summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/random/AbstractRandomGenerator.java
blob: ce8ad8542ff6000e2b631dca69fe3b47083bf47b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.random;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.util.FastMath;

/**
 * Abstract class implementing the {@link RandomGenerator} interface. Default implementations for
 * all methods other than {@link #nextDouble()} and {@link #setSeed(long)} are provided.
 *
 * <p>All data generation methods are based on {@code code nextDouble()}. Concrete implementations
 * <strong>must</strong> override this method and <strong>should</strong> provide better / more
 * performant implementations of the other methods if the underlying PRNG supplies them.
 *
 * @since 1.1
 */
public abstract class AbstractRandomGenerator implements RandomGenerator {

    /**
     * Cached random normal value. The default implementation for {@link #nextGaussian} generates
     * pairs of values and this field caches the second value so that the full algorithm is not
     * executed for every activation. The value {@code Double.NaN} signals that there is no cached
     * value. Use {@link #clear} to clear the cached value.
     */
    private double cachedNormalDeviate = Double.NaN;

    /** Construct a RandomGenerator. */
    public AbstractRandomGenerator() {
        super();
    }

    /**
     * Clears the cache used by the default implementation of {@link #nextGaussian}. Implementations
     * that do not override the default implementation of {@code nextGaussian} should call this
     * method in the implementation of {@link #setSeed(long)}
     */
    public void clear() {
        cachedNormalDeviate = Double.NaN;
    }

    /** {@inheritDoc} */
    public void setSeed(int seed) {
        setSeed((long) seed);
    }

    /** {@inheritDoc} */
    public void setSeed(int[] seed) {
        // the following number is the largest prime that fits in 32 bits (it is 2^32 - 5)
        final long prime = 4294967291l;

        long combined = 0l;
        for (int s : seed) {
            combined = combined * prime + s;
        }
        setSeed(combined);
    }

    /**
     * Sets the seed of the underlying random number generator using a {@code long} seed. Sequences
     * of values generated starting with the same seeds should be identical.
     *
     * <p>Implementations that do not override the default implementation of {@code nextGaussian}
     * should include a call to {@link #clear} in the implementation of this method.
     *
     * @param seed the seed value
     */
    public abstract void setSeed(long seed);

    /**
     * Generates random bytes and places them into a user-supplied byte array. The number of random
     * bytes produced is equal to the length of the byte array.
     *
     * <p>The default implementation fills the array with bytes extracted from random integers
     * generated using {@link #nextInt}.
     *
     * @param bytes the non-null byte array in which to put the random bytes
     */
    public void nextBytes(byte[] bytes) {
        int bytesOut = 0;
        while (bytesOut < bytes.length) {
            int randInt = nextInt();
            for (int i = 0; i < 3; i++) {
                if (i > 0) {
                    randInt >>= 8;
                }
                bytes[bytesOut++] = (byte) randInt;
                if (bytesOut == bytes.length) {
                    return;
                }
            }
        }
    }

    /**
     * Returns the next pseudorandom, uniformly distributed {@code int} value from this random
     * number generator's sequence. All 2<font size="-1"><sup>32</sup></font> possible {@code int}
     * values should be produced with (approximately) equal probability.
     *
     * <p>The default implementation provided here returns
     *
     * <pre>
     * <code>(int) (nextDouble() * Integer.MAX_VALUE)</code>
     * </pre>
     *
     * @return the next pseudorandom, uniformly distributed {@code int} value from this random
     *     number generator's sequence
     */
    public int nextInt() {
        return (int) ((2d * nextDouble() - 1d) * Integer.MAX_VALUE);
    }

    /**
     * Returns a pseudorandom, uniformly distributed {@code int} value between 0 (inclusive) and the
     * specified value (exclusive), drawn from this random number generator's sequence.
     *
     * <p>The default implementation returns
     *
     * <pre>
     * <code>(int) (nextDouble() * n</code>
     * </pre>
     *
     * @param n the bound on the random number to be returned. Must be positive.
     * @return a pseudorandom, uniformly distributed {@code int} value between 0 (inclusive) and n
     *     (exclusive).
     * @throws NotStrictlyPositiveException if {@code n <= 0}.
     */
    public int nextInt(int n) {
        if (n <= 0) {
            throw new NotStrictlyPositiveException(n);
        }
        int result = (int) (nextDouble() * n);
        return result < n ? result : n - 1;
    }

    /**
     * Returns the next pseudorandom, uniformly distributed {@code long} value from this random
     * number generator's sequence. All 2<font size="-1"><sup>64</sup></font> possible {@code long}
     * values should be produced with (approximately) equal probability.
     *
     * <p>The default implementation returns
     *
     * <pre>
     * <code>(long) (nextDouble() * Long.MAX_VALUE)</code>
     * </pre>
     *
     * @return the next pseudorandom, uniformly distributed {@code long} value from this random
     *     number generator's sequence
     */
    public long nextLong() {
        return (long) ((2d * nextDouble() - 1d) * Long.MAX_VALUE);
    }

    /**
     * Returns the next pseudorandom, uniformly distributed {@code boolean} value from this random
     * number generator's sequence.
     *
     * <p>The default implementation returns
     *
     * <pre>
     * <code>nextDouble() <= 0.5</code>
     * </pre>
     *
     * @return the next pseudorandom, uniformly distributed {@code boolean} value from this random
     *     number generator's sequence
     */
    public boolean nextBoolean() {
        return nextDouble() <= 0.5;
    }

    /**
     * Returns the next pseudorandom, uniformly distributed {@code float} value between {@code 0.0}
     * and {@code 1.0} from this random number generator's sequence.
     *
     * <p>The default implementation returns
     *
     * <pre>
     * <code>(float) nextDouble() </code>
     * </pre>
     *
     * @return the next pseudorandom, uniformly distributed {@code float} value between {@code 0.0}
     *     and {@code 1.0} from this random number generator's sequence
     */
    public float nextFloat() {
        return (float) nextDouble();
    }

    /**
     * Returns the next pseudorandom, uniformly distributed {@code double} value between {@code 0.0}
     * and {@code 1.0} from this random number generator's sequence.
     *
     * <p>This method provides the underlying source of random data used by the other methods.
     *
     * @return the next pseudorandom, uniformly distributed {@code double} value between {@code 0.0}
     *     and {@code 1.0} from this random number generator's sequence
     */
    public abstract double nextDouble();

    /**
     * Returns the next pseudorandom, Gaussian ("normally") distributed {@code double} value with
     * mean {@code 0.0} and standard deviation {@code 1.0} from this random number generator's
     * sequence.
     *
     * <p>The default implementation uses the <em>Polar Method</em> due to G.E.P. Box, M.E. Muller
     * and G. Marsaglia, as described in D. Knuth, <u>The Art of Computer Programming</u>, 3.4.1C.
     *
     * <p>The algorithm generates a pair of independent random values. One of these is cached for
     * reuse, so the full algorithm is not executed on each activation. Implementations that do not
     * override this method should make sure to call {@link #clear} to clear the cached value in the
     * implementation of {@link #setSeed(long)}.
     *
     * @return the next pseudorandom, Gaussian ("normally") distributed {@code double} value with
     *     mean {@code 0.0} and standard deviation {@code 1.0} from this random number generator's
     *     sequence
     */
    public double nextGaussian() {
        if (!Double.isNaN(cachedNormalDeviate)) {
            double dev = cachedNormalDeviate;
            cachedNormalDeviate = Double.NaN;
            return dev;
        }
        double v1 = 0;
        double v2 = 0;
        double s = 1;
        while (s >= 1) {
            v1 = 2 * nextDouble() - 1;
            v2 = 2 * nextDouble() - 1;
            s = v1 * v1 + v2 * v2;
        }
        if (s != 0) {
            s = FastMath.sqrt(-2 * FastMath.log(s) / s);
        }
        cachedNormalDeviate = v2 * s;
        return v1 * s;
    }
}