summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/LogNormalDistribution.java
blob: e6a6deb81503169290a3c3e4deb9a85e71dac5a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Erf;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the log-normal (gaussian) distribution.
 *
 * <p><strong>Parameters:</strong> {@code X} is log-normally distributed if its natural logarithm
 * {@code log(X)} is normally distributed. The probability distribution function of {@code X} is
 * given by (for {@code x > 0})
 *
 * <p>{@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)}
 *
 * <ul>
 *   <li>{@code m} is the <em>scale</em> parameter: this is the mean of the normally distributed
 *       natural logarithm of this distribution,
 *   <li>{@code s} is the <em>shape</em> parameter: this is the standard deviation of the normally
 *       distributed natural logarithm of this distribution.
 * </ul>
 *
 * @see <a href="http://en.wikipedia.org/wiki/Log-normal_distribution">Log-normal distribution
 *     (Wikipedia)</a>
 * @see <a href="http://mathworld.wolfram.com/LogNormalDistribution.html">Log Normal distribution
 *     (MathWorld)</a>
 * @since 3.0
 */
public class LogNormalDistribution extends AbstractRealDistribution {
    /** Default inverse cumulative probability accuracy. */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier. */
    private static final long serialVersionUID = 20120112;

    /** &radic;(2 &pi;) */
    private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI);

    /** &radic;(2) */
    private static final double SQRT2 = FastMath.sqrt(2.0);

    /** The scale parameter of this distribution. */
    private final double scale;

    /** The shape parameter of this distribution. */
    private final double shape;

    /** The value of {@code log(shape) + 0.5 * log(2*PI)} stored for faster computation. */
    private final double logShapePlusHalfLog2Pi;

    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a log-normal distribution, where the mean and standard deviation of the {@link
     * NormalDistribution normally distributed} natural logarithm of the log-normal distribution are
     * equal to zero and one respectively. In other words, the scale of the returned distribution is
     * {@code 0}, while its shape is {@code 1}.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     */
    public LogNormalDistribution() {
        this(0, 1);
    }

    /**
     * Create a log-normal distribution using the specified scale and shape.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param scale the scale parameter of this distribution
     * @param shape the shape parameter of this distribution
     * @throws NotStrictlyPositiveException if {@code shape <= 0}.
     */
    public LogNormalDistribution(double scale, double shape) throws NotStrictlyPositiveException {
        this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a log-normal distribution using the specified scale, shape and inverse cumulative
     * distribution accuracy.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param scale the scale parameter of this distribution
     * @param shape the shape parameter of this distribution
     * @param inverseCumAccuracy Inverse cumulative probability accuracy.
     * @throws NotStrictlyPositiveException if {@code shape <= 0}.
     */
    public LogNormalDistribution(double scale, double shape, double inverseCumAccuracy)
            throws NotStrictlyPositiveException {
        this(new Well19937c(), scale, shape, inverseCumAccuracy);
    }

    /**
     * Creates a log-normal distribution.
     *
     * @param rng Random number generator.
     * @param scale Scale parameter of this distribution.
     * @param shape Shape parameter of this distribution.
     * @throws NotStrictlyPositiveException if {@code shape <= 0}.
     * @since 3.3
     */
    public LogNormalDistribution(RandomGenerator rng, double scale, double shape)
            throws NotStrictlyPositiveException {
        this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Creates a log-normal distribution.
     *
     * @param rng Random number generator.
     * @param scale Scale parameter of this distribution.
     * @param shape Shape parameter of this distribution.
     * @param inverseCumAccuracy Inverse cumulative probability accuracy.
     * @throws NotStrictlyPositiveException if {@code shape <= 0}.
     * @since 3.1
     */
    public LogNormalDistribution(
            RandomGenerator rng, double scale, double shape, double inverseCumAccuracy)
            throws NotStrictlyPositiveException {
        super(rng);

        if (shape <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
        }

        this.scale = scale;
        this.shape = shape;
        this.logShapePlusHalfLog2Pi = FastMath.log(shape) + 0.5 * FastMath.log(2 * FastMath.PI);
        this.solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Returns the scale parameter of this distribution.
     *
     * @return the scale parameter
     */
    public double getScale() {
        return scale;
    }

    /**
     * Returns the shape parameter of this distribution.
     *
     * @return the shape parameter
     */
    public double getShape() {
        return shape;
    }

    /**
     * {@inheritDoc}
     *
     * <p>For scale {@code m}, and shape {@code s} of this distribution, the PDF is given by
     *
     * <ul>
     *   <li>{@code 0} if {@code x <= 0},
     *   <li>{@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)} otherwise.
     * </ul>
     */
    public double density(double x) {
        if (x <= 0) {
            return 0;
        }
        final double x0 = FastMath.log(x) - scale;
        final double x1 = x0 / shape;
        return FastMath.exp(-0.5 * x1 * x1) / (shape * SQRT2PI * x);
    }

    /**
     * {@inheritDoc}
     *
     * <p>See documentation of {@link #density(double)} for computation details.
     */
    @Override
    public double logDensity(double x) {
        if (x <= 0) {
            return Double.NEGATIVE_INFINITY;
        }
        final double logX = FastMath.log(x);
        final double x0 = logX - scale;
        final double x1 = x0 / shape;
        return -0.5 * x1 * x1 - (logShapePlusHalfLog2Pi + logX);
    }

    /**
     * {@inheritDoc}
     *
     * <p>For scale {@code m}, and shape {@code s} of this distribution, the CDF is given by
     *
     * <ul>
     *   <li>{@code 0} if {@code x <= 0},
     *   <li>{@code 0} if {@code ln(x) - m < 0} and {@code m - ln(x) > 40 * s}, as in these cases
     *       the actual value is within {@code Double.MIN_VALUE} of 0,
     *   <li>{@code 1} if {@code ln(x) - m >= 0} and {@code ln(x) - m > 40 * s}, as in these cases
     *       the actual value is within {@code Double.MIN_VALUE} of 1,
     *   <li>{@code 0.5 + 0.5 * erf((ln(x) - m) / (s * sqrt(2))} otherwise.
     * </ul>
     */
    public double cumulativeProbability(double x) {
        if (x <= 0) {
            return 0;
        }
        final double dev = FastMath.log(x) - scale;
        if (FastMath.abs(dev) > 40 * shape) {
            return dev < 0 ? 0.0d : 1.0d;
        }
        return 0.5 + 0.5 * Erf.erf(dev / (shape * SQRT2));
    }

    /**
     * {@inheritDoc}
     *
     * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)}
     */
    @Override
    @Deprecated
    public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException {
        return probability(x0, x1);
    }

    /** {@inheritDoc} */
    @Override
    public double probability(double x0, double x1) throws NumberIsTooLargeException {
        if (x0 > x1) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true);
        }
        if (x0 <= 0 || x1 <= 0) {
            return super.probability(x0, x1);
        }
        final double denom = shape * SQRT2;
        final double v0 = (FastMath.log(x0) - scale) / denom;
        final double v1 = (FastMath.log(x1) - scale) / denom;
        return 0.5 * Erf.erf(v0, v1);
    }

    /** {@inheritDoc} */
    @Override
    protected double getSolverAbsoluteAccuracy() {
        return solverAbsoluteAccuracy;
    }

    /**
     * {@inheritDoc}
     *
     * <p>For scale {@code m} and shape {@code s}, the mean is {@code exp(m + s^2 / 2)}.
     */
    public double getNumericalMean() {
        double s = shape;
        return FastMath.exp(scale + (s * s / 2));
    }

    /**
     * {@inheritDoc}
     *
     * <p>For scale {@code m} and shape {@code s}, the variance is {@code (exp(s^2) - 1) * exp(2 * m
     * + s^2)}.
     */
    public double getNumericalVariance() {
        final double s = shape;
        final double ss = s * s;
        return (FastMath.expm1(ss)) * FastMath.exp(2 * scale + ss);
    }

    /**
     * {@inheritDoc}
     *
     * <p>The lower bound of the support is always 0 no matter the parameters.
     *
     * @return lower bound of the support (always 0)
     */
    public double getSupportLowerBound() {
        return 0;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The upper bound of the support is always positive infinity no matter the parameters.
     *
     * @return upper bound of the support (always {@code Double.POSITIVE_INFINITY})
     */
    public double getSupportUpperBound() {
        return Double.POSITIVE_INFINITY;
    }

    /** {@inheritDoc} */
    public boolean isSupportLowerBoundInclusive() {
        return true;
    }

    /** {@inheritDoc} */
    public boolean isSupportUpperBoundInclusive() {
        return false;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The support of this distribution is connected.
     *
     * @return {@code true}
     */
    public boolean isSupportConnected() {
        return true;
    }

    /** {@inheritDoc} */
    @Override
    public double sample() {
        final double n = random.nextGaussian();
        return FastMath.exp(scale + shape * n);
    }
}