summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java
blob: 29a49c79787229a5aed1396c1a1b3cc9a69bc552 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import org.apache.commons.math3.analysis.function.HarmonicOscillator;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.util.FastMath;

import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

/**
 * Fits points to a {@link org.apache.commons.math3.analysis.function.HarmonicOscillator.Parametric
 * harmonic oscillator} function. <br>
 * The {@link #withStartPoint(double[]) initial guess values} must be passed in the following order:
 *
 * <ul>
 *   <li>Amplitude
 *   <li>Angular frequency
 *   <li>phase
 * </ul>
 *
 * The optimal values will be returned in the same order.
 *
 * @since 3.3
 */
public class HarmonicCurveFitter extends AbstractCurveFitter {
    /** Parametric function to be fitted. */
    private static final HarmonicOscillator.Parametric FUNCTION =
            new HarmonicOscillator.Parametric();

    /** Initial guess. */
    private final double[] initialGuess;

    /** Maximum number of iterations of the optimization algorithm. */
    private final int maxIter;

    /**
     * Contructor used by the factory methods.
     *
     * @param initialGuess Initial guess. If set to {@code null}, the initial guess will be
     *     estimated using the {@link ParameterGuesser}.
     * @param maxIter Maximum number of iterations of the optimization algorithm.
     */
    private HarmonicCurveFitter(double[] initialGuess, int maxIter) {
        this.initialGuess = initialGuess;
        this.maxIter = maxIter;
    }

    /**
     * Creates a default curve fitter. The initial guess for the parameters will be {@link
     * ParameterGuesser} computed automatically, and the maximum number of iterations of the
     * optimization algorithm is set to {@link Integer#MAX_VALUE}.
     *
     * @return a curve fitter.
     * @see #withStartPoint(double[])
     * @see #withMaxIterations(int)
     */
    public static HarmonicCurveFitter create() {
        return new HarmonicCurveFitter(null, Integer.MAX_VALUE);
    }

    /**
     * Configure the start point (initial guess).
     *
     * @param newStart new start point (initial guess)
     * @return a new instance.
     */
    public HarmonicCurveFitter withStartPoint(double[] newStart) {
        return new HarmonicCurveFitter(newStart.clone(), maxIter);
    }

    /**
     * Configure the maximum number of iterations.
     *
     * @param newMaxIter maximum number of iterations
     * @return a new instance.
     */
    public HarmonicCurveFitter withMaxIterations(int newMaxIter) {
        return new HarmonicCurveFitter(initialGuess, newMaxIter);
    }

    /** {@inheritDoc} */
    @Override
    protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
        // Prepare least-squares problem.
        final int len = observations.size();
        final double[] target = new double[len];
        final double[] weights = new double[len];

        int i = 0;
        for (WeightedObservedPoint obs : observations) {
            target[i] = obs.getY();
            weights[i] = obs.getWeight();
            ++i;
        }

        final AbstractCurveFitter.TheoreticalValuesFunction model =
                new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations);

        final double[] startPoint =
                initialGuess != null
                        ? initialGuess
                        :
                        // Compute estimation.
                        new ParameterGuesser(observations).guess();

        // Return a new optimizer set up to fit a Gaussian curve to the
        // observed points.
        return new LeastSquaresBuilder()
                .maxEvaluations(Integer.MAX_VALUE)
                .maxIterations(maxIter)
                .start(startPoint)
                .target(target)
                .weight(new DiagonalMatrix(weights))
                .model(model.getModelFunction(), model.getModelFunctionJacobian())
                .build();
    }

    /**
     * This class guesses harmonic coefficients from a sample.
     *
     * <p>The algorithm used to guess the coefficients is as follows:
     *
     * <p>We know \( f(t) \) at some sampling points \( t_i \) and want to find \( a \), \( \omega
     * \) and \( \phi \) such that \( f(t) = a \cos (\omega t + \phi) \).
     *
     * <p>From the analytical expression, we can compute two primitives : \[ If2(t) = \int f^2 dt =
     * a^2 (t + S(t)) / 2 \] \[ If'2(t) = \int f'^2 dt = a^2 \omega^2 (t - S(t)) / 2 \] where \(S(t)
     * = \frac{\sin(2 (\omega t + \phi))}{2\omega}\)
     *
     * <p>We can remove \(S\) between these expressions : \[ If'2(t) = a^2 \omega^2 t - \omega^2
     * If2(t) \]
     *
     * <p>The preceding expression shows that \(If'2 (t)\) is a linear combination of both \(t\) and
     * \(If2(t)\): \[ If'2(t) = A t + B If2(t) \]
     *
     * <p>From the primitive, we can deduce the same form for definite integrals between \(t_1\) and
     * \(t_i\) for each \(t_i\) : \[ If2(t_i) - If2(t_1) = A (t_i - t_1) + B (If2 (t_i) - If2(t_1))
     * \]
     *
     * <p>We can find the coefficients \(A\) and \(B\) that best fit the sample to this linear
     * expression by computing the definite integrals for each sample points.
     *
     * <p>For a bilinear expression \(z(x_i, y_i) = A x_i + B y_i\), the coefficients \(A\) and
     * \(B\) that minimize a least-squares criterion \(\sum (z_i - z(x_i, y_i))^2\) are given by
     * these expressions: \[ A = \frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i} {\sum
     * x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i} \] \[ B = \frac{\sum x_i x_i \sum y_i z_i -
     * \sum x_i y_i \sum x_i z_i} {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}
     *
     * <p>\]
     *
     * <p>In fact, we can assume that both \(a\) and \(\omega\) are positive and compute them
     * directly, knowing that \(A = a^2 \omega^2\) and that \(B = -\omega^2\). The complete
     * algorithm is therefore: For each \(t_i\) from \(t_1\) to \(t_{n-1}\), compute: \[ f(t_i) \]
     * \[ f'(t_i) = \frac{f (t_{i+1}) - f(t_{i-1})}{t_{i+1} - t_{i-1}} \] \[ x_i = t_i - t_1 \] \[
     * y_i = \int_{t_1}^{t_i} f^2(t) dt \] \[ z_i = \int_{t_1}^{t_i} f'^2(t) dt \] and update the
     * sums: \[ \sum x_i x_i, \sum y_i y_i, \sum x_i y_i, \sum x_i z_i, \sum y_i z_i \]
     *
     * <p>Then: \[ a = \sqrt{\frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i } {\sum x_i
     * y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i }} \] \[ \omega = \sqrt{\frac{\sum x_i y_i \sum
     * x_i z_i - \sum x_i x_i \sum y_i z_i} {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}}
     * \]
     *
     * <p>Once we know \(\omega\) we can compute: \[ fc = \omega f(t) \cos(\omega t) - f'(t)
     * \sin(\omega t) \] \[ fs = \omega f(t) \sin(\omega t) + f'(t) \cos(\omega t) \]
     *
     * <p>It appears that \(fc = a \omega \cos(\phi)\) and \(fs = -a \omega \sin(\phi)\), so we can
     * use these expressions to compute \(\phi\). The best estimate over the sample is given by
     * averaging these expressions.
     *
     * <p>Since integrals and means are involved in the preceding estimations, these operations run
     * in \(O(n)\) time, where \(n\) is the number of measurements.
     */
    public static class ParameterGuesser {
        /** Amplitude. */
        private final double a;

        /** Angular frequency. */
        private final double omega;

        /** Phase. */
        private final double phi;

        /**
         * Simple constructor.
         *
         * @param observations Sampled observations.
         * @throws NumberIsTooSmallException if the sample is too short.
         * @throws ZeroException if the abscissa range is zero.
         * @throws MathIllegalStateException when the guessing procedure cannot produce sensible
         *     results.
         */
        public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
            if (observations.size() < 4) {
                throw new NumberIsTooSmallException(
                        LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
                        observations.size(),
                        4,
                        true);
            }

            final WeightedObservedPoint[] sorted =
                    sortObservations(observations).toArray(new WeightedObservedPoint[0]);

            final double aOmega[] = guessAOmega(sorted);
            a = aOmega[0];
            omega = aOmega[1];

            phi = guessPhi(sorted);
        }

        /**
         * Gets an estimation of the parameters.
         *
         * @return the guessed parameters, in the following order:
         *     <ul>
         *       <li>Amplitude
         *       <li>Angular frequency
         *       <li>Phase
         *     </ul>
         */
        public double[] guess() {
            return new double[] {a, omega, phi};
        }

        /**
         * Sort the observations with respect to the abscissa.
         *
         * @param unsorted Input observations.
         * @return the input observations, sorted.
         */
        private List<WeightedObservedPoint> sortObservations(
                Collection<WeightedObservedPoint> unsorted) {
            final List<WeightedObservedPoint> observations =
                    new ArrayList<WeightedObservedPoint>(unsorted);

            // Since the samples are almost always already sorted, this
            // method is implemented as an insertion sort that reorders the
            // elements in place. Insertion sort is very efficient in this case.
            WeightedObservedPoint curr = observations.get(0);
            final int len = observations.size();
            for (int j = 1; j < len; j++) {
                WeightedObservedPoint prec = curr;
                curr = observations.get(j);
                if (curr.getX() < prec.getX()) {
                    // the current element should be inserted closer to the beginning
                    int i = j - 1;
                    WeightedObservedPoint mI = observations.get(i);
                    while ((i >= 0) && (curr.getX() < mI.getX())) {
                        observations.set(i + 1, mI);
                        if (i-- != 0) {
                            mI = observations.get(i);
                        }
                    }
                    observations.set(i + 1, curr);
                    curr = observations.get(j);
                }
            }

            return observations;
        }

        /**
         * Estimate a first guess of the amplitude and angular frequency.
         *
         * @param observations Observations, sorted w.r.t. abscissa.
         * @throws ZeroException if the abscissa range is zero.
         * @throws MathIllegalStateException when the guessing procedure cannot produce sensible
         *     results.
         * @return the guessed amplitude (at index 0) and circular frequency (at index 1).
         */
        private double[] guessAOmega(WeightedObservedPoint[] observations) {
            final double[] aOmega = new double[2];

            // initialize the sums for the linear model between the two integrals
            double sx2 = 0;
            double sy2 = 0;
            double sxy = 0;
            double sxz = 0;
            double syz = 0;

            double currentX = observations[0].getX();
            double currentY = observations[0].getY();
            double f2Integral = 0;
            double fPrime2Integral = 0;
            final double startX = currentX;
            for (int i = 1; i < observations.length; ++i) {
                // one step forward
                final double previousX = currentX;
                final double previousY = currentY;
                currentX = observations[i].getX();
                currentY = observations[i].getY();

                // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
                // considering a linear model for f (and therefore constant f')
                final double dx = currentX - previousX;
                final double dy = currentY - previousY;
                final double f2StepIntegral =
                        dx
                                * (previousY * previousY
                                        + previousY * currentY
                                        + currentY * currentY)
                                / 3;
                final double fPrime2StepIntegral = dy * dy / dx;

                final double x = currentX - startX;
                f2Integral += f2StepIntegral;
                fPrime2Integral += fPrime2StepIntegral;

                sx2 += x * x;
                sy2 += f2Integral * f2Integral;
                sxy += x * f2Integral;
                sxz += x * fPrime2Integral;
                syz += f2Integral * fPrime2Integral;
            }

            // compute the amplitude and pulsation coefficients
            double c1 = sy2 * sxz - sxy * syz;
            double c2 = sxy * sxz - sx2 * syz;
            double c3 = sx2 * sy2 - sxy * sxy;
            if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
                final int last = observations.length - 1;
                // Range of the observations, assuming that the
                // observations are sorted.
                final double xRange = observations[last].getX() - observations[0].getX();
                if (xRange == 0) {
                    throw new ZeroException();
                }
                aOmega[1] = 2 * Math.PI / xRange;

                double yMin = Double.POSITIVE_INFINITY;
                double yMax = Double.NEGATIVE_INFINITY;
                for (int i = 1; i < observations.length; ++i) {
                    final double y = observations[i].getY();
                    if (y < yMin) {
                        yMin = y;
                    }
                    if (y > yMax) {
                        yMax = y;
                    }
                }
                aOmega[0] = 0.5 * (yMax - yMin);
            } else {
                if (c2 == 0) {
                    // In some ill-conditioned cases (cf. MATH-844), the guesser
                    // procedure cannot produce sensible results.
                    throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR);
                }

                aOmega[0] = FastMath.sqrt(c1 / c2);
                aOmega[1] = FastMath.sqrt(c2 / c3);
            }

            return aOmega;
        }

        /**
         * Estimate a first guess of the phase.
         *
         * @param observations Observations, sorted w.r.t. abscissa.
         * @return the guessed phase.
         */
        private double guessPhi(WeightedObservedPoint[] observations) {
            // initialize the means
            double fcMean = 0;
            double fsMean = 0;

            double currentX = observations[0].getX();
            double currentY = observations[0].getY();
            for (int i = 1; i < observations.length; ++i) {
                // one step forward
                final double previousX = currentX;
                final double previousY = currentY;
                currentX = observations[i].getX();
                currentY = observations[i].getY();
                final double currentYPrime = (currentY - previousY) / (currentX - previousX);

                double omegaX = omega * currentX;
                double cosine = FastMath.cos(omegaX);
                double sine = FastMath.sin(omegaX);
                fcMean += omega * currentY * cosine - currentYPrime * sine;
                fsMean += omega * currentY * sine + currentYPrime * cosine;
            }

            return FastMath.atan2(-fsMean, fcMean);
        }
    }
}