summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/MultivariateRealDistribution.java
blob: 050cfd5ab548534ad2f5c6d8d4b4bf897d2cb8a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;

/**
 * Base interface for multivariate distributions on the reals.
 *
 * <p>This is based largely on the RealDistribution interface, but cumulative distribution functions
 * are not required because they are often quite difficult to compute for multivariate
 * distributions.
 *
 * @since 3.1
 */
public interface MultivariateRealDistribution {
    /**
     * Returns the probability density function (PDF) of this distribution evaluated at the
     * specified point {@code x}. In general, the PDF is the derivative of the cumulative
     * distribution function. If the derivative does not exist at {@code x}, then an appropriate
     * replacement should be returned, e.g. {@code Double.POSITIVE_INFINITY}, {@code Double.NaN}, or
     * the limit inferior or limit superior of the difference quotient.
     *
     * @param x Point at which the PDF is evaluated.
     * @return the value of the probability density function at point {@code x}.
     */
    double density(double[] x);

    /**
     * Reseeds the random generator used to generate samples.
     *
     * @param seed Seed with which to initialize the random number generator.
     */
    void reseedRandomGenerator(long seed);

    /**
     * Gets the number of random variables of the distribution. It is the size of the array returned
     * by the {@link #sample() sample} method.
     *
     * @return the number of variables.
     */
    int getDimension();

    /**
     * Generates a random value vector sampled from this distribution.
     *
     * @return a random value vector.
     */
    double[] sample();

    /**
     * Generates a list of a random value vectors from the distribution.
     *
     * @param sampleSize the number of random vectors to generate.
     * @return an array representing the random samples.
     * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException if {@code sampleSize}
     *     is not positive.
     * @see #sample()
     */
    double[][] sample(int sampleSize) throws NotStrictlyPositiveException;
}