same derivatives.
     * </p>
     * @param other Object to test for equality to this
     * @return true if two sparse gradients are equal
     */
    @Override
    public boolean equals(Object other) {

        if (this == other) {
            return true;
        }

        if (other instanceof SparseGradient) {
            final SparseGradient rhs = (SparseGradient)other;
            if (!Precision.equals(value, rhs.value, 1)) {
                return false;
            }
            if (derivatives.size() != rhs.derivatives.size()) {
                return false;
            }
            for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
                if (!rhs.derivatives.containsKey(entry.getKey())) {
                    return false;
                }
                if (!Precision.equals(entry.getValue(), rhs.derivatives.get(entry.getKey()), 1)) {
                    return false;
                }
            }
            return true;
        }

        return false;

    }

    /**
     * Get a hashCode for the derivative structure.
     * @return a hash code value for this object
     * @since 3.2
     */
    @Override
    public int hashCode() {
        return 743 + 809 * MathUtils.hash(value) + 167 * derivatives.hashCode();
    }

}