summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/ClassicalRungeKuttaStepInterpolator.java
blob: 296f5b5c03e8a5fab8d2d9e2505e061e2d8fe1e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.ode.sampling.StepInterpolator;

/**
 * This class implements a step interpolator for the classical fourth
 * order Runge-Kutta integrator.
 *
 * <p>This interpolator allows to compute dense output inside the last
 * step computed. The interpolation equation is consistent with the
 * integration scheme :
 * <ul>
 *   <li>Using reference point at step start:<br>
 *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
 *                    + &theta; (h/6) [  (6 - 9 &theta; + 4 &theta;<sup>2</sup>) y'<sub>1</sub>
 *                                     + (    6 &theta; - 4 &theta;<sup>2</sup>) (y'<sub>2</sub> + y'<sub>3</sub>)
 *                                     + (   -3 &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
 *                                    ]
 *   </li>
 *   <li>Using reference point at step end:<br>
 *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
 *                    + (1 - &theta;) (h/6) [ (-4 &theta;^2 + 5 &theta; - 1) y'<sub>1</sub>
 *                                          +(4 &theta;^2 - 2 &theta; - 2) (y'<sub>2</sub> + y'<sub>3</sub>)
 *                                          -(4 &theta;^2 +   &theta; + 1) y'<sub>4</sub>
 *                                        ]
 *   </li>
 * </ul>
 * </p>
 *
 * where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
 * evaluations of the derivatives already computed during the
 * step.</p>
 *
 * @see ClassicalRungeKuttaIntegrator
 * @since 1.2
 */

class ClassicalRungeKuttaStepInterpolator
    extends RungeKuttaStepInterpolator {

    /** Serializable version identifier. */
    private static final long serialVersionUID = 20111120L;

    /** Simple constructor.
     * This constructor builds an instance that is not usable yet, the
     * {@link RungeKuttaStepInterpolator#reinitialize} method should be
     * called before using the instance in order to initialize the
     * internal arrays. This constructor is used only in order to delay
     * the initialization in some cases. The {@link RungeKuttaIntegrator}
     * class uses the prototyping design pattern to create the step
     * interpolators by cloning an uninitialized model and latter initializing
     * the copy.
     */
    // CHECKSTYLE: stop RedundantModifier
    // the public modifier here is needed for serialization
    public ClassicalRungeKuttaStepInterpolator() {
    }
    // CHECKSTYLE: resume RedundantModifier

    /** Copy constructor.
     * @param interpolator interpolator to copy from. The copy is a deep
     * copy: its arrays are separated from the original arrays of the
     * instance
     */
    ClassicalRungeKuttaStepInterpolator(final ClassicalRungeKuttaStepInterpolator interpolator) {
        super(interpolator);
    }

    /** {@inheritDoc} */
    @Override
    protected StepInterpolator doCopy() {
        return new ClassicalRungeKuttaStepInterpolator(this);
    }

    /** {@inheritDoc} */
    @Override
    protected void computeInterpolatedStateAndDerivatives(final double theta,
                                            final double oneMinusThetaH) {

        final double oneMinusTheta  = 1 - theta;
        final double oneMinus2Theta = 1 - 2 * theta;
        final double coeffDot1     = oneMinusTheta * oneMinus2Theta;
        final double coeffDot23    = 2 * theta * oneMinusTheta;
        final double coeffDot4     = -theta * oneMinus2Theta;
        if ((previousState != null) && (theta <= 0.5)) {
            final double fourTheta2     = 4 * theta * theta;
            final double s             = theta * h / 6.0;
            final double coeff1        = s * ( 6 - 9 * theta + fourTheta2);
            final double coeff23       = s * ( 6 * theta - fourTheta2);
            final double coeff4        = s * (-3 * theta + fourTheta2);
            for (int i = 0; i < interpolatedState.length; ++i) {
                final double yDot1  = yDotK[0][i];
                final double yDot23 = yDotK[1][i] + yDotK[2][i];
                final double yDot4  = yDotK[3][i];
                interpolatedState[i] =
                        previousState[i] + coeff1  * yDot1 + coeff23 * yDot23 + coeff4  * yDot4;
                interpolatedDerivatives[i] =
                        coeffDot1 * yDot1 + coeffDot23 * yDot23 + coeffDot4 * yDot4;
            }
        } else {
            final double fourTheta      = 4 * theta;
            final double s             = oneMinusThetaH / 6.0;
            final double coeff1        = s * ((-fourTheta + 5) * theta - 1);
            final double coeff23       = s * (( fourTheta - 2) * theta - 2);
            final double coeff4        = s * ((-fourTheta - 1) * theta - 1);
            for (int i = 0; i < interpolatedState.length; ++i) {
                final double yDot1  = yDotK[0][i];
                final double yDot23 = yDotK[1][i] + yDotK[2][i];
                final double yDot4  = yDotK[3][i];
                interpolatedState[i] =
                        currentState[i] + coeff1  * yDot1 + coeff23 * yDot23 + coeff4  * yDot4;
                interpolatedDerivatives[i] =
                        coeffDot1 * yDot1 + coeffDot23 * yDot23 + coeffDot4 * yDot4;
            }
        }

    }

}