summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/linear/EigenDecomposition.java
blob: 505897fa6686e789879867b58a4c06f626cdee52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.MathUnsupportedOperationException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * Calculates the eigen decomposition of a real matrix.
 *
 * <p>The eigen decomposition of matrix A is a set of two matrices: V and D such that A = V &times;
 * D &times; V<sup>T</sup>. A, V and D are all m &times; m matrices.
 *
 * <p>This class is similar in spirit to the <code>EigenvalueDecomposition</code> class from the <a
 * href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the following changes:
 *
 * <ul>
 *   <li>a {@link #getVT() getVt} method has been added,
 *   <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and {@link #getImagEigenvalue(int)
 *       getImagEigenvalue} methods to pick up a single eigenvalue have been added,
 *   <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a single eigenvector has
 *       been added,
 *   <li>a {@link #getDeterminant() getDeterminant} method has been added.
 *   <li>a {@link #getSolver() getSolver} method has been added.
 * </ul>
 *
 * <p>As of 3.1, this class supports general real matrices (both symmetric and non-symmetric):
 *
 * <p>If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the
 * eigenvector matrix V is orthogonal, i.e. A = V.multiply(D.multiply(V.transpose())) and
 * V.multiply(V.transpose()) equals the identity matrix.
 *
 * <p>If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real
 * eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks:
 *
 * <pre>
 *    [lambda, mu    ]
 *    [   -mu, lambda]
 * </pre>
 *
 * The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.multiply(V)
 * equals V.multiply(D). The matrix V may be badly conditioned, or even singular, so the validity of
 * the equation A = V*D*inverse(V) depends upon the condition of V.
 *
 * <p>This implementation is based on the paper by A. Drubrulle, R.S. Martin and J.H. Wilkinson "The
 * Implicit QL Algorithm" in Wilksinson and Reinsch (1971) Handbook for automatic computation, vol.
 * 2, Linear algebra, Springer-Verlag, New-York
 *
 * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
 * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
 * @since 2.0 (changed to concrete class in 3.0)
 */
public class EigenDecomposition {
    /** Internally used epsilon criteria. */
    private static final double EPSILON = 1e-12;

    /** Maximum number of iterations accepted in the implicit QL transformation */
    private byte maxIter = 30;

    /** Main diagonal of the tridiagonal matrix. */
    private double[] main;

    /** Secondary diagonal of the tridiagonal matrix. */
    private double[] secondary;

    /** Transformer to tridiagonal (may be null if matrix is already tridiagonal). */
    private TriDiagonalTransformer transformer;

    /** Real part of the realEigenvalues. */
    private double[] realEigenvalues;

    /** Imaginary part of the realEigenvalues. */
    private double[] imagEigenvalues;

    /** Eigenvectors. */
    private ArrayRealVector[] eigenvectors;

    /** Cached value of V. */
    private RealMatrix cachedV;

    /** Cached value of D. */
    private RealMatrix cachedD;

    /** Cached value of Vt. */
    private RealMatrix cachedVt;

    /** Whether the matrix is symmetric. */
    private final boolean isSymmetric;

    /**
     * Calculates the eigen decomposition of the given real matrix.
     *
     * <p>Supports decomposition of a general matrix since 3.1.
     *
     * @param matrix Matrix to decompose.
     * @throws MaxCountExceededException if the algorithm fails to converge.
     * @throws MathArithmeticException if the decomposition of a general matrix results in a matrix
     *     with zero norm
     * @since 3.1
     */
    public EigenDecomposition(final RealMatrix matrix) throws MathArithmeticException {
        final double symTol =
                10 * matrix.getRowDimension() * matrix.getColumnDimension() * Precision.EPSILON;
        isSymmetric = MatrixUtils.isSymmetric(matrix, symTol);
        if (isSymmetric) {
            transformToTridiagonal(matrix);
            findEigenVectors(transformer.getQ().getData());
        } else {
            final SchurTransformer t = transformToSchur(matrix);
            findEigenVectorsFromSchur(t);
        }
    }

    /**
     * Calculates the eigen decomposition of the given real matrix.
     *
     * @param matrix Matrix to decompose.
     * @param splitTolerance Dummy parameter (present for backward compatibility only).
     * @throws MathArithmeticException if the decomposition of a general matrix results in a matrix
     *     with zero norm
     * @throws MaxCountExceededException if the algorithm fails to converge.
     * @deprecated in 3.1 (to be removed in 4.0) due to unused parameter
     */
    @Deprecated
    public EigenDecomposition(final RealMatrix matrix, final double splitTolerance)
            throws MathArithmeticException {
        this(matrix);
    }

    /**
     * Calculates the eigen decomposition of the symmetric tridiagonal matrix. The Householder
     * matrix is assumed to be the identity matrix.
     *
     * @param main Main diagonal of the symmetric tridiagonal form.
     * @param secondary Secondary of the tridiagonal form.
     * @throws MaxCountExceededException if the algorithm fails to converge.
     * @since 3.1
     */
    public EigenDecomposition(final double[] main, final double[] secondary) {
        isSymmetric = true;
        this.main = main.clone();
        this.secondary = secondary.clone();
        transformer = null;
        final int size = main.length;
        final double[][] z = new double[size][size];
        for (int i = 0; i < size; i++) {
            z[i][i] = 1.0;
        }
        findEigenVectors(z);
    }

    /**
     * Calculates the eigen decomposition of the symmetric tridiagonal matrix. The Householder
     * matrix is assumed to be the identity matrix.
     *
     * @param main Main diagonal of the symmetric tridiagonal form.
     * @param secondary Secondary of the tridiagonal form.
     * @param splitTolerance Dummy parameter (present for backward compatibility only).
     * @throws MaxCountExceededException if the algorithm fails to converge.
     * @deprecated in 3.1 (to be removed in 4.0) due to unused parameter
     */
    @Deprecated
    public EigenDecomposition(
            final double[] main, final double[] secondary, final double splitTolerance) {
        this(main, secondary);
    }

    /**
     * Gets the matrix V of the decomposition. V is an orthogonal matrix, i.e. its transpose is also
     * its inverse. The columns of V are the eigenvectors of the original matrix. No assumption is
     * made about the orientation of the system axes formed by the columns of V (e.g. in a
     * 3-dimension space, V can form a left- or right-handed system).
     *
     * @return the V matrix.
     */
    public RealMatrix getV() {

        if (cachedV == null) {
            final int m = eigenvectors.length;
            cachedV = MatrixUtils.createRealMatrix(m, m);
            for (int k = 0; k < m; ++k) {
                cachedV.setColumnVector(k, eigenvectors[k]);
            }
        }
        // return the cached matrix
        return cachedV;
    }

    /**
     * Gets the block diagonal matrix D of the decomposition. D is a block diagonal matrix. Real
     * eigenvalues are on the diagonal while complex values are on 2x2 blocks { {real +imaginary},
     * {-imaginary, real} }.
     *
     * @return the D matrix.
     * @see #getRealEigenvalues()
     * @see #getImagEigenvalues()
     */
    public RealMatrix getD() {

        if (cachedD == null) {
            // cache the matrix for subsequent calls
            cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues);

            for (int i = 0; i < imagEigenvalues.length; i++) {
                if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) > 0) {
                    cachedD.setEntry(i, i + 1, imagEigenvalues[i]);
                } else if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
                    cachedD.setEntry(i, i - 1, imagEigenvalues[i]);
                }
            }
        }
        return cachedD;
    }

    /**
     * Gets the transpose of the matrix V of the decomposition. V is an orthogonal matrix, i.e. its
     * transpose is also its inverse. The columns of V are the eigenvectors of the original matrix.
     * No assumption is made about the orientation of the system axes formed by the columns of V
     * (e.g. in a 3-dimension space, V can form a left- or right-handed system).
     *
     * @return the transpose of the V matrix.
     */
    public RealMatrix getVT() {

        if (cachedVt == null) {
            final int m = eigenvectors.length;
            cachedVt = MatrixUtils.createRealMatrix(m, m);
            for (int k = 0; k < m; ++k) {
                cachedVt.setRowVector(k, eigenvectors[k]);
            }
        }

        // return the cached matrix
        return cachedVt;
    }

    /**
     * Returns whether the calculated eigen values are complex or real.
     *
     * <p>The method performs a zero check for each element of the {@link #getImagEigenvalues()}
     * array and returns {@code true} if any element is not equal to zero.
     *
     * @return {@code true} if the eigen values are complex, {@code false} otherwise
     * @since 3.1
     */
    public boolean hasComplexEigenvalues() {
        for (int i = 0; i < imagEigenvalues.length; i++) {
            if (!Precision.equals(imagEigenvalues[i], 0.0, EPSILON)) {
                return true;
            }
        }
        return false;
    }

    /**
     * Gets a copy of the real parts of the eigenvalues of the original matrix.
     *
     * @return a copy of the real parts of the eigenvalues of the original matrix.
     * @see #getD()
     * @see #getRealEigenvalue(int)
     * @see #getImagEigenvalues()
     */
    public double[] getRealEigenvalues() {
        return realEigenvalues.clone();
    }

    /**
     * Returns the real part of the i<sup>th</sup> eigenvalue of the original matrix.
     *
     * @param i index of the eigenvalue (counting from 0)
     * @return real part of the i<sup>th</sup> eigenvalue of the original matrix.
     * @see #getD()
     * @see #getRealEigenvalues()
     * @see #getImagEigenvalue(int)
     */
    public double getRealEigenvalue(final int i) {
        return realEigenvalues[i];
    }

    /**
     * Gets a copy of the imaginary parts of the eigenvalues of the original matrix.
     *
     * @return a copy of the imaginary parts of the eigenvalues of the original matrix.
     * @see #getD()
     * @see #getImagEigenvalue(int)
     * @see #getRealEigenvalues()
     */
    public double[] getImagEigenvalues() {
        return imagEigenvalues.clone();
    }

    /**
     * Gets the imaginary part of the i<sup>th</sup> eigenvalue of the original matrix.
     *
     * @param i Index of the eigenvalue (counting from 0).
     * @return the imaginary part of the i<sup>th</sup> eigenvalue of the original matrix.
     * @see #getD()
     * @see #getImagEigenvalues()
     * @see #getRealEigenvalue(int)
     */
    public double getImagEigenvalue(final int i) {
        return imagEigenvalues[i];
    }

    /**
     * Gets a copy of the i<sup>th</sup> eigenvector of the original matrix.
     *
     * @param i Index of the eigenvector (counting from 0).
     * @return a copy of the i<sup>th</sup> eigenvector of the original matrix.
     * @see #getD()
     */
    public RealVector getEigenvector(final int i) {
        return eigenvectors[i].copy();
    }

    /**
     * Computes the determinant of the matrix.
     *
     * @return the determinant of the matrix.
     */
    public double getDeterminant() {
        double determinant = 1;
        for (double lambda : realEigenvalues) {
            determinant *= lambda;
        }
        return determinant;
    }

    /**
     * Computes the square-root of the matrix. This implementation assumes that the matrix is
     * symmetric and positive definite.
     *
     * @return the square-root of the matrix.
     * @throws MathUnsupportedOperationException if the matrix is not symmetric or not positive
     *     definite.
     * @since 3.1
     */
    public RealMatrix getSquareRoot() {
        if (!isSymmetric) {
            throw new MathUnsupportedOperationException();
        }

        final double[] sqrtEigenValues = new double[realEigenvalues.length];
        for (int i = 0; i < realEigenvalues.length; i++) {
            final double eigen = realEigenvalues[i];
            if (eigen <= 0) {
                throw new MathUnsupportedOperationException();
            }
            sqrtEigenValues[i] = FastMath.sqrt(eigen);
        }
        final RealMatrix sqrtEigen = MatrixUtils.createRealDiagonalMatrix(sqrtEigenValues);
        final RealMatrix v = getV();
        final RealMatrix vT = getVT();

        return v.multiply(sqrtEigen).multiply(vT);
    }

    /**
     * Gets a solver for finding the A &times; X = B solution in exact linear sense.
     *
     * <p>Since 3.1, eigen decomposition of a general matrix is supported, but the {@link
     * DecompositionSolver} only supports real eigenvalues.
     *
     * @return a solver
     * @throws MathUnsupportedOperationException if the decomposition resulted in complex
     *     eigenvalues
     */
    public DecompositionSolver getSolver() {
        if (hasComplexEigenvalues()) {
            throw new MathUnsupportedOperationException();
        }
        return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
    }

    /** Specialized solver. */
    private static class Solver implements DecompositionSolver {
        /** Real part of the realEigenvalues. */
        private double[] realEigenvalues;

        /** Imaginary part of the realEigenvalues. */
        private double[] imagEigenvalues;

        /** Eigenvectors. */
        private final ArrayRealVector[] eigenvectors;

        /**
         * Builds a solver from decomposed matrix.
         *
         * @param realEigenvalues Real parts of the eigenvalues.
         * @param imagEigenvalues Imaginary parts of the eigenvalues.
         * @param eigenvectors Eigenvectors.
         */
        private Solver(
                final double[] realEigenvalues,
                final double[] imagEigenvalues,
                final ArrayRealVector[] eigenvectors) {
            this.realEigenvalues = realEigenvalues;
            this.imagEigenvalues = imagEigenvalues;
            this.eigenvectors = eigenvectors;
        }

        /**
         * Solves the linear equation A &times; X = B for symmetric matrices A.
         *
         * <p>This method only finds exact linear solutions, i.e. solutions for which ||A &times; X
         * - B|| is exactly 0.
         *
         * @param b Right-hand side of the equation A &times; X = B.
         * @return a Vector X that minimizes the two norm of A &times; X - B.
         * @throws DimensionMismatchException if the matrices dimensions do not match.
         * @throws SingularMatrixException if the decomposed matrix is singular.
         */
        public RealVector solve(final RealVector b) {
            if (!isNonSingular()) {
                throw new SingularMatrixException();
            }

            final int m = realEigenvalues.length;
            if (b.getDimension() != m) {
                throw new DimensionMismatchException(b.getDimension(), m);
            }

            final double[] bp = new double[m];
            for (int i = 0; i < m; ++i) {
                final ArrayRealVector v = eigenvectors[i];
                final double[] vData = v.getDataRef();
                final double s = v.dotProduct(b) / realEigenvalues[i];
                for (int j = 0; j < m; ++j) {
                    bp[j] += s * vData[j];
                }
            }

            return new ArrayRealVector(bp, false);
        }

        /** {@inheritDoc} */
        public RealMatrix solve(RealMatrix b) {

            if (!isNonSingular()) {
                throw new SingularMatrixException();
            }

            final int m = realEigenvalues.length;
            if (b.getRowDimension() != m) {
                throw new DimensionMismatchException(b.getRowDimension(), m);
            }

            final int nColB = b.getColumnDimension();
            final double[][] bp = new double[m][nColB];
            final double[] tmpCol = new double[m];
            for (int k = 0; k < nColB; ++k) {
                for (int i = 0; i < m; ++i) {
                    tmpCol[i] = b.getEntry(i, k);
                    bp[i][k] = 0;
                }
                for (int i = 0; i < m; ++i) {
                    final ArrayRealVector v = eigenvectors[i];
                    final double[] vData = v.getDataRef();
                    double s = 0;
                    for (int j = 0; j < m; ++j) {
                        s += v.getEntry(j) * tmpCol[j];
                    }
                    s /= realEigenvalues[i];
                    for (int j = 0; j < m; ++j) {
                        bp[j][k] += s * vData[j];
                    }
                }
            }

            return new Array2DRowRealMatrix(bp, false);
        }

        /**
         * Checks whether the decomposed matrix is non-singular.
         *
         * @return true if the decomposed matrix is non-singular.
         */
        public boolean isNonSingular() {
            double largestEigenvalueNorm = 0.0;
            // Looping over all values (in case they are not sorted in decreasing
            // order of their norm).
            for (int i = 0; i < realEigenvalues.length; ++i) {
                largestEigenvalueNorm = FastMath.max(largestEigenvalueNorm, eigenvalueNorm(i));
            }
            // Corner case: zero matrix, all exactly 0 eigenvalues
            if (largestEigenvalueNorm == 0.0) {
                return false;
            }
            for (int i = 0; i < realEigenvalues.length; ++i) {
                // Looking for eigenvalues that are 0, where we consider anything much much smaller
                // than the largest eigenvalue to be effectively 0.
                if (Precision.equals(eigenvalueNorm(i) / largestEigenvalueNorm, 0, EPSILON)) {
                    return false;
                }
            }
            return true;
        }

        /**
         * @param i which eigenvalue to find the norm of
         * @return the norm of ith (complex) eigenvalue.
         */
        private double eigenvalueNorm(int i) {
            final double re = realEigenvalues[i];
            final double im = imagEigenvalues[i];
            return FastMath.sqrt(re * re + im * im);
        }

        /**
         * Get the inverse of the decomposed matrix.
         *
         * @return the inverse matrix.
         * @throws SingularMatrixException if the decomposed matrix is singular.
         */
        public RealMatrix getInverse() {
            if (!isNonSingular()) {
                throw new SingularMatrixException();
            }

            final int m = realEigenvalues.length;
            final double[][] invData = new double[m][m];

            for (int i = 0; i < m; ++i) {
                final double[] invI = invData[i];
                for (int j = 0; j < m; ++j) {
                    double invIJ = 0;
                    for (int k = 0; k < m; ++k) {
                        final double[] vK = eigenvectors[k].getDataRef();
                        invIJ += vK[i] * vK[j] / realEigenvalues[k];
                    }
                    invI[j] = invIJ;
                }
            }
            return MatrixUtils.createRealMatrix(invData);
        }
    }

    /**
     * Transforms the matrix to tridiagonal form.
     *
     * @param matrix Matrix to transform.
     */
    private void transformToTridiagonal(final RealMatrix matrix) {
        // transform the matrix to tridiagonal
        transformer = new TriDiagonalTransformer(matrix);
        main = transformer.getMainDiagonalRef();
        secondary = transformer.getSecondaryDiagonalRef();
    }

    /**
     * Find eigenvalues and eigenvectors (Dubrulle et al., 1971)
     *
     * @param householderMatrix Householder matrix of the transformation to tridiagonal form.
     */
    private void findEigenVectors(final double[][] householderMatrix) {
        final double[][] z = householderMatrix.clone();
        final int n = main.length;
        realEigenvalues = new double[n];
        imagEigenvalues = new double[n];
        final double[] e = new double[n];
        for (int i = 0; i < n - 1; i++) {
            realEigenvalues[i] = main[i];
            e[i] = secondary[i];
        }
        realEigenvalues[n - 1] = main[n - 1];
        e[n - 1] = 0;

        // Determine the largest main and secondary value in absolute term.
        double maxAbsoluteValue = 0;
        for (int i = 0; i < n; i++) {
            if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
                maxAbsoluteValue = FastMath.abs(realEigenvalues[i]);
            }
            if (FastMath.abs(e[i]) > maxAbsoluteValue) {
                maxAbsoluteValue = FastMath.abs(e[i]);
            }
        }
        // Make null any main and secondary value too small to be significant
        if (maxAbsoluteValue != 0) {
            for (int i = 0; i < n; i++) {
                if (FastMath.abs(realEigenvalues[i]) <= Precision.EPSILON * maxAbsoluteValue) {
                    realEigenvalues[i] = 0;
                }
                if (FastMath.abs(e[i]) <= Precision.EPSILON * maxAbsoluteValue) {
                    e[i] = 0;
                }
            }
        }

        for (int j = 0; j < n; j++) {
            int its = 0;
            int m;
            do {
                for (m = j; m < n - 1; m++) {
                    double delta =
                            FastMath.abs(realEigenvalues[m]) + FastMath.abs(realEigenvalues[m + 1]);
                    if (FastMath.abs(e[m]) + delta == delta) {
                        break;
                    }
                }
                if (m != j) {
                    if (its == maxIter) {
                        throw new MaxCountExceededException(
                                LocalizedFormats.CONVERGENCE_FAILED, maxIter);
                    }
                    its++;
                    double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
                    double t = FastMath.sqrt(1 + q * q);
                    if (q < 0.0) {
                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
                    } else {
                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
                    }
                    double u = 0.0;
                    double s = 1.0;
                    double c = 1.0;
                    int i;
                    for (i = m - 1; i >= j; i--) {
                        double p = s * e[i];
                        double h = c * e[i];
                        if (FastMath.abs(p) >= FastMath.abs(q)) {
                            c = q / p;
                            t = FastMath.sqrt(c * c + 1.0);
                            e[i + 1] = p * t;
                            s = 1.0 / t;
                            c *= s;
                        } else {
                            s = p / q;
                            t = FastMath.sqrt(s * s + 1.0);
                            e[i + 1] = q * t;
                            c = 1.0 / t;
                            s *= c;
                        }
                        if (e[i + 1] == 0.0) {
                            realEigenvalues[i + 1] -= u;
                            e[m] = 0.0;
                            break;
                        }
                        q = realEigenvalues[i + 1] - u;
                        t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
                        u = s * t;
                        realEigenvalues[i + 1] = q + u;
                        q = c * t - h;
                        for (int ia = 0; ia < n; ia++) {
                            p = z[ia][i + 1];
                            z[ia][i + 1] = s * z[ia][i] + c * p;
                            z[ia][i] = c * z[ia][i] - s * p;
                        }
                    }
                    if (t == 0.0 && i >= j) {
                        continue;
                    }
                    realEigenvalues[j] -= u;
                    e[j] = q;
                    e[m] = 0.0;
                }
            } while (m != j);
        }

        // Sort the eigen values (and vectors) in increase order
        for (int i = 0; i < n; i++) {
            int k = i;
            double p = realEigenvalues[i];
            for (int j = i + 1; j < n; j++) {
                if (realEigenvalues[j] > p) {
                    k = j;
                    p = realEigenvalues[j];
                }
            }
            if (k != i) {
                realEigenvalues[k] = realEigenvalues[i];
                realEigenvalues[i] = p;
                for (int j = 0; j < n; j++) {
                    p = z[j][i];
                    z[j][i] = z[j][k];
                    z[j][k] = p;
                }
            }
        }

        // Determine the largest eigen value in absolute term.
        maxAbsoluteValue = 0;
        for (int i = 0; i < n; i++) {
            if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
                maxAbsoluteValue = FastMath.abs(realEigenvalues[i]);
            }
        }
        // Make null any eigen value too small to be significant
        if (maxAbsoluteValue != 0.0) {
            for (int i = 0; i < n; i++) {
                if (FastMath.abs(realEigenvalues[i]) < Precision.EPSILON * maxAbsoluteValue) {
                    realEigenvalues[i] = 0;
                }
            }
        }
        eigenvectors = new ArrayRealVector[n];
        final double[] tmp = new double[n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                tmp[j] = z[j][i];
            }
            eigenvectors[i] = new ArrayRealVector(tmp);
        }
    }

    /**
     * Transforms the matrix to Schur form and calculates the eigenvalues.
     *
     * @param matrix Matrix to transform.
     * @return the {@link SchurTransformer Shur transform} for this matrix
     */
    private SchurTransformer transformToSchur(final RealMatrix matrix) {
        final SchurTransformer schurTransform = new SchurTransformer(matrix);
        final double[][] matT = schurTransform.getT().getData();

        realEigenvalues = new double[matT.length];
        imagEigenvalues = new double[matT.length];

        for (int i = 0; i < realEigenvalues.length; i++) {
            if (i == (realEigenvalues.length - 1)
                    || Precision.equals(matT[i + 1][i], 0.0, EPSILON)) {
                realEigenvalues[i] = matT[i][i];
            } else {
                final double x = matT[i + 1][i + 1];
                final double p = 0.5 * (matT[i][i] - x);
                final double z =
                        FastMath.sqrt(FastMath.abs(p * p + matT[i + 1][i] * matT[i][i + 1]));
                realEigenvalues[i] = x + p;
                imagEigenvalues[i] = z;
                realEigenvalues[i + 1] = x + p;
                imagEigenvalues[i + 1] = -z;
                i++;
            }
        }
        return schurTransform;
    }

    /**
     * Performs a division of two complex numbers.
     *
     * @param xr real part of the first number
     * @param xi imaginary part of the first number
     * @param yr real part of the second number
     * @param yi imaginary part of the second number
     * @return result of the complex division
     */
    private Complex cdiv(final double xr, final double xi, final double yr, final double yi) {
        return new Complex(xr, xi).divide(new Complex(yr, yi));
    }

    /**
     * Find eigenvectors from a matrix transformed to Schur form.
     *
     * @param schur the schur transformation of the matrix
     * @throws MathArithmeticException if the Schur form has a norm of zero
     */
    private void findEigenVectorsFromSchur(final SchurTransformer schur)
            throws MathArithmeticException {
        final double[][] matrixT = schur.getT().getData();
        final double[][] matrixP = schur.getP().getData();

        final int n = matrixT.length;

        // compute matrix norm
        double norm = 0.0;
        for (int i = 0; i < n; i++) {
            for (int j = FastMath.max(i - 1, 0); j < n; j++) {
                norm += FastMath.abs(matrixT[i][j]);
            }
        }

        // we can not handle a matrix with zero norm
        if (Precision.equals(norm, 0.0, EPSILON)) {
            throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
        }

        // Backsubstitute to find vectors of upper triangular form

        double r = 0.0;
        double s = 0.0;
        double z = 0.0;

        for (int idx = n - 1; idx >= 0; idx--) {
            double p = realEigenvalues[idx];
            double q = imagEigenvalues[idx];

            if (Precision.equals(q, 0.0)) {
                // Real vector
                int l = idx;
                matrixT[idx][idx] = 1.0;
                for (int i = idx - 1; i >= 0; i--) {
                    double w = matrixT[i][i] - p;
                    r = 0.0;
                    for (int j = l; j <= idx; j++) {
                        r += matrixT[i][j] * matrixT[j][idx];
                    }
                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
                        z = w;
                        s = r;
                    } else {
                        l = i;
                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
                            if (w != 0.0) {
                                matrixT[i][idx] = -r / w;
                            } else {
                                matrixT[i][idx] = -r / (Precision.EPSILON * norm);
                            }
                        } else {
                            // Solve real equations
                            double x = matrixT[i][i + 1];
                            double y = matrixT[i + 1][i];
                            q =
                                    (realEigenvalues[i] - p) * (realEigenvalues[i] - p)
                                            + imagEigenvalues[i] * imagEigenvalues[i];
                            double t = (x * s - z * r) / q;
                            matrixT[i][idx] = t;
                            if (FastMath.abs(x) > FastMath.abs(z)) {
                                matrixT[i + 1][idx] = (-r - w * t) / x;
                            } else {
                                matrixT[i + 1][idx] = (-s - y * t) / z;
                            }
                        }

                        // Overflow control
                        double t = FastMath.abs(matrixT[i][idx]);
                        if ((Precision.EPSILON * t) * t > 1) {
                            for (int j = i; j <= idx; j++) {
                                matrixT[j][idx] /= t;
                            }
                        }
                    }
                }
            } else if (q < 0.0) {
                // Complex vector
                int l = idx - 1;

                // Last vector component imaginary so matrix is triangular
                if (FastMath.abs(matrixT[idx][idx - 1]) > FastMath.abs(matrixT[idx - 1][idx])) {
                    matrixT[idx - 1][idx - 1] = q / matrixT[idx][idx - 1];
                    matrixT[idx - 1][idx] = -(matrixT[idx][idx] - p) / matrixT[idx][idx - 1];
                } else {
                    final Complex result =
                            cdiv(0.0, -matrixT[idx - 1][idx], matrixT[idx - 1][idx - 1] - p, q);
                    matrixT[idx - 1][idx - 1] = result.getReal();
                    matrixT[idx - 1][idx] = result.getImaginary();
                }

                matrixT[idx][idx - 1] = 0.0;
                matrixT[idx][idx] = 1.0;

                for (int i = idx - 2; i >= 0; i--) {
                    double ra = 0.0;
                    double sa = 0.0;
                    for (int j = l; j <= idx; j++) {
                        ra += matrixT[i][j] * matrixT[j][idx - 1];
                        sa += matrixT[i][j] * matrixT[j][idx];
                    }
                    double w = matrixT[i][i] - p;

                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
                        z = w;
                        r = ra;
                        s = sa;
                    } else {
                        l = i;
                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
                            final Complex c = cdiv(-ra, -sa, w, q);
                            matrixT[i][idx - 1] = c.getReal();
                            matrixT[i][idx] = c.getImaginary();
                        } else {
                            // Solve complex equations
                            double x = matrixT[i][i + 1];
                            double y = matrixT[i + 1][i];
                            double vr =
                                    (realEigenvalues[i] - p) * (realEigenvalues[i] - p)
                                            + imagEigenvalues[i] * imagEigenvalues[i]
                                            - q * q;
                            final double vi = (realEigenvalues[i] - p) * 2.0 * q;
                            if (Precision.equals(vr, 0.0) && Precision.equals(vi, 0.0)) {
                                vr =
                                        Precision.EPSILON
                                                * norm
                                                * (FastMath.abs(w)
                                                        + FastMath.abs(q)
                                                        + FastMath.abs(x)
                                                        + FastMath.abs(y)
                                                        + FastMath.abs(z));
                            }
                            final Complex c =
                                    cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi);
                            matrixT[i][idx - 1] = c.getReal();
                            matrixT[i][idx] = c.getImaginary();

                            if (FastMath.abs(x) > (FastMath.abs(z) + FastMath.abs(q))) {
                                matrixT[i + 1][idx - 1] =
                                        (-ra - w * matrixT[i][idx - 1] + q * matrixT[i][idx]) / x;
                                matrixT[i + 1][idx] =
                                        (-sa - w * matrixT[i][idx] - q * matrixT[i][idx - 1]) / x;
                            } else {
                                final Complex c2 =
                                        cdiv(
                                                -r - y * matrixT[i][idx - 1],
                                                -s - y * matrixT[i][idx],
                                                z,
                                                q);
                                matrixT[i + 1][idx - 1] = c2.getReal();
                                matrixT[i + 1][idx] = c2.getImaginary();
                            }
                        }

                        // Overflow control
                        double t =
                                FastMath.max(
                                        FastMath.abs(matrixT[i][idx - 1]),
                                        FastMath.abs(matrixT[i][idx]));
                        if ((Precision.EPSILON * t) * t > 1) {
                            for (int j = i; j <= idx; j++) {
                                matrixT[j][idx - 1] /= t;
                                matrixT[j][idx] /= t;
                            }
                        }
                    }
                }
            }
        }

        // Back transformation to get eigenvectors of original matrix
        for (int j = n - 1; j >= 0; j--) {
            for (int i = 0; i <= n - 1; i++) {
                z = 0.0;
                for (int k = 0; k <= FastMath.min(j, n - 1); k++) {
                    z += matrixP[i][k] * matrixT[k][j];
                }
                matrixP[i][j] = z;
            }
        }

        eigenvectors = new ArrayRealVector[n];
        final double[] tmp = new double[n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                tmp[j] = matrixP[j][i];
            }
            eigenvectors[i] = new ArrayRealVector(tmp);
        }
    }
}