summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsMoultonIntegrator.java
blob: 69d2469dce911b67e6d4fce429b208fa01c1e9a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import java.util.Arrays;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrixPreservingVisitor;
import org.apache.commons.math3.ode.EquationsMapper;
import org.apache.commons.math3.ode.ExpandableStatefulODE;
import org.apache.commons.math3.ode.sampling.NordsieckStepInterpolator;
import org.apache.commons.math3.util.FastMath;


/**
 * This class implements implicit Adams-Moulton integrators for Ordinary
 * Differential Equations.
 *
 * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
 * multistep ODE solvers. This implementation is a variation of the classical
 * one: it uses adaptive stepsize to implement error control, whereas
 * classical implementations are fixed step size. The value of state vector
 * at step n+1 is a simple combination of the value at step n and of the
 * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
 * compute y<sub>n+1</sub>, another method must be used to compute a first
 * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
 * a final estimate of y<sub>n+1</sub> using the following formulas. Depending
 * on the number k of previous steps one wants to use for computing the next
 * value, different formulas are available for the final estimate:</p>
 * <ul>
 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
 *   <li>...</li>
 * </ul>
 *
 * <p>A k-steps Adams-Moulton method is of order k+1.</p>
 *
 * <h3>Implementation details</h3>
 *
 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
 * <pre>
 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
 * ...
 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
 * </pre></p>
 *
 * <p>The definitions above use the classical representation with several previous first
 * derivatives. Lets define
 * <pre>
 *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
 * </pre>
 * (we omit the k index in the notation for clarity). With these definitions,
 * Adams-Moulton methods can be written:
 * <ul>
 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
 *   <li>...</li>
 * </ul></p>
 *
 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
 * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
 * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
 * <pre>
 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
 * </pre>
 * (here again we omit the k index in the notation for clarity)
 * </p>
 *
 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
 * for degree k polynomials.
 * <pre>
 * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
 * </pre>
 * The previous formula can be used with several values for i to compute the transform between
 * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
 * and q<sub>n</sub> resulting from the Taylor series formulas above is:
 * <pre>
 * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
 * </pre>
 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
 * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
 * the column number starting from 1:
 * <pre>
 *        [  -2   3   -4    5  ... ]
 *        [  -4  12  -32   80  ... ]
 *   P =  [  -6  27 -108  405  ... ]
 *        [  -8  48 -256 1280  ... ]
 *        [          ...           ]
 * </pre></p>
 *
 * <p>Using the Nordsieck vector has several advantages:
 * <ul>
 *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
 *   Taylor series formulas,</li>
 *   <li>it simplifies step changes that occur when discrete events that truncate
 *   the step are triggered,</li>
 *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
 * </ul></p>
 *
 * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
 * n as follows:
 * <ul>
 *   <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
 *   <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
 *   <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
 * </ul>
 * where A is a rows shifting matrix (the lower left part is an identity matrix):
 * <pre>
 *        [ 0 0   ...  0 0 | 0 ]
 *        [ ---------------+---]
 *        [ 1 0   ...  0 0 | 0 ]
 *    A = [ 0 1   ...  0 0 | 0 ]
 *        [       ...      | 0 ]
 *        [ 0 0   ...  1 0 | 0 ]
 *        [ 0 0   ...  0 1 | 0 ]
 * </pre>
 * From this predicted vector, the corrected vector is computed as follows:
 * <ul>
 *   <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
 *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
 *   <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
 * </ul>
 * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
 * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
 * represent the corrected states.</p>
 *
 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
 * they only depend on k and therefore are precomputed once for all.</p>
 *
 * @since 2.0
 */
public class AdamsMoultonIntegrator extends AdamsIntegrator {

    /** Integrator method name. */
    private static final String METHOD_NAME = "Adams-Moulton";

    /**
     * Build an Adams-Moulton integrator with the given order and error control parameters.
     * @param nSteps number of steps of the method excluding the one being computed
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param scalAbsoluteTolerance allowed absolute error
     * @param scalRelativeTolerance allowed relative error
     * @exception NumberIsTooSmallException if order is 1 or less
     */
    public AdamsMoultonIntegrator(final int nSteps,
                                  final double minStep, final double maxStep,
                                  final double scalAbsoluteTolerance,
                                  final double scalRelativeTolerance)
        throws NumberIsTooSmallException {
        super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
              scalAbsoluteTolerance, scalRelativeTolerance);
    }

    /**
     * Build an Adams-Moulton integrator with the given order and error control parameters.
     * @param nSteps number of steps of the method excluding the one being computed
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param vecAbsoluteTolerance allowed absolute error
     * @param vecRelativeTolerance allowed relative error
     * @exception IllegalArgumentException if order is 1 or less
     */
    public AdamsMoultonIntegrator(final int nSteps,
                                  final double minStep, final double maxStep,
                                  final double[] vecAbsoluteTolerance,
                                  final double[] vecRelativeTolerance)
        throws IllegalArgumentException {
        super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
              vecAbsoluteTolerance, vecRelativeTolerance);
    }

    /** {@inheritDoc} */
    @Override
    public void integrate(final ExpandableStatefulODE equations,final double t)
        throws NumberIsTooSmallException, DimensionMismatchException,
               MaxCountExceededException, NoBracketingException {

        sanityChecks(equations, t);
        setEquations(equations);
        final boolean forward = t > equations.getTime();

        // initialize working arrays
        final double[] y0   = equations.getCompleteState();
        final double[] y    = y0.clone();
        final double[] yDot = new double[y.length];
        final double[] yTmp = new double[y.length];
        final double[] predictedScaled = new double[y.length];
        Array2DRowRealMatrix nordsieckTmp = null;

        // set up two interpolators sharing the integrator arrays
        final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
        interpolator.reinitialize(y, forward,
                                  equations.getPrimaryMapper(), equations.getSecondaryMappers());

        // set up integration control objects
        initIntegration(equations.getTime(), y0, t);

        // compute the initial Nordsieck vector using the configured starter integrator
        start(equations.getTime(), y, t);
        interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
        interpolator.storeTime(stepStart);

        double hNew = stepSize;
        interpolator.rescale(hNew);

        isLastStep = false;
        do {

            double error = 10;
            while (error >= 1.0) {

                stepSize = hNew;

                // predict a first estimate of the state at step end (P in the PECE sequence)
                final double stepEnd = stepStart + stepSize;
                interpolator.setInterpolatedTime(stepEnd);
                final ExpandableStatefulODE expandable = getExpandable();
                final EquationsMapper primary = expandable.getPrimaryMapper();
                primary.insertEquationData(interpolator.getInterpolatedState(), yTmp);
                int index = 0;
                for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
                    secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), yTmp);
                    ++index;
                }

                // evaluate a first estimate of the derivative (first E in the PECE sequence)
                computeDerivatives(stepEnd, yTmp, yDot);

                // update Nordsieck vector
                for (int j = 0; j < y0.length; ++j) {
                    predictedScaled[j] = stepSize * yDot[j];
                }
                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                // apply correction (C in the PECE sequence)
                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));

                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor = computeStepGrowShrinkFactor(error);
                    hNew = filterStep(stepSize * factor, forward, false);
                    interpolator.rescale(hNew);
                }
            }

            // evaluate a final estimate of the derivative (second E in the PECE sequence)
            final double stepEnd = stepStart + stepSize;
            computeDerivatives(stepEnd, yTmp, yDot);

            // update Nordsieck vector
            final double[] correctedScaled = new double[y0.length];
            for (int j = 0; j < y0.length; ++j) {
                correctedScaled[j] = stepSize * yDot[j];
            }
            updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, nordsieckTmp);

            // discrete events handling
            System.arraycopy(yTmp, 0, y, 0, y.length);
            interpolator.reinitialize(stepEnd, stepSize, correctedScaled, nordsieckTmp);
            interpolator.storeTime(stepStart);
            interpolator.shift();
            interpolator.storeTime(stepEnd);
            stepStart = acceptStep(interpolator, y, yDot, t);
            scaled    = correctedScaled;
            nordsieck = nordsieckTmp;

            if (!isLastStep) {

                // prepare next step
                interpolator.storeTime(stepStart);

                if (resetOccurred) {
                    // some events handler has triggered changes that
                    // invalidate the derivatives, we need to restart from scratch
                    start(stepStart, y, t);
                    interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);

                }

                // stepsize control for next step
                final double  factor     = computeStepGrowShrinkFactor(error);
                final double  scaledH    = stepSize * factor;
                final double  nextT      = stepStart + scaledH;
                final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
                hNew = filterStep(scaledH, forward, nextIsLast);

                final double  filteredNextT      = stepStart + hNew;
                final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
                if (filteredNextIsLast) {
                    hNew = t - stepStart;
                }

                interpolator.rescale(hNew);
            }

        } while (!isLastStep);

        // dispatch results
        equations.setTime(stepStart);
        equations.setCompleteState(y);

        resetInternalState();

    }

    /** Corrector for current state in Adams-Moulton method.
     * <p>
     * This visitor implements the Taylor series formula:
     * <pre>
     * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub>
     * </pre>
     * </p>
     */
    private class Corrector implements RealMatrixPreservingVisitor {

        /** Previous state. */
        private final double[] previous;

        /** Current scaled first derivative. */
        private final double[] scaled;

        /** Current state before correction. */
        private final double[] before;

        /** Current state after correction. */
        private final double[] after;

        /** Simple constructor.
         * @param previous previous state
         * @param scaled current scaled first derivative
         * @param state state to correct (will be overwritten after visit)
         */
        Corrector(final double[] previous, final double[] scaled, final double[] state) {
            this.previous = previous;
            this.scaled   = scaled;
            this.after    = state;
            this.before   = state.clone();
        }

        /** {@inheritDoc} */
        public void start(int rows, int columns,
                          int startRow, int endRow, int startColumn, int endColumn) {
            Arrays.fill(after, 0.0);
        }

        /** {@inheritDoc} */
        public void visit(int row, int column, double value) {
            if ((row & 0x1) == 0) {
                after[column] -= value;
            } else {
                after[column] += value;
            }
        }

        /**
         * End visiting the Nordsieck vector.
         * <p>The correction is used to control stepsize. So its amplitude is
         * considered to be an error, which must be normalized according to
         * error control settings. If the normalized value is greater than 1,
         * the correction was too large and the step must be rejected.</p>
         * @return the normalized correction, if greater than 1, the step
         * must be rejected
         */
        public double end() {

            double error = 0;
            for (int i = 0; i < after.length; ++i) {
                after[i] += previous[i] + scaled[i];
                if (i < mainSetDimension) {
                    final double yScale = FastMath.max(FastMath.abs(previous[i]), FastMath.abs(after[i]));
                    final double tol    = (vecAbsoluteTolerance == null) ?
                                          (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
                                          (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
                    final double ratio  = (after[i] - before[i]) / tol; // (corrected-predicted)/tol
                    error += ratio * ratio;
                }
            }

            return FastMath.sqrt(error / mainSetDimension);

        }
    }

}