summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/linear/FieldLUDecomposition.java
blob: 4976651046aa605a227faeb43dd51249f53c30c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.FieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.util.MathArrays;

/**
 * Calculates the LUP-decomposition of a square matrix.
 *
 * <p>The LUP-decomposition of a matrix A consists of three matrices L, U and P that satisfy: PA =
 * LU, L is lower triangular, and U is upper triangular and P is a permutation matrix. All matrices
 * are m&times;m.
 *
 * <p>Since {@link FieldElement field elements} do not provide an ordering operator, the permutation
 * matrix is computed here only in order to avoid a zero pivot element, no attempt is done to get
 * the largest pivot element.
 *
 * <p>This class is based on the class with similar name from the <a
 * href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library.
 *
 * <ul>
 *   <li>a {@link #getP() getP} method has been added,
 *   <li>the {@code det} method has been renamed as {@link #getDeterminant() getDeterminant},
 *   <li>the {@code getDoublePivot} method has been removed (but the int based {@link #getPivot()
 *       getPivot} method has been kept),
 *   <li>the {@code solve} and {@code isNonSingular} methods have been replaced by a {@link
 *       #getSolver() getSolver} method and the equivalent methods provided by the returned {@link
 *       DecompositionSolver}.
 * </ul>
 *
 * @param <T> the type of the field elements
 * @see <a href="http://mathworld.wolfram.com/LUDecomposition.html">MathWorld</a>
 * @see <a href="http://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</a>
 * @since 2.0 (changed to concrete class in 3.0)
 */
public class FieldLUDecomposition<T extends FieldElement<T>> {

    /** Field to which the elements belong. */
    private final Field<T> field;

    /** Entries of LU decomposition. */
    private T[][] lu;

    /** Pivot permutation associated with LU decomposition. */
    private int[] pivot;

    /** Parity of the permutation associated with the LU decomposition. */
    private boolean even;

    /** Singularity indicator. */
    private boolean singular;

    /** Cached value of L. */
    private FieldMatrix<T> cachedL;

    /** Cached value of U. */
    private FieldMatrix<T> cachedU;

    /** Cached value of P. */
    private FieldMatrix<T> cachedP;

    /**
     * Calculates the LU-decomposition of the given matrix.
     *
     * @param matrix The matrix to decompose.
     * @throws NonSquareMatrixException if matrix is not square
     */
    public FieldLUDecomposition(FieldMatrix<T> matrix) {
        if (!matrix.isSquare()) {
            throw new NonSquareMatrixException(
                    matrix.getRowDimension(), matrix.getColumnDimension());
        }

        final int m = matrix.getColumnDimension();
        field = matrix.getField();
        lu = matrix.getData();
        pivot = new int[m];
        cachedL = null;
        cachedU = null;
        cachedP = null;

        // Initialize permutation array and parity
        for (int row = 0; row < m; row++) {
            pivot[row] = row;
        }
        even = true;
        singular = false;

        // Loop over columns
        for (int col = 0; col < m; col++) {

            T sum = field.getZero();

            // upper
            for (int row = 0; row < col; row++) {
                final T[] luRow = lu[row];
                sum = luRow[col];
                for (int i = 0; i < row; i++) {
                    sum = sum.subtract(luRow[i].multiply(lu[i][col]));
                }
                luRow[col] = sum;
            }

            // lower
            int nonZero = col; // permutation row
            for (int row = col; row < m; row++) {
                final T[] luRow = lu[row];
                sum = luRow[col];
                for (int i = 0; i < col; i++) {
                    sum = sum.subtract(luRow[i].multiply(lu[i][col]));
                }
                luRow[col] = sum;

                if (lu[nonZero][col].equals(field.getZero())) {
                    // try to select a better permutation choice
                    ++nonZero;
                }
            }

            // Singularity check
            if (nonZero >= m) {
                singular = true;
                return;
            }

            // Pivot if necessary
            if (nonZero != col) {
                T tmp = field.getZero();
                for (int i = 0; i < m; i++) {
                    tmp = lu[nonZero][i];
                    lu[nonZero][i] = lu[col][i];
                    lu[col][i] = tmp;
                }
                int temp = pivot[nonZero];
                pivot[nonZero] = pivot[col];
                pivot[col] = temp;
                even = !even;
            }

            // Divide the lower elements by the "winning" diagonal elt.
            final T luDiag = lu[col][col];
            for (int row = col + 1; row < m; row++) {
                final T[] luRow = lu[row];
                luRow[col] = luRow[col].divide(luDiag);
            }
        }
    }

    /**
     * Returns the matrix L of the decomposition.
     *
     * <p>L is a lower-triangular matrix
     *
     * @return the L matrix (or null if decomposed matrix is singular)
     */
    public FieldMatrix<T> getL() {
        if ((cachedL == null) && !singular) {
            final int m = pivot.length;
            cachedL = new Array2DRowFieldMatrix<T>(field, m, m);
            for (int i = 0; i < m; ++i) {
                final T[] luI = lu[i];
                for (int j = 0; j < i; ++j) {
                    cachedL.setEntry(i, j, luI[j]);
                }
                cachedL.setEntry(i, i, field.getOne());
            }
        }
        return cachedL;
    }

    /**
     * Returns the matrix U of the decomposition.
     *
     * <p>U is an upper-triangular matrix
     *
     * @return the U matrix (or null if decomposed matrix is singular)
     */
    public FieldMatrix<T> getU() {
        if ((cachedU == null) && !singular) {
            final int m = pivot.length;
            cachedU = new Array2DRowFieldMatrix<T>(field, m, m);
            for (int i = 0; i < m; ++i) {
                final T[] luI = lu[i];
                for (int j = i; j < m; ++j) {
                    cachedU.setEntry(i, j, luI[j]);
                }
            }
        }
        return cachedU;
    }

    /**
     * Returns the P rows permutation matrix.
     *
     * <p>P is a sparse matrix with exactly one element set to 1.0 in each row and each column, all
     * other elements being set to 0.0.
     *
     * <p>The positions of the 1 elements are given by the {@link #getPivot() pivot permutation
     * vector}.
     *
     * @return the P rows permutation matrix (or null if decomposed matrix is singular)
     * @see #getPivot()
     */
    public FieldMatrix<T> getP() {
        if ((cachedP == null) && !singular) {
            final int m = pivot.length;
            cachedP = new Array2DRowFieldMatrix<T>(field, m, m);
            for (int i = 0; i < m; ++i) {
                cachedP.setEntry(i, pivot[i], field.getOne());
            }
        }
        return cachedP;
    }

    /**
     * Returns the pivot permutation vector.
     *
     * @return the pivot permutation vector
     * @see #getP()
     */
    public int[] getPivot() {
        return pivot.clone();
    }

    /**
     * Return the determinant of the matrix.
     *
     * @return determinant of the matrix
     */
    public T getDeterminant() {
        if (singular) {
            return field.getZero();
        } else {
            final int m = pivot.length;
            T determinant = even ? field.getOne() : field.getZero().subtract(field.getOne());
            for (int i = 0; i < m; i++) {
                determinant = determinant.multiply(lu[i][i]);
            }
            return determinant;
        }
    }

    /**
     * Get a solver for finding the A &times; X = B solution in exact linear sense.
     *
     * @return a solver
     */
    public FieldDecompositionSolver<T> getSolver() {
        return new Solver<T>(field, lu, pivot, singular);
    }

    /**
     * Specialized solver.
     *
     * @param <T> the type of the field elements
     */
    private static class Solver<T extends FieldElement<T>> implements FieldDecompositionSolver<T> {

        /** Field to which the elements belong. */
        private final Field<T> field;

        /** Entries of LU decomposition. */
        private final T[][] lu;

        /** Pivot permutation associated with LU decomposition. */
        private final int[] pivot;

        /** Singularity indicator. */
        private final boolean singular;

        /**
         * Build a solver from decomposed matrix.
         *
         * @param field field to which the matrix elements belong
         * @param lu entries of LU decomposition
         * @param pivot pivot permutation associated with LU decomposition
         * @param singular singularity indicator
         */
        private Solver(
                final Field<T> field, final T[][] lu, final int[] pivot, final boolean singular) {
            this.field = field;
            this.lu = lu;
            this.pivot = pivot;
            this.singular = singular;
        }

        /** {@inheritDoc} */
        public boolean isNonSingular() {
            return !singular;
        }

        /** {@inheritDoc} */
        public FieldVector<T> solve(FieldVector<T> b) {
            try {
                return solve((ArrayFieldVector<T>) b);
            } catch (ClassCastException cce) {

                final int m = pivot.length;
                if (b.getDimension() != m) {
                    throw new DimensionMismatchException(b.getDimension(), m);
                }
                if (singular) {
                    throw new SingularMatrixException();
                }

                // Apply permutations to b
                final T[] bp = MathArrays.buildArray(field, m);
                for (int row = 0; row < m; row++) {
                    bp[row] = b.getEntry(pivot[row]);
                }

                // Solve LY = b
                for (int col = 0; col < m; col++) {
                    final T bpCol = bp[col];
                    for (int i = col + 1; i < m; i++) {
                        bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                    }
                }

                // Solve UX = Y
                for (int col = m - 1; col >= 0; col--) {
                    bp[col] = bp[col].divide(lu[col][col]);
                    final T bpCol = bp[col];
                    for (int i = 0; i < col; i++) {
                        bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                    }
                }

                return new ArrayFieldVector<T>(field, bp, false);
            }
        }

        /**
         * Solve the linear equation A &times; X = B.
         *
         * <p>The A matrix is implicit here. It is
         *
         * @param b right-hand side of the equation A &times; X = B
         * @return a vector X such that A &times; X = B
         * @throws DimensionMismatchException if the matrices dimensions do not match.
         * @throws SingularMatrixException if the decomposed matrix is singular.
         */
        public ArrayFieldVector<T> solve(ArrayFieldVector<T> b) {
            final int m = pivot.length;
            final int length = b.getDimension();
            if (length != m) {
                throw new DimensionMismatchException(length, m);
            }
            if (singular) {
                throw new SingularMatrixException();
            }

            // Apply permutations to b
            final T[] bp = MathArrays.buildArray(field, m);
            for (int row = 0; row < m; row++) {
                bp[row] = b.getEntry(pivot[row]);
            }

            // Solve LY = b
            for (int col = 0; col < m; col++) {
                final T bpCol = bp[col];
                for (int i = col + 1; i < m; i++) {
                    bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                }
            }

            // Solve UX = Y
            for (int col = m - 1; col >= 0; col--) {
                bp[col] = bp[col].divide(lu[col][col]);
                final T bpCol = bp[col];
                for (int i = 0; i < col; i++) {
                    bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                }
            }

            return new ArrayFieldVector<T>(bp, false);
        }

        /** {@inheritDoc} */
        public FieldMatrix<T> solve(FieldMatrix<T> b) {
            final int m = pivot.length;
            if (b.getRowDimension() != m) {
                throw new DimensionMismatchException(b.getRowDimension(), m);
            }
            if (singular) {
                throw new SingularMatrixException();
            }

            final int nColB = b.getColumnDimension();

            // Apply permutations to b
            final T[][] bp = MathArrays.buildArray(field, m, nColB);
            for (int row = 0; row < m; row++) {
                final T[] bpRow = bp[row];
                final int pRow = pivot[row];
                for (int col = 0; col < nColB; col++) {
                    bpRow[col] = b.getEntry(pRow, col);
                }
            }

            // Solve LY = b
            for (int col = 0; col < m; col++) {
                final T[] bpCol = bp[col];
                for (int i = col + 1; i < m; i++) {
                    final T[] bpI = bp[i];
                    final T luICol = lu[i][col];
                    for (int j = 0; j < nColB; j++) {
                        bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
                    }
                }
            }

            // Solve UX = Y
            for (int col = m - 1; col >= 0; col--) {
                final T[] bpCol = bp[col];
                final T luDiag = lu[col][col];
                for (int j = 0; j < nColB; j++) {
                    bpCol[j] = bpCol[j].divide(luDiag);
                }
                for (int i = 0; i < col; i++) {
                    final T[] bpI = bp[i];
                    final T luICol = lu[i][col];
                    for (int j = 0; j < nColB; j++) {
                        bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
                    }
                }
            }

            return new Array2DRowFieldMatrix<T>(field, bp, false);
        }

        /** {@inheritDoc} */
        public FieldMatrix<T> getInverse() {
            final int m = pivot.length;
            final T one = field.getOne();
            FieldMatrix<T> identity = new Array2DRowFieldMatrix<T>(field, m, m);
            for (int i = 0; i < m; ++i) {
                identity.setEntry(i, i, one);
            }
            return solve(identity);
        }
    }
}