summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/MidpointFieldStepInterpolator.java
blob: 911e3b22a46032ec3ba82c8be6abcec0b9acc0e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;

/**
 * This class implements a step interpolator for second order
 * Runge-Kutta integrator.
 *
 * <p>This interpolator computes dense output inside the last
 * step computed. The interpolation equation is consistent with the
 * integration scheme :
 * <ul>
 *   <li>Using reference point at step start:<br>
 *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>) + &theta; h [(1 - &theta;) y'<sub>1</sub> + &theta; y'<sub>2</sub>]
 *   </li>
 *   <li>Using reference point at step end:<br>
 *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h) + (1-&theta;) h [&theta; y'<sub>1</sub> - (1+&theta;) y'<sub>2</sub>]
 *   </li>
 * </ul>
 * </p>
 *
 * where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> and y'<sub>2</sub> are the two
 * evaluations of the derivatives already computed during the
 * step.</p>
 *
 * @see MidpointFieldIntegrator
 * @param <T> the type of the field elements
 * @since 3.6
 */

class MidpointFieldStepInterpolator<T extends RealFieldElement<T>>
    extends RungeKuttaFieldStepInterpolator<T> {

    /** Simple constructor.
     * @param field field to which the time and state vector elements belong
     * @param forward integration direction indicator
     * @param yDotK slopes at the intermediate points
     * @param globalPreviousState start of the global step
     * @param globalCurrentState end of the global step
     * @param softPreviousState start of the restricted step
     * @param softCurrentState end of the restricted step
     * @param mapper equations mapper for the all equations
     */
    MidpointFieldStepInterpolator(final Field<T> field, final boolean forward,
                                             final T[][] yDotK,
                                             final FieldODEStateAndDerivative<T> globalPreviousState,
                                             final FieldODEStateAndDerivative<T> globalCurrentState,
                                             final FieldODEStateAndDerivative<T> softPreviousState,
                                             final FieldODEStateAndDerivative<T> softCurrentState,
                                             final FieldEquationsMapper<T> mapper) {
        super(field, forward, yDotK,
              globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
              mapper);
    }

    /** {@inheritDoc} */
    @Override
    protected MidpointFieldStepInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
                                                      final FieldODEStateAndDerivative<T> newGlobalPreviousState,
                                                      final FieldODEStateAndDerivative<T> newGlobalCurrentState,
                                                      final FieldODEStateAndDerivative<T> newSoftPreviousState,
                                                      final FieldODEStateAndDerivative<T> newSoftCurrentState,
                                                      final FieldEquationsMapper<T> newMapper) {
        return new MidpointFieldStepInterpolator<T>(newField, newForward, newYDotK,
                                                    newGlobalPreviousState, newGlobalCurrentState,
                                                    newSoftPreviousState, newSoftCurrentState,
                                                    newMapper);
    }

    /** {@inheritDoc} */
    @SuppressWarnings("unchecked")
    @Override
    protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
                                                                                   final T time, final T theta,
                                                                                   final T thetaH, final T oneMinusThetaH) {

        final T coeffDot2 = theta.multiply(2);
        final T coeffDot1 = time.getField().getOne().subtract(coeffDot2);
        final T[] interpolatedState;
        final T[] interpolatedDerivatives;

        if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
            final T coeff1 = theta.multiply(oneMinusThetaH);
            final T coeff2 = theta.multiply(thetaH);
            interpolatedState       = previousStateLinearCombination(coeff1, coeff2);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2);
        } else {
            final T coeff1 = oneMinusThetaH.multiply(theta);
            final T coeff2 = oneMinusThetaH.multiply(theta.add(1)).negate();
            interpolatedState       = currentStateLinearCombination(coeff1, coeff2);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2);
        }

        return new FieldODEStateAndDerivative<T>(time, interpolatedState, interpolatedDerivatives);

    }

}