summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/ExponentialDistribution.java
blob: 6ca5f1c19860cfdf188f40197d143e5bd9b0a367 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.CombinatoricsUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.ResizableDoubleArray;

/**
 * Implementation of the exponential distribution.
 *
 * @see <a href="http://en.wikipedia.org/wiki/Exponential_distribution">Exponential distribution
 *     (Wikipedia)</a>
 * @see <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">Exponential distribution
 *     (MathWorld)</a>
 */
public class ExponentialDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     *
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = 2401296428283614780L;

    /**
     * Used when generating Exponential samples. Table containing the constants q_i = sum_{j=1}^i
     * (ln 2)^j/j! = ln 2 + (ln 2)^2/2 + ... + (ln 2)^i/i! until the largest representable fraction
     * below 1 is exceeded.
     *
     * <p>Note that 1 = 2 - 1 = exp(ln 2) - 1 = sum_{n=1}^infty (ln 2)^n / n! thus q_i -> 1 as i ->
     * +inf, so the higher i, the closer to one we get (the series is not alternating).
     *
     * <p>By trying, n = 16 in Java is enough to reach 1.0.
     */
    private static final double[] EXPONENTIAL_SA_QI;

    /** The mean of this distribution. */
    private final double mean;

    /** The logarithm of the mean, stored to reduce computing time. * */
    private final double logMean;

    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /** Initialize tables. */
    static {
        /** Filling EXPONENTIAL_SA_QI table. Note that we don't want qi = 0 in the table. */
        final double LN2 = FastMath.log(2);
        double qi = 0;
        int i = 1;

        /**
         * ArithmeticUtils provides factorials up to 20, so let's use that limit together with
         * Precision.EPSILON to generate the following code (a priori, we know that there will be 16
         * elements, but it is better to not hardcode it).
         */
        final ResizableDoubleArray ra = new ResizableDoubleArray(20);

        while (qi < 1) {
            qi += FastMath.pow(LN2, i) / CombinatoricsUtils.factorial(i);
            ra.addElement(qi);
            ++i;
        }

        EXPONENTIAL_SA_QI = ra.getElements();
    }

    /**
     * Create an exponential distribution with the given mean.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param mean mean of this distribution.
     */
    public ExponentialDistribution(double mean) {
        this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create an exponential distribution with the given mean.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param mean Mean of this distribution.
     * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
     *     (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 2.1
     */
    public ExponentialDistribution(double mean, double inverseCumAccuracy) {
        this(new Well19937c(), mean, inverseCumAccuracy);
    }

    /**
     * Creates an exponential distribution.
     *
     * @param rng Random number generator.
     * @param mean Mean of this distribution.
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 3.3
     */
    public ExponentialDistribution(RandomGenerator rng, double mean)
            throws NotStrictlyPositiveException {
        this(rng, mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Creates an exponential distribution.
     *
     * @param rng Random number generator.
     * @param mean Mean of this distribution.
     * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
     *     (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 3.1
     */
    public ExponentialDistribution(RandomGenerator rng, double mean, double inverseCumAccuracy)
            throws NotStrictlyPositiveException {
        super(rng);

        if (mean <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
        }
        this.mean = mean;
        logMean = FastMath.log(mean);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Access the mean.
     *
     * @return the mean.
     */
    public double getMean() {
        return mean;
    }

    /** {@inheritDoc} */
    public double density(double x) {
        final double logDensity = logDensity(x);
        return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
    }

    /** {@inheritDoc} * */
    @Override
    public double logDensity(double x) {
        if (x < 0) {
            return Double.NEGATIVE_INFINITY;
        }
        return -x / mean - logMean;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The implementation of this method is based on:
     *
     * <ul>
     *   <li><a href="http://mathworld.wolfram.com/ExponentialDistribution.html">Exponential
     *       Distribution</a>, equation (1).
     * </ul>
     */
    public double cumulativeProbability(double x) {
        double ret;
        if (x <= 0.0) {
            ret = 0.0;
        } else {
            ret = 1.0 - FastMath.exp(-x / mean);
        }
        return ret;
    }

    /**
     * {@inheritDoc}
     *
     * <p>Returns {@code 0} when {@code p= = 0} and {@code Double.POSITIVE_INFINITY} when {@code p
     * == 1}.
     */
    @Override
    public double inverseCumulativeProbability(double p) throws OutOfRangeException {
        double ret;

        if (p < 0.0 || p > 1.0) {
            throw new OutOfRangeException(p, 0.0, 1.0);
        } else if (p == 1.0) {
            ret = Double.POSITIVE_INFINITY;
        } else {
            ret = -mean * FastMath.log(1.0 - p);
        }

        return ret;
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: this implementation uses the <a
     * href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html">Inversion Method</a> to
     * generate exponentially distributed random values from uniform deviates.
     *
     * @return a random value.
     * @since 2.2
     */
    @Override
    public double sample() {
        // Step 1:
        double a = 0;
        double u = random.nextDouble();

        // Step 2 and 3:
        while (u < 0.5) {
            a += EXPONENTIAL_SA_QI[0];
            u *= 2;
        }

        // Step 4 (now u >= 0.5):
        u += u - 1;

        // Step 5:
        if (u <= EXPONENTIAL_SA_QI[0]) {
            return mean * (a + u);
        }

        // Step 6:
        int i = 0; // Should be 1, be we iterate before it in while using 0
        double u2 = random.nextDouble();
        double umin = u2;

        // Step 7 and 8:
        do {
            ++i;
            u2 = random.nextDouble();

            if (u2 < umin) {
                umin = u2;
            }

            // Step 8:
        } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1

        return mean * (a + umin * EXPONENTIAL_SA_QI[0]);
    }

    /** {@inheritDoc} */
    @Override
    protected double getSolverAbsoluteAccuracy() {
        return solverAbsoluteAccuracy;
    }

    /**
     * {@inheritDoc}
     *
     * <p>For mean parameter {@code k}, the mean is {@code k}.
     */
    public double getNumericalMean() {
        return getMean();
    }

    /**
     * {@inheritDoc}
     *
     * <p>For mean parameter {@code k}, the variance is {@code k^2}.
     */
    public double getNumericalVariance() {
        final double m = getMean();
        return m * m;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The lower bound of the support is always 0 no matter the mean parameter.
     *
     * @return lower bound of the support (always 0)
     */
    public double getSupportLowerBound() {
        return 0;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The upper bound of the support is always positive infinity no matter the mean parameter.
     *
     * @return upper bound of the support (always Double.POSITIVE_INFINITY)
     */
    public double getSupportUpperBound() {
        return Double.POSITIVE_INFINITY;
    }

    /** {@inheritDoc} */
    public boolean isSupportLowerBoundInclusive() {
        return true;
    }

    /** {@inheritDoc} */
    public boolean isSupportUpperBoundInclusive() {
        return false;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The support of this distribution is connected.
     *
     * @return {@code true}
     */
    public boolean isSupportConnected() {
        return true;
    }
}