summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/HypergeometricDistribution.java
blob: dece6c8da554593df75202089414da10088ecbc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the hypergeometric distribution.
 *
 * @see <a href="http://en.wikipedia.org/wiki/Hypergeometric_distribution">Hypergeometric
 *     distribution (Wikipedia)</a>
 * @see <a href="http://mathworld.wolfram.com/HypergeometricDistribution.html">Hypergeometric
 *     distribution (MathWorld)</a>
 */
public class HypergeometricDistribution extends AbstractIntegerDistribution {
    /** Serializable version identifier. */
    private static final long serialVersionUID = -436928820673516179L;

    /** The number of successes in the population. */
    private final int numberOfSuccesses;

    /** The population size. */
    private final int populationSize;

    /** The sample size. */
    private final int sampleSize;

    /** Cached numerical variance */
    private double numericalVariance = Double.NaN;

    /** Whether or not the numerical variance has been calculated */
    private boolean numericalVarianceIsCalculated = false;

    /**
     * Construct a new hypergeometric distribution with the specified population size, number of
     * successes in the population, and sample size.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param populationSize Population size.
     * @param numberOfSuccesses Number of successes in the population.
     * @param sampleSize Sample size.
     * @throws NotPositiveException if {@code numberOfSuccesses < 0}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, or {@code
     *     sampleSize > populationSize}.
     */
    public HypergeometricDistribution(int populationSize, int numberOfSuccesses, int sampleSize)
            throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        this(new Well19937c(), populationSize, numberOfSuccesses, sampleSize);
    }

    /**
     * Creates a new hypergeometric distribution.
     *
     * @param rng Random number generator.
     * @param populationSize Population size.
     * @param numberOfSuccesses Number of successes in the population.
     * @param sampleSize Sample size.
     * @throws NotPositiveException if {@code numberOfSuccesses < 0}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, or {@code
     *     sampleSize > populationSize}.
     * @since 3.1
     */
    public HypergeometricDistribution(
            RandomGenerator rng, int populationSize, int numberOfSuccesses, int sampleSize)
            throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        super(rng);

        if (populationSize <= 0) {
            throw new NotStrictlyPositiveException(
                    LocalizedFormats.POPULATION_SIZE, populationSize);
        }
        if (numberOfSuccesses < 0) {
            throw new NotPositiveException(LocalizedFormats.NUMBER_OF_SUCCESSES, numberOfSuccesses);
        }
        if (sampleSize < 0) {
            throw new NotPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize);
        }

        if (numberOfSuccesses > populationSize) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE,
                    numberOfSuccesses,
                    populationSize,
                    true);
        }
        if (sampleSize > populationSize) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.SAMPLE_SIZE_LARGER_THAN_POPULATION_SIZE,
                    sampleSize,
                    populationSize,
                    true);
        }

        this.numberOfSuccesses = numberOfSuccesses;
        this.populationSize = populationSize;
        this.sampleSize = sampleSize;
    }

    /** {@inheritDoc} */
    public double cumulativeProbability(int x) {
        double ret;

        int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
        if (x < domain[0]) {
            ret = 0.0;
        } else if (x >= domain[1]) {
            ret = 1.0;
        } else {
            ret = innerCumulativeProbability(domain[0], x, 1);
        }

        return ret;
    }

    /**
     * Return the domain for the given hypergeometric distribution parameters.
     *
     * @param n Population size.
     * @param m Number of successes in the population.
     * @param k Sample size.
     * @return a two element array containing the lower and upper bounds of the hypergeometric
     *     distribution.
     */
    private int[] getDomain(int n, int m, int k) {
        return new int[] {getLowerDomain(n, m, k), getUpperDomain(m, k)};
    }

    /**
     * Return the lowest domain value for the given hypergeometric distribution parameters.
     *
     * @param n Population size.
     * @param m Number of successes in the population.
     * @param k Sample size.
     * @return the lowest domain value of the hypergeometric distribution.
     */
    private int getLowerDomain(int n, int m, int k) {
        return FastMath.max(0, m - (n - k));
    }

    /**
     * Access the number of successes.
     *
     * @return the number of successes.
     */
    public int getNumberOfSuccesses() {
        return numberOfSuccesses;
    }

    /**
     * Access the population size.
     *
     * @return the population size.
     */
    public int getPopulationSize() {
        return populationSize;
    }

    /**
     * Access the sample size.
     *
     * @return the sample size.
     */
    public int getSampleSize() {
        return sampleSize;
    }

    /**
     * Return the highest domain value for the given hypergeometric distribution parameters.
     *
     * @param m Number of successes in the population.
     * @param k Sample size.
     * @return the highest domain value of the hypergeometric distribution.
     */
    private int getUpperDomain(int m, int k) {
        return FastMath.min(k, m);
    }

    /** {@inheritDoc} */
    public double probability(int x) {
        final double logProbability = logProbability(x);
        return logProbability == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logProbability);
    }

    /** {@inheritDoc} */
    @Override
    public double logProbability(int x) {
        double ret;

        int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
        if (x < domain[0] || x > domain[1]) {
            ret = Double.NEGATIVE_INFINITY;
        } else {
            double p = (double) sampleSize / (double) populationSize;
            double q = (double) (populationSize - sampleSize) / (double) populationSize;
            double p1 = SaddlePointExpansion.logBinomialProbability(x, numberOfSuccesses, p, q);
            double p2 =
                    SaddlePointExpansion.logBinomialProbability(
                            sampleSize - x, populationSize - numberOfSuccesses, p, q);
            double p3 =
                    SaddlePointExpansion.logBinomialProbability(sampleSize, populationSize, p, q);
            ret = p1 + p2 - p3;
        }

        return ret;
    }

    /**
     * For this distribution, {@code X}, this method returns {@code P(X >= x)}.
     *
     * @param x Value at which the CDF is evaluated.
     * @return the upper tail CDF for this distribution.
     * @since 1.1
     */
    public double upperCumulativeProbability(int x) {
        double ret;

        final int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize);
        if (x <= domain[0]) {
            ret = 1.0;
        } else if (x > domain[1]) {
            ret = 0.0;
        } else {
            ret = innerCumulativeProbability(domain[1], x, -1);
        }

        return ret;
    }

    /**
     * For this distribution, {@code X}, this method returns {@code P(x0 <= X <= x1)}. This
     * probability is computed by summing the point probabilities for the values {@code x0, x0 + 1,
     * x0 + 2, ..., x1}, in the order directed by {@code dx}.
     *
     * @param x0 Inclusive lower bound.
     * @param x1 Inclusive upper bound.
     * @param dx Direction of summation (1 indicates summing from x0 to x1, and 0 indicates summing
     *     from x1 to x0).
     * @return {@code P(x0 <= X <= x1)}.
     */
    private double innerCumulativeProbability(int x0, int x1, int dx) {
        double ret = probability(x0);
        while (x0 != x1) {
            x0 += dx;
            ret += probability(x0);
        }
        return ret;
    }

    /**
     * {@inheritDoc}
     *
     * <p>For population size {@code N}, number of successes {@code m}, and sample size {@code n},
     * the mean is {@code n * m / N}.
     */
    public double getNumericalMean() {
        return getSampleSize() * (getNumberOfSuccesses() / (double) getPopulationSize());
    }

    /**
     * {@inheritDoc}
     *
     * <p>For population size {@code N}, number of successes {@code m}, and sample size {@code n},
     * the variance is {@code [n * m * (N - n) * (N - m)] / [N^2 * (N - 1)]}.
     */
    public double getNumericalVariance() {
        if (!numericalVarianceIsCalculated) {
            numericalVariance = calculateNumericalVariance();
            numericalVarianceIsCalculated = true;
        }
        return numericalVariance;
    }

    /**
     * Used by {@link #getNumericalVariance()}.
     *
     * @return the variance of this distribution
     */
    protected double calculateNumericalVariance() {
        final double N = getPopulationSize();
        final double m = getNumberOfSuccesses();
        final double n = getSampleSize();
        return (n * m * (N - n) * (N - m)) / (N * N * (N - 1));
    }

    /**
     * {@inheritDoc}
     *
     * <p>For population size {@code N}, number of successes {@code m}, and sample size {@code n},
     * the lower bound of the support is {@code max(0, n + m - N)}.
     *
     * @return lower bound of the support
     */
    public int getSupportLowerBound() {
        return FastMath.max(0, getSampleSize() + getNumberOfSuccesses() - getPopulationSize());
    }

    /**
     * {@inheritDoc}
     *
     * <p>For number of successes {@code m} and sample size {@code n}, the upper bound of the
     * support is {@code min(m, n)}.
     *
     * @return upper bound of the support
     */
    public int getSupportUpperBound() {
        return FastMath.min(getNumberOfSuccesses(), getSampleSize());
    }

    /**
     * {@inheritDoc}
     *
     * <p>The support of this distribution is connected.
     *
     * @return {@code true}
     */
    public boolean isSupportConnected() {
        return true;
    }
}