summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java
blob: 2e57fac0db5d79edbdcaac924a5e4e432104983f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ml.clustering;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;

import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.ml.distance.DistanceMeasure;
import org.apache.commons.math3.ml.distance.EuclideanDistance;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.stat.descriptive.moment.Variance;
import org.apache.commons.math3.util.MathUtils;

/**
 * Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.
 * @param <T> type of the points to cluster
 * @see <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">K-means++ (wikipedia)</a>
 * @since 3.2
 */
public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T> {

    /** Strategies to use for replacing an empty cluster. */
    public enum EmptyClusterStrategy {

        /** Split the cluster with largest distance variance. */
        LARGEST_VARIANCE,

        /** Split the cluster with largest number of points. */
        LARGEST_POINTS_NUMBER,

        /** Create a cluster around the point farthest from its centroid. */
        FARTHEST_POINT,

        /** Generate an error. */
        ERROR

    }

    /** The number of clusters. */
    private final int k;

    /** The maximum number of iterations. */
    private final int maxIterations;

    /** Random generator for choosing initial centers. */
    private final RandomGenerator random;

    /** Selected strategy for empty clusters. */
    private final EmptyClusterStrategy emptyStrategy;

    /** Build a clusterer.
     * <p>
     * The default strategy for handling empty clusters that may appear during
     * algorithm iterations is to split the cluster with largest distance variance.
     * <p>
     * The euclidean distance will be used as default distance measure.
     *
     * @param k the number of clusters to split the data into
     */
    public KMeansPlusPlusClusterer(final int k) {
        this(k, -1);
    }

    /** Build a clusterer.
     * <p>
     * The default strategy for handling empty clusters that may appear during
     * algorithm iterations is to split the cluster with largest distance variance.
     * <p>
     * The euclidean distance will be used as default distance measure.
     *
     * @param k the number of clusters to split the data into
     * @param maxIterations the maximum number of iterations to run the algorithm for.
     *   If negative, no maximum will be used.
     */
    public KMeansPlusPlusClusterer(final int k, final int maxIterations) {
        this(k, maxIterations, new EuclideanDistance());
    }

    /** Build a clusterer.
     * <p>
     * The default strategy for handling empty clusters that may appear during
     * algorithm iterations is to split the cluster with largest distance variance.
     *
     * @param k the number of clusters to split the data into
     * @param maxIterations the maximum number of iterations to run the algorithm for.
     *   If negative, no maximum will be used.
     * @param measure the distance measure to use
     */
    public KMeansPlusPlusClusterer(final int k, final int maxIterations, final DistanceMeasure measure) {
        this(k, maxIterations, measure, new JDKRandomGenerator());
    }

    /** Build a clusterer.
     * <p>
     * The default strategy for handling empty clusters that may appear during
     * algorithm iterations is to split the cluster with largest distance variance.
     *
     * @param k the number of clusters to split the data into
     * @param maxIterations the maximum number of iterations to run the algorithm for.
     *   If negative, no maximum will be used.
     * @param measure the distance measure to use
     * @param random random generator to use for choosing initial centers
     */
    public KMeansPlusPlusClusterer(final int k, final int maxIterations,
                                   final DistanceMeasure measure,
                                   final RandomGenerator random) {
        this(k, maxIterations, measure, random, EmptyClusterStrategy.LARGEST_VARIANCE);
    }

    /** Build a clusterer.
     *
     * @param k the number of clusters to split the data into
     * @param maxIterations the maximum number of iterations to run the algorithm for.
     *   If negative, no maximum will be used.
     * @param measure the distance measure to use
     * @param random random generator to use for choosing initial centers
     * @param emptyStrategy strategy to use for handling empty clusters that
     * may appear during algorithm iterations
     */
    public KMeansPlusPlusClusterer(final int k, final int maxIterations,
                                   final DistanceMeasure measure,
                                   final RandomGenerator random,
                                   final EmptyClusterStrategy emptyStrategy) {
        super(measure);
        this.k             = k;
        this.maxIterations = maxIterations;
        this.random        = random;
        this.emptyStrategy = emptyStrategy;
    }

    /**
     * Return the number of clusters this instance will use.
     * @return the number of clusters
     */
    public int getK() {
        return k;
    }

    /**
     * Returns the maximum number of iterations this instance will use.
     * @return the maximum number of iterations, or -1 if no maximum is set
     */
    public int getMaxIterations() {
        return maxIterations;
    }

    /**
     * Returns the random generator this instance will use.
     * @return the random generator
     */
    public RandomGenerator getRandomGenerator() {
        return random;
    }

    /**
     * Returns the {@link EmptyClusterStrategy} used by this instance.
     * @return the {@link EmptyClusterStrategy}
     */
    public EmptyClusterStrategy getEmptyClusterStrategy() {
        return emptyStrategy;
    }

    /**
     * Runs the K-means++ clustering algorithm.
     *
     * @param points the points to cluster
     * @return a list of clusters containing the points
     * @throws MathIllegalArgumentException if the data points are null or the number
     *     of clusters is larger than the number of data points
     * @throws ConvergenceException if an empty cluster is encountered and the
     * {@link #emptyStrategy} is set to {@code ERROR}
     */
    @Override
    public List<CentroidCluster<T>> cluster(final Collection<T> points)
        throws MathIllegalArgumentException, ConvergenceException {

        // sanity checks
        MathUtils.checkNotNull(points);

        // number of clusters has to be smaller or equal the number of data points
        if (points.size() < k) {
            throw new NumberIsTooSmallException(points.size(), k, false);
        }

        // create the initial clusters
        List<CentroidCluster<T>> clusters = chooseInitialCenters(points);

        // create an array containing the latest assignment of a point to a cluster
        // no need to initialize the array, as it will be filled with the first assignment
        int[] assignments = new int[points.size()];
        assignPointsToClusters(clusters, points, assignments);

        // iterate through updating the centers until we're done
        final int max = (maxIterations < 0) ? Integer.MAX_VALUE : maxIterations;
        for (int count = 0; count < max; count++) {
            boolean emptyCluster = false;
            List<CentroidCluster<T>> newClusters = new ArrayList<CentroidCluster<T>>();
            for (final CentroidCluster<T> cluster : clusters) {
                final Clusterable newCenter;
                if (cluster.getPoints().isEmpty()) {
                    switch (emptyStrategy) {
                        case LARGEST_VARIANCE :
                            newCenter = getPointFromLargestVarianceCluster(clusters);
                            break;
                        case LARGEST_POINTS_NUMBER :
                            newCenter = getPointFromLargestNumberCluster(clusters);
                            break;
                        case FARTHEST_POINT :
                            newCenter = getFarthestPoint(clusters);
                            break;
                        default :
                            throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
                    }
                    emptyCluster = true;
                } else {
                    newCenter = centroidOf(cluster.getPoints(), cluster.getCenter().getPoint().length);
                }
                newClusters.add(new CentroidCluster<T>(newCenter));
            }
            int changes = assignPointsToClusters(newClusters, points, assignments);
            clusters = newClusters;

            // if there were no more changes in the point-to-cluster assignment
            // and there are no empty clusters left, return the current clusters
            if (changes == 0 && !emptyCluster) {
                return clusters;
            }
        }
        return clusters;
    }

    /**
     * Adds the given points to the closest {@link Cluster}.
     *
     * @param clusters the {@link Cluster}s to add the points to
     * @param points the points to add to the given {@link Cluster}s
     * @param assignments points assignments to clusters
     * @return the number of points assigned to different clusters as the iteration before
     */
    private int assignPointsToClusters(final List<CentroidCluster<T>> clusters,
                                       final Collection<T> points,
                                       final int[] assignments) {
        int assignedDifferently = 0;
        int pointIndex = 0;
        for (final T p : points) {
            int clusterIndex = getNearestCluster(clusters, p);
            if (clusterIndex != assignments[pointIndex]) {
                assignedDifferently++;
            }

            CentroidCluster<T> cluster = clusters.get(clusterIndex);
            cluster.addPoint(p);
            assignments[pointIndex++] = clusterIndex;
        }

        return assignedDifferently;
    }

    /**
     * Use K-means++ to choose the initial centers.
     *
     * @param points the points to choose the initial centers from
     * @return the initial centers
     */
    private List<CentroidCluster<T>> chooseInitialCenters(final Collection<T> points) {

        // Convert to list for indexed access. Make it unmodifiable, since removal of items
        // would screw up the logic of this method.
        final List<T> pointList = Collections.unmodifiableList(new ArrayList<T> (points));

        // The number of points in the list.
        final int numPoints = pointList.size();

        // Set the corresponding element in this array to indicate when
        // elements of pointList are no longer available.
        final boolean[] taken = new boolean[numPoints];

        // The resulting list of initial centers.
        final List<CentroidCluster<T>> resultSet = new ArrayList<CentroidCluster<T>>();

        // Choose one center uniformly at random from among the data points.
        final int firstPointIndex = random.nextInt(numPoints);

        final T firstPoint = pointList.get(firstPointIndex);

        resultSet.add(new CentroidCluster<T>(firstPoint));

        // Must mark it as taken
        taken[firstPointIndex] = true;

        // To keep track of the minimum distance squared of elements of
        // pointList to elements of resultSet.
        final double[] minDistSquared = new double[numPoints];

        // Initialize the elements.  Since the only point in resultSet is firstPoint,
        // this is very easy.
        for (int i = 0; i < numPoints; i++) {
            if (i != firstPointIndex) { // That point isn't considered
                double d = distance(firstPoint, pointList.get(i));
                minDistSquared[i] = d*d;
            }
        }

        while (resultSet.size() < k) {

            // Sum up the squared distances for the points in pointList not
            // already taken.
            double distSqSum = 0.0;

            for (int i = 0; i < numPoints; i++) {
                if (!taken[i]) {
                    distSqSum += minDistSquared[i];
                }
            }

            // Add one new data point as a center. Each point x is chosen with
            // probability proportional to D(x)2
            final double r = random.nextDouble() * distSqSum;

            // The index of the next point to be added to the resultSet.
            int nextPointIndex = -1;

            // Sum through the squared min distances again, stopping when
            // sum >= r.
            double sum = 0.0;
            for (int i = 0; i < numPoints; i++) {
                if (!taken[i]) {
                    sum += minDistSquared[i];
                    if (sum >= r) {
                        nextPointIndex = i;
                        break;
                    }
                }
            }

            // If it's not set to >= 0, the point wasn't found in the previous
            // for loop, probably because distances are extremely small.  Just pick
            // the last available point.
            if (nextPointIndex == -1) {
                for (int i = numPoints - 1; i >= 0; i--) {
                    if (!taken[i]) {
                        nextPointIndex = i;
                        break;
                    }
                }
            }

            // We found one.
            if (nextPointIndex >= 0) {

                final T p = pointList.get(nextPointIndex);

                resultSet.add(new CentroidCluster<T> (p));

                // Mark it as taken.
                taken[nextPointIndex] = true;

                if (resultSet.size() < k) {
                    // Now update elements of minDistSquared.  We only have to compute
                    // the distance to the new center to do this.
                    for (int j = 0; j < numPoints; j++) {
                        // Only have to worry about the points still not taken.
                        if (!taken[j]) {
                            double d = distance(p, pointList.get(j));
                            double d2 = d * d;
                            if (d2 < minDistSquared[j]) {
                                minDistSquared[j] = d2;
                            }
                        }
                    }
                }

            } else {
                // None found --
                // Break from the while loop to prevent
                // an infinite loop.
                break;
            }
        }

        return resultSet;
    }

    /**
     * Get a random point from the {@link Cluster} with the largest distance variance.
     *
     * @param clusters the {@link Cluster}s to search
     * @return a random point from the selected cluster
     * @throws ConvergenceException if clusters are all empty
     */
    private T getPointFromLargestVarianceCluster(final Collection<CentroidCluster<T>> clusters)
            throws ConvergenceException {

        double maxVariance = Double.NEGATIVE_INFINITY;
        Cluster<T> selected = null;
        for (final CentroidCluster<T> cluster : clusters) {
            if (!cluster.getPoints().isEmpty()) {

                // compute the distance variance of the current cluster
                final Clusterable center = cluster.getCenter();
                final Variance stat = new Variance();
                for (final T point : cluster.getPoints()) {
                    stat.increment(distance(point, center));
                }
                final double variance = stat.getResult();

                // select the cluster with the largest variance
                if (variance > maxVariance) {
                    maxVariance = variance;
                    selected = cluster;
                }

            }
        }

        // did we find at least one non-empty cluster ?
        if (selected == null) {
            throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
        }

        // extract a random point from the cluster
        final List<T> selectedPoints = selected.getPoints();
        return selectedPoints.remove(random.nextInt(selectedPoints.size()));

    }

    /**
     * Get a random point from the {@link Cluster} with the largest number of points
     *
     * @param clusters the {@link Cluster}s to search
     * @return a random point from the selected cluster
     * @throws ConvergenceException if clusters are all empty
     */
    private T getPointFromLargestNumberCluster(final Collection<? extends Cluster<T>> clusters)
            throws ConvergenceException {

        int maxNumber = 0;
        Cluster<T> selected = null;
        for (final Cluster<T> cluster : clusters) {

            // get the number of points of the current cluster
            final int number = cluster.getPoints().size();

            // select the cluster with the largest number of points
            if (number > maxNumber) {
                maxNumber = number;
                selected = cluster;
            }

        }

        // did we find at least one non-empty cluster ?
        if (selected == null) {
            throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
        }

        // extract a random point from the cluster
        final List<T> selectedPoints = selected.getPoints();
        return selectedPoints.remove(random.nextInt(selectedPoints.size()));

    }

    /**
     * Get the point farthest to its cluster center
     *
     * @param clusters the {@link Cluster}s to search
     * @return point farthest to its cluster center
     * @throws ConvergenceException if clusters are all empty
     */
    private T getFarthestPoint(final Collection<CentroidCluster<T>> clusters) throws ConvergenceException {

        double maxDistance = Double.NEGATIVE_INFINITY;
        Cluster<T> selectedCluster = null;
        int selectedPoint = -1;
        for (final CentroidCluster<T> cluster : clusters) {

            // get the farthest point
            final Clusterable center = cluster.getCenter();
            final List<T> points = cluster.getPoints();
            for (int i = 0; i < points.size(); ++i) {
                final double distance = distance(points.get(i), center);
                if (distance > maxDistance) {
                    maxDistance     = distance;
                    selectedCluster = cluster;
                    selectedPoint   = i;
                }
            }

        }

        // did we find at least one non-empty cluster ?
        if (selectedCluster == null) {
            throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
        }

        return selectedCluster.getPoints().remove(selectedPoint);

    }

    /**
     * Returns the nearest {@link Cluster} to the given point
     *
     * @param clusters the {@link Cluster}s to search
     * @param point the point to find the nearest {@link Cluster} for
     * @return the index of the nearest {@link Cluster} to the given point
     */
    private int getNearestCluster(final Collection<CentroidCluster<T>> clusters, final T point) {
        double minDistance = Double.MAX_VALUE;
        int clusterIndex = 0;
        int minCluster = 0;
        for (final CentroidCluster<T> c : clusters) {
            final double distance = distance(point, c.getCenter());
            if (distance < minDistance) {
                minDistance = distance;
                minCluster = clusterIndex;
            }
            clusterIndex++;
        }
        return minCluster;
    }

    /**
     * Computes the centroid for a set of points.
     *
     * @param points the set of points
     * @param dimension the point dimension
     * @return the computed centroid for the set of points
     */
    private Clusterable centroidOf(final Collection<T> points, final int dimension) {
        final double[] centroid = new double[dimension];
        for (final T p : points) {
            final double[] point = p.getPoint();
            for (int i = 0; i < centroid.length; i++) {
                centroid[i] += point[i];
            }
        }
        for (int i = 0; i < centroid.length; i++) {
            centroid[i] /= points.size();
        }
        return new DoublePoint(centroid);
    }

}