summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/MultistepFieldIntegrator.java
blob: 44a8b812bea080dc4c76188649ae3004eb65f9d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
import org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeFieldIntegrator;
import org.apache.commons.math3.ode.nonstiff.DormandPrince853FieldIntegrator;
import org.apache.commons.math3.ode.sampling.FieldStepHandler;
import org.apache.commons.math3.ode.sampling.FieldStepInterpolator;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;

/**
 * This class is the base class for multistep integrators for Ordinary Differential Equations.
 *
 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
 *
 * <pre>
 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
 * ...
 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
 * </pre>
 *
 * <p>Rather than storing several previous steps separately, this implementation uses the Nordsieck
 * vector with higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>,
 * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
 *
 * <pre>
 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
 * </pre>
 *
 * (we omit the k index in the notation for clarity)
 *
 * <p>Multistep integrators with Nordsieck representation are highly sensitive to large step changes
 * because when the step is multiplied by factor a, the k<sup>th</sup> component of the Nordsieck
 * vector is multiplied by a<sup>k</sup> and the last components are the least accurate ones. The
 * default max growth factor is therefore set to a quite low value: 2<sup>1/order</sup>.
 *
 * @see org.apache.commons.math3.ode.nonstiff.AdamsBashforthFieldIntegrator
 * @see org.apache.commons.math3.ode.nonstiff.AdamsMoultonFieldIntegrator
 * @param <T> the type of the field elements
 * @since 3.6
 */
public abstract class MultistepFieldIntegrator<T extends RealFieldElement<T>>
        extends AdaptiveStepsizeFieldIntegrator<T> {

    /** First scaled derivative (h y'). */
    protected T[] scaled;

    /**
     * Nordsieck matrix of the higher scaled derivatives.
     *
     * <p>(h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ..., h<sup>k</sup>/k! y<sup>(k)</sup>)
     */
    protected Array2DRowFieldMatrix<T> nordsieck;

    /** Starter integrator. */
    private FirstOrderFieldIntegrator<T> starter;

    /** Number of steps of the multistep method (excluding the one being computed). */
    private final int nSteps;

    /** Stepsize control exponent. */
    private double exp;

    /** Safety factor for stepsize control. */
    private double safety;

    /** Minimal reduction factor for stepsize control. */
    private double minReduction;

    /** Maximal growth factor for stepsize control. */
    private double maxGrowth;

    /**
     * Build a multistep integrator with the given stepsize bounds.
     *
     * <p>The default starter integrator is set to the {@link DormandPrince853FieldIntegrator
     * Dormand-Prince 8(5,3)} integrator with some defaults settings.
     *
     * <p>The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
     *
     * @param field field to which the time and state vector elements belong
     * @param name name of the method
     * @param nSteps number of steps of the multistep method (excluding the one being computed)
     * @param order order of the method
     * @param minStep minimal step (must be positive even for backward integration), the last step
     *     can be smaller than this
     * @param maxStep maximal step (must be positive even for backward integration)
     * @param scalAbsoluteTolerance allowed absolute error
     * @param scalRelativeTolerance allowed relative error
     * @exception NumberIsTooSmallException if number of steps is smaller than 2
     */
    protected MultistepFieldIntegrator(
            final Field<T> field,
            final String name,
            final int nSteps,
            final int order,
            final double minStep,
            final double maxStep,
            final double scalAbsoluteTolerance,
            final double scalRelativeTolerance)
            throws NumberIsTooSmallException {

        super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);

        if (nSteps < 2) {
            throw new NumberIsTooSmallException(
                    LocalizedFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
                    nSteps,
                    2,
                    true);
        }

        starter =
                new DormandPrince853FieldIntegrator<T>(
                        field, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
        this.nSteps = nSteps;

        exp = -1.0 / order;

        // set the default values of the algorithm control parameters
        setSafety(0.9);
        setMinReduction(0.2);
        setMaxGrowth(FastMath.pow(2.0, -exp));
    }

    /**
     * Build a multistep integrator with the given stepsize bounds.
     *
     * <p>The default starter integrator is set to the {@link DormandPrince853FieldIntegrator
     * Dormand-Prince 8(5,3)} integrator with some defaults settings.
     *
     * <p>The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
     *
     * @param field field to which the time and state vector elements belong
     * @param name name of the method
     * @param nSteps number of steps of the multistep method (excluding the one being computed)
     * @param order order of the method
     * @param minStep minimal step (must be positive even for backward integration), the last step
     *     can be smaller than this
     * @param maxStep maximal step (must be positive even for backward integration)
     * @param vecAbsoluteTolerance allowed absolute error
     * @param vecRelativeTolerance allowed relative error
     */
    protected MultistepFieldIntegrator(
            final Field<T> field,
            final String name,
            final int nSteps,
            final int order,
            final double minStep,
            final double maxStep,
            final double[] vecAbsoluteTolerance,
            final double[] vecRelativeTolerance) {
        super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
        starter =
                new DormandPrince853FieldIntegrator<T>(
                        field, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
        this.nSteps = nSteps;

        exp = -1.0 / order;

        // set the default values of the algorithm control parameters
        setSafety(0.9);
        setMinReduction(0.2);
        setMaxGrowth(FastMath.pow(2.0, -exp));
    }

    /**
     * Get the starter integrator.
     *
     * @return starter integrator
     */
    public FirstOrderFieldIntegrator<T> getStarterIntegrator() {
        return starter;
    }

    /**
     * Set the starter integrator.
     *
     * <p>The various step and event handlers for this starter integrator will be managed
     * automatically by the multi-step integrator. Any user configuration for these elements will be
     * cleared before use.
     *
     * @param starterIntegrator starter integrator
     */
    public void setStarterIntegrator(FirstOrderFieldIntegrator<T> starterIntegrator) {
        this.starter = starterIntegrator;
    }

    /**
     * Start the integration.
     *
     * <p>This method computes one step using the underlying starter integrator, and initializes the
     * Nordsieck vector at step start. The starter integrator purpose is only to establish initial
     * conditions, it does not really change time by itself. The top level multistep integrator
     * remains in charge of handling time propagation and events handling as it will starts its own
     * computation right from the beginning. In a sense, the starter integrator can be seen as a
     * dummy one and so it will never trigger any user event nor call any user step handler.
     *
     * @param equations complete set of differential equations to integrate
     * @param initialState initial state (time, primary and secondary state vectors)
     * @param t target time for the integration (can be set to a value smaller than <code>t0</code>
     *     for backward integration)
     * @exception DimensionMismatchException if arrays dimension do not match equations settings
     * @exception NumberIsTooSmallException if integration step is too small
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     * @exception NoBracketingException if the location of an event cannot be bracketed
     */
    protected void start(
            final FieldExpandableODE<T> equations, final FieldODEState<T> initialState, final T t)
            throws DimensionMismatchException,
                    NumberIsTooSmallException,
                    MaxCountExceededException,
                    NoBracketingException {

        // make sure NO user event nor user step handler is triggered,
        // this is the task of the top level integrator, not the task
        // of the starter integrator
        starter.clearEventHandlers();
        starter.clearStepHandlers();

        // set up one specific step handler to extract initial Nordsieck vector
        starter.addStepHandler(
                new FieldNordsieckInitializer(equations.getMapper(), (nSteps + 3) / 2));

        // start integration, expecting a InitializationCompletedMarkerException
        try {

            starter.integrate(equations, initialState, t);

            // we should not reach this step
            throw new MathIllegalStateException(LocalizedFormats.MULTISTEP_STARTER_STOPPED_EARLY);

        } catch (InitializationCompletedMarkerException icme) { // NOPMD
            // this is the expected nominal interruption of the start integrator

            // count the evaluations used by the starter
            getEvaluationsCounter().increment(starter.getEvaluations());
        }

        // remove the specific step handler
        starter.clearStepHandlers();
    }

    /**
     * Initialize the high order scaled derivatives at step start.
     *
     * @param h step size to use for scaling
     * @param t first steps times
     * @param y first steps states
     * @param yDot first steps derivatives
     * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>, h<sup>3</sup>/6
     *     y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
     */
    protected abstract Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(
            final T h, final T[] t, final T[][] y, final T[][] yDot);

    /**
     * Get the minimal reduction factor for stepsize control.
     *
     * @return minimal reduction factor
     */
    public double getMinReduction() {
        return minReduction;
    }

    /**
     * Set the minimal reduction factor for stepsize control.
     *
     * @param minReduction minimal reduction factor
     */
    public void setMinReduction(final double minReduction) {
        this.minReduction = minReduction;
    }

    /**
     * Get the maximal growth factor for stepsize control.
     *
     * @return maximal growth factor
     */
    public double getMaxGrowth() {
        return maxGrowth;
    }

    /**
     * Set the maximal growth factor for stepsize control.
     *
     * @param maxGrowth maximal growth factor
     */
    public void setMaxGrowth(final double maxGrowth) {
        this.maxGrowth = maxGrowth;
    }

    /**
     * Get the safety factor for stepsize control.
     *
     * @return safety factor
     */
    public double getSafety() {
        return safety;
    }

    /**
     * Set the safety factor for stepsize control.
     *
     * @param safety safety factor
     */
    public void setSafety(final double safety) {
        this.safety = safety;
    }

    /**
     * Get the number of steps of the multistep method (excluding the one being computed).
     *
     * @return number of steps of the multistep method (excluding the one being computed)
     */
    public int getNSteps() {
        return nSteps;
    }

    /**
     * Rescale the instance.
     *
     * <p>Since the scaled and Nordsieck arrays are shared with the caller, this method has the side
     * effect of rescaling this arrays in the caller too.
     *
     * @param newStepSize new step size to use in the scaled and Nordsieck arrays
     */
    protected void rescale(final T newStepSize) {

        final T ratio = newStepSize.divide(getStepSize());
        for (int i = 0; i < scaled.length; ++i) {
            scaled[i] = scaled[i].multiply(ratio);
        }

        final T[][] nData = nordsieck.getDataRef();
        T power = ratio;
        for (int i = 0; i < nData.length; ++i) {
            power = power.multiply(ratio);
            final T[] nDataI = nData[i];
            for (int j = 0; j < nDataI.length; ++j) {
                nDataI[j] = nDataI[j].multiply(power);
            }
        }

        setStepSize(newStepSize);
    }

    /**
     * Compute step grow/shrink factor according to normalized error.
     *
     * @param error normalized error of the current step
     * @return grow/shrink factor for next step
     */
    protected T computeStepGrowShrinkFactor(final T error) {
        return MathUtils.min(
                error.getField().getZero().add(maxGrowth),
                MathUtils.max(
                        error.getField().getZero().add(minReduction),
                        error.pow(exp).multiply(safety)));
    }

    /** Specialized step handler storing the first step. */
    private class FieldNordsieckInitializer implements FieldStepHandler<T> {

        /** Equation mapper. */
        private final FieldEquationsMapper<T> mapper;

        /** Steps counter. */
        private int count;

        /** Saved start. */
        private FieldODEStateAndDerivative<T> savedStart;

        /** First steps times. */
        private final T[] t;

        /** First steps states. */
        private final T[][] y;

        /** First steps derivatives. */
        private final T[][] yDot;

        /**
         * Simple constructor.
         *
         * @param mapper equation mapper
         * @param nbStartPoints number of start points (including the initial point)
         */
        FieldNordsieckInitializer(final FieldEquationsMapper<T> mapper, final int nbStartPoints) {
            this.mapper = mapper;
            this.count = 0;
            this.t = MathArrays.buildArray(getField(), nbStartPoints);
            this.y = MathArrays.buildArray(getField(), nbStartPoints, -1);
            this.yDot = MathArrays.buildArray(getField(), nbStartPoints, -1);
        }

        /** {@inheritDoc} */
        public void handleStep(FieldStepInterpolator<T> interpolator, boolean isLast)
                throws MaxCountExceededException {

            if (count == 0) {
                // first step, we need to store also the point at the beginning of the step
                final FieldODEStateAndDerivative<T> prev = interpolator.getPreviousState();
                savedStart = prev;
                t[count] = prev.getTime();
                y[count] = mapper.mapState(prev);
                yDot[count] = mapper.mapDerivative(prev);
            }

            // store the point at the end of the step
            ++count;
            final FieldODEStateAndDerivative<T> curr = interpolator.getCurrentState();
            t[count] = curr.getTime();
            y[count] = mapper.mapState(curr);
            yDot[count] = mapper.mapDerivative(curr);

            if (count == t.length - 1) {

                // this was the last point we needed, we can compute the derivatives
                setStepSize(t[t.length - 1].subtract(t[0]).divide(t.length - 1));

                // first scaled derivative
                scaled = MathArrays.buildArray(getField(), yDot[0].length);
                for (int j = 0; j < scaled.length; ++j) {
                    scaled[j] = yDot[0][j].multiply(getStepSize());
                }

                // higher order derivatives
                nordsieck = initializeHighOrderDerivatives(getStepSize(), t, y, yDot);

                // stop the integrator now that all needed steps have been handled
                setStepStart(savedStart);
                throw new InitializationCompletedMarkerException();
            }
        }

        /** {@inheritDoc} */
        public void init(final FieldODEStateAndDerivative<T> initialState, T finalTime) {
            // nothing to do
        }
    }

    /** Marker exception used ONLY to stop the starter integrator after first step. */
    private static class InitializationCompletedMarkerException extends RuntimeException {

        /** Serializable version identifier. */
        private static final long serialVersionUID = -1914085471038046418L;

        /** Simple constructor. */
        InitializationCompletedMarkerException() {
            super((Throwable) null);
        }
    }
}