summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/analysis/solvers/BaseSecantSolver.java
blob: 44a2173f185e3a21fc499f4a6695bbb2f658fe9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.analysis.solvers;

import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.MathInternalError;

/**
 * Base class for all bracketing <em>Secant</em>-based methods for root-finding
 * (approximating a zero of a univariate real function).
 *
 * <p>Implementation of the {@link RegulaFalsiSolver <em>Regula Falsi</em>} and
 * {@link IllinoisSolver <em>Illinois</em>} methods is based on the
 * following article: M. Dowell and P. Jarratt,
 * <em>A modified regula falsi method for computing the root of an
 * equation</em>, BIT Numerical Mathematics, volume 11, number 2,
 * pages 168-174, Springer, 1971.</p>
 *
 * <p>Implementation of the {@link PegasusSolver <em>Pegasus</em>} method is
 * based on the following article: M. Dowell and P. Jarratt,
 * <em>The "Pegasus" method for computing the root of an equation</em>,
 * BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer,
 * 1972.</p>
 *
 * <p>The {@link SecantSolver <em>Secant</em>} method is <em>not</em> a
 * bracketing method, so it is not implemented here. It has a separate
 * implementation.</p>
 *
 * @since 3.0
 */
public abstract class BaseSecantSolver
    extends AbstractUnivariateSolver
    implements BracketedUnivariateSolver<UnivariateFunction> {

    /** Default absolute accuracy. */
    protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;

    /** The kinds of solutions that the algorithm may accept. */
    private AllowedSolution allowed;

    /** The <em>Secant</em>-based root-finding method to use. */
    private final Method method;

    /**
     * Construct a solver.
     *
     * @param absoluteAccuracy Absolute accuracy.
     * @param method <em>Secant</em>-based root-finding method to use.
     */
    protected BaseSecantSolver(final double absoluteAccuracy, final Method method) {
        super(absoluteAccuracy);
        this.allowed = AllowedSolution.ANY_SIDE;
        this.method = method;
    }

    /**
     * Construct a solver.
     *
     * @param relativeAccuracy Relative accuracy.
     * @param absoluteAccuracy Absolute accuracy.
     * @param method <em>Secant</em>-based root-finding method to use.
     */
    protected BaseSecantSolver(final double relativeAccuracy,
                               final double absoluteAccuracy,
                               final Method method) {
        super(relativeAccuracy, absoluteAccuracy);
        this.allowed = AllowedSolution.ANY_SIDE;
        this.method = method;
    }

    /**
     * Construct a solver.
     *
     * @param relativeAccuracy Maximum relative error.
     * @param absoluteAccuracy Maximum absolute error.
     * @param functionValueAccuracy Maximum function value error.
     * @param method <em>Secant</em>-based root-finding method to use
     */
    protected BaseSecantSolver(final double relativeAccuracy,
                               final double absoluteAccuracy,
                               final double functionValueAccuracy,
                               final Method method) {
        super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy);
        this.allowed = AllowedSolution.ANY_SIDE;
        this.method = method;
    }

    /** {@inheritDoc} */
    public double solve(final int maxEval, final UnivariateFunction f,
                        final double min, final double max,
                        final AllowedSolution allowedSolution) {
        return solve(maxEval, f, min, max, min + 0.5 * (max - min), allowedSolution);
    }

    /** {@inheritDoc} */
    public double solve(final int maxEval, final UnivariateFunction f,
                        final double min, final double max, final double startValue,
                        final AllowedSolution allowedSolution) {
        this.allowed = allowedSolution;
        return super.solve(maxEval, f, min, max, startValue);
    }

    /** {@inheritDoc} */
    @Override
    public double solve(final int maxEval, final UnivariateFunction f,
                        final double min, final double max, final double startValue) {
        return solve(maxEval, f, min, max, startValue, AllowedSolution.ANY_SIDE);
    }

    /**
     * {@inheritDoc}
     *
     * @throws ConvergenceException if the algorithm failed due to finite
     * precision.
     */
    @Override
    protected final double doSolve()
        throws ConvergenceException {
        // Get initial solution
        double x0 = getMin();
        double x1 = getMax();
        double f0 = computeObjectiveValue(x0);
        double f1 = computeObjectiveValue(x1);

        // If one of the bounds is the exact root, return it. Since these are
        // not under-approximations or over-approximations, we can return them
        // regardless of the allowed solutions.
        if (f0 == 0.0) {
            return x0;
        }
        if (f1 == 0.0) {
            return x1;
        }

        // Verify bracketing of initial solution.
        verifyBracketing(x0, x1);

        // Get accuracies.
        final double ftol = getFunctionValueAccuracy();
        final double atol = getAbsoluteAccuracy();
        final double rtol = getRelativeAccuracy();

        // Keep track of inverted intervals, meaning that the left bound is
        // larger than the right bound.
        boolean inverted = false;

        // Keep finding better approximations.
        while (true) {
            // Calculate the next approximation.
            final double x = x1 - ((f1 * (x1 - x0)) / (f1 - f0));
            final double fx = computeObjectiveValue(x);

            // If the new approximation is the exact root, return it. Since
            // this is not an under-approximation or an over-approximation,
            // we can return it regardless of the allowed solutions.
            if (fx == 0.0) {
                return x;
            }

            // Update the bounds with the new approximation.
            if (f1 * fx < 0) {
                // The value of x1 has switched to the other bound, thus inverting
                // the interval.
                x0 = x1;
                f0 = f1;
                inverted = !inverted;
            } else {
                switch (method) {
                case ILLINOIS:
                    f0 *= 0.5;
                    break;
                case PEGASUS:
                    f0 *= f1 / (f1 + fx);
                    break;
                case REGULA_FALSI:
                    // Detect early that algorithm is stuck, instead of waiting
                    // for the maximum number of iterations to be exceeded.
                    if (x == x1) {
                        throw new ConvergenceException();
                    }
                    break;
                default:
                    // Should never happen.
                    throw new MathInternalError();
                }
            }
            // Update from [x0, x1] to [x0, x].
            x1 = x;
            f1 = fx;

            // If the function value of the last approximation is too small,
            // given the function value accuracy, then we can't get closer to
            // the root than we already are.
            if (FastMath.abs(f1) <= ftol) {
                switch (allowed) {
                case ANY_SIDE:
                    return x1;
                case LEFT_SIDE:
                    if (inverted) {
                        return x1;
                    }
                    break;
                case RIGHT_SIDE:
                    if (!inverted) {
                        return x1;
                    }
                    break;
                case BELOW_SIDE:
                    if (f1 <= 0) {
                        return x1;
                    }
                    break;
                case ABOVE_SIDE:
                    if (f1 >= 0) {
                        return x1;
                    }
                    break;
                default:
                    throw new MathInternalError();
                }
            }

            // If the current interval is within the given accuracies, we
            // are satisfied with the current approximation.
            if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1),
                                                     atol)) {
                switch (allowed) {
                case ANY_SIDE:
                    return x1;
                case LEFT_SIDE:
                    return inverted ? x1 : x0;
                case RIGHT_SIDE:
                    return inverted ? x0 : x1;
                case BELOW_SIDE:
                    return (f1 <= 0) ? x1 : x0;
                case ABOVE_SIDE:
                    return (f1 >= 0) ? x1 : x0;
                default:
                    throw new MathInternalError();
                }
            }
        }
    }

    /** <em>Secant</em>-based root-finding methods. */
    protected enum Method {

        /**
         * The {@link RegulaFalsiSolver <em>Regula Falsi</em>} or
         * <em>False Position</em> method.
         */
        REGULA_FALSI,

        /** The {@link IllinoisSolver <em>Illinois</em>} method. */
        ILLINOIS,

        /** The {@link PegasusSolver <em>Pegasus</em>} method. */
        PEGASUS;

    }
}