summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/ClassicalRungeKuttaFieldStepInterpolator.java
blob: 4ad8f4e8872b7bee173b4e2a5272d8619fb5fd7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;

/**
 * This class implements a step interpolator for the classical fourth
 * order Runge-Kutta integrator.
 *
 * <p>This interpolator allows to compute dense output inside the last
 * step computed. The interpolation equation is consistent with the
 * integration scheme :
 * <ul>
 *   <li>Using reference point at step start:<br>
 *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
 *                    + &theta; (h/6) [  (6 - 9 &theta; + 4 &theta;<sup>2</sup>) y'<sub>1</sub>
 *                                     + (    6 &theta; - 4 &theta;<sup>2</sup>) (y'<sub>2</sub> + y'<sub>3</sub>)
 *                                     + (   -3 &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
 *                                    ]
 *   </li>
 *   <li>Using reference point at step end:<br>
 *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
 *                    + (1 - &theta;) (h/6) [ (-4 &theta;^2 + 5 &theta; - 1) y'<sub>1</sub>
 *                                          +(4 &theta;^2 - 2 &theta; - 2) (y'<sub>2</sub> + y'<sub>3</sub>)
 *                                          -(4 &theta;^2 +   &theta; + 1) y'<sub>4</sub>
 *                                        ]
 *   </li>
 * </ul>
 * </p>
 *
 * where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
 * evaluations of the derivatives already computed during the
 * step.</p>
 *
 * @see ClassicalRungeKuttaFieldIntegrator
 * @param <T> the type of the field elements
 * @since 3.6
 */

class ClassicalRungeKuttaFieldStepInterpolator<T extends RealFieldElement<T>>
    extends RungeKuttaFieldStepInterpolator<T> {

    /** Simple constructor.
     * @param field field to which the time and state vector elements belong
     * @param forward integration direction indicator
     * @param yDotK slopes at the intermediate points
     * @param globalPreviousState start of the global step
     * @param globalCurrentState end of the global step
     * @param softPreviousState start of the restricted step
     * @param softCurrentState end of the restricted step
     * @param mapper equations mapper for the all equations
     */
    ClassicalRungeKuttaFieldStepInterpolator(final Field<T> field, final boolean forward,
                                             final T[][] yDotK,
                                             final FieldODEStateAndDerivative<T> globalPreviousState,
                                             final FieldODEStateAndDerivative<T> globalCurrentState,
                                             final FieldODEStateAndDerivative<T> softPreviousState,
                                             final FieldODEStateAndDerivative<T> softCurrentState,
                                             final FieldEquationsMapper<T> mapper) {
        super(field, forward, yDotK,
              globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
              mapper);
    }

    /** {@inheritDoc} */
    @Override
    protected ClassicalRungeKuttaFieldStepInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
                                                                 final FieldODEStateAndDerivative<T> newGlobalPreviousState,
                                                                 final FieldODEStateAndDerivative<T> newGlobalCurrentState,
                                                                 final FieldODEStateAndDerivative<T> newSoftPreviousState,
                                                                 final FieldODEStateAndDerivative<T> newSoftCurrentState,
                                                                 final FieldEquationsMapper<T> newMapper) {
        return new ClassicalRungeKuttaFieldStepInterpolator<T>(newField, newForward, newYDotK,
                                                               newGlobalPreviousState, newGlobalCurrentState,
                                                               newSoftPreviousState, newSoftCurrentState,
                                                               newMapper);
    }

    /** {@inheritDoc} */
    @SuppressWarnings("unchecked")
    @Override
    protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
                                                                                   final T time, final T theta,
                                                                                   final T thetaH, final T oneMinusThetaH) {

        final T one                       = time.getField().getOne();
        final T oneMinusTheta             = one.subtract(theta);
        final T oneMinus2Theta            = one.subtract(theta.multiply(2));
        final T coeffDot1                 = oneMinusTheta.multiply(oneMinus2Theta);
        final T coeffDot23                = theta.multiply(oneMinusTheta).multiply(2);
        final T coeffDot4                 = theta.multiply(oneMinus2Theta).negate();
        final T[] interpolatedState;
        final T[] interpolatedDerivatives;

        if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
            final T fourTheta2      = theta.multiply(theta).multiply(4);
            final T s               = thetaH.divide(6.0);
            final T coeff1          = s.multiply(fourTheta2.subtract(theta.multiply(9)).add(6));
            final T coeff23         = s.multiply(theta.multiply(6).subtract(fourTheta2));
            final T coeff4          = s.multiply(fourTheta2.subtract(theta.multiply(3)));
            interpolatedState       = previousStateLinearCombination(coeff1, coeff23, coeff23, coeff4);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4);
        } else {
            final T fourTheta       = theta.multiply(4);
            final T s               = oneMinusThetaH.divide(6);
            final T coeff1          = s.multiply(theta.multiply(fourTheta.negate().add(5)).subtract(1));
            final T coeff23         = s.multiply(theta.multiply(fourTheta.subtract(2)).subtract(2));
            final T coeff4          = s.multiply(theta.multiply(fourTheta.negate().subtract(1)).subtract(1));
            interpolatedState       = currentStateLinearCombination(coeff1, coeff23, coeff23, coeff4);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4);
        }

        return new FieldODEStateAndDerivative<T>(time, interpolatedState, interpolatedDerivatives);

    }

}